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Switchable dynamics in the deep-strong-coupling regime
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We investigate theoretically the dynamics of the system that consists of a cascade three-level emitter interacting
with a single-mode resonator in the deep-strong-coupling regime. We show that the dynamical evolution of the
system can only occur in a certain parity chain decided by the initial state, in which the photon population and
the initial state probability present periodic collapses and revivals. In particular, we find that the evolution of the
dynamics can be controlled by feeding the time-control pulses into the system. Control pluses with specific arrival
times can suddenly switch off and on the time evolutions of the system populations and initial state probability
when the system is originally in a symmetry superposition state. Physically, the switch-off of the evolution
originates from the symmetry breaking of the state, i.e., (|g0〉 + |f 0〉)/

√
2 → (|g0〉 − |f 0〉)/

√
2. This work

offers an all-optical approach to manipulate the dynamics of the system, which might have potential application
in modern quantum technology.
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I. INTRODUCTION

The investigation of light-matter interaction has been one
of the central topics of quantum optics for last few decades
[1]. Studies of light-matter interaction from the weak-coupling
to the strong-coupling regime have been done in a variety of
cavity quantum electrodynamics (QED) systems [2–6]. Here
the cavity-emitter coupling rate is comparable to the decay
rate of the system, the rave-wave approximation (RWA) can
be applied to explore the dynamics of the system. With the
progress of technology, the ultrastrong-coupling regime has
been reached in superconductor and solid-state semiconductor
systems [7–10], where the light-matter interaction strength
can reach the order of 10% of the field frequency or the
transition frequency of the quantum emitters [8,11–16]. In
the regime, the approach involving the RWA is no longer
applicable for describing the dynamics of the system. The
counter-rotating terms, corresponding to excitation-number-
nonconserving processes, induce virtual transitions between
states of the system. Such a regime of cavity QED is not
only a new door to study the physics of virtual processes
[17–19], but also has potential applications in modern quantum
technology [20–24]. Recently, a further regime, called the
deep-strong-coupling regime, with the coupling rate between
an oscillator and a two-level system that is greater than or equal
to the oscillator frequency has been presented [25]. For this
regime, many novel quantum properties have been discovered,
such as the periodic collapse-revival of the system populations
during the process of dynamical evolution.

Recently, the ultrafast time control of the light-matter
interaction has been achieved experimentally by applying
the intersubband transitions in quantum wells, which lead
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to unconventional QED phenomena [7]. In addition, the all-
optical time switch of strong interaction between a microcavity
and a cascade three-level system has been proposed [26,27].
A control pulse with a specific arrival time can switch off
or on the vacuum Rabi oscillations of the system due to the
strong population inversion between the levels. If switch-
off fails, the time-control pulse might be applied to destroy
suddenly the first-order coherence of the cavity photons. The
loss of the coherence can be recreated after the arrival of an
additional control pulse. In the process, the time evolution of
cavity photon population and the coupling between cavity field
and emitter are not affected by the pulses. Such a scheme of
control over the light-matter interaction and coherence of the
system can be used to perform which-path and quantum-eraser
operations and is of great importance in quantum science and
modern optics. In the deep-strong-coupling regime, we are now
interested to determine whether the all-optical time-control
pulse can be used to manipulate the dynamical evolution of
the system.

Motivated by the above question, we study in this paper
the quantum dynamics of a three-level system interacting with
a single-mode resonator in the deep-strong-coupling regime.
Here the superconducting quantum circuit with a weakly
anharmonic multilevel structure is considered as the three-level
emitter [28–30]. In this case, the system Hamiltonian satisfies
Z2 symmetry due to the presence of the counter-rotating terms.
So the state space splits into two independent parity chains
[25,30–32]. The dynamical evolution of the system can only
occur in a certain parity chain decided by the initial state, and
the simultaneous evolution in two parity chains is forbidden.
In this process of the time evolution, the photon population and
the probability of initial state periodically collapse and revive
when the system is originally in a product state or symmetry
superposition state. This process happens here and arises from
the transitions between states induced by rotating terms and
counter-rotating terms.

2469-9926/2018/98(2)/023863(6) 023863-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.023863&domain=pdf&date_stamp=2018-08-31
https://doi.org/10.1103/PhysRevA.98.023863


ZHENG, LÜ, BIN, ZHAN, LI, AND WU PHYSICAL REVIEW A 98, 023863 (2018)

(a () b)

(c)

……

……

FIG. 1. (a) Schematics of the system and (b) of the three-level
emitter. g1 is the coupling rate between the resonator and the two
lowest levels {|g〉, |e〉}, g2 is the coupling rate between the resonator
and the two excited levels {|e〉, |f 〉}. �c denotes the coherent control
pulse. (c) Two parity chains describing the dynamical evolution of
system decided by the Z2 symmetry; the upper and lower chains
correspond to even parity and odd parity, respectively. The transition
between two states in the same chain may be connected via either
rotating (solid blue arrows) or counter-rotating (dashed red arrows)
terms of the Hamiltonian. The first and second indices in state |A; B〉
denote qubits and resonator, respectively.

Interestingly, we find that the dynamical evolution of the
system can be controlled by feeding a Gaussian pulse into
the system to couple to the three-level emitter. A control pulse
with a specific arrival time can suddenly switch off the periodic
evolution of the photon population and the collapse-revival of
the initial state when the system is originally in a symmetry
superposition state. This is because the control pulse breaks
the symmetry of the system state, giving rise to destructive
quantum interference between different transition paths. This
is no longer the case for the asymmetry superposition state and
product state. Moreover, the disappearing process of evolution
is not irreversible: the evolutions of system populations in a
certain parity chain can be recovered instantaneously after the
arrival of the second control pulse. This all-optical switch of
dynamical evolution of the system in the deep-strong-coupling
regime is not only fundamentally intriguing, but also has
potential in quantum science and quantum engineering.

Our paper is organized as follows: In Sec. II, we introduce
the model and the system dynamics in two unconnected parity
chains caused by the Z2 symmetry of the Hamiltonian. In
Sec. III, we show the dynamical evolution of the system
without feeding coherent pulses into the system. In Sec. IV, we
demonstrate a scheme for switching off and on the evolution
of the system populations. In Sec. V, we give conclusions of
our work.

II. MODEL

As shown in Fig. 1(a), we consider a quantum system
that consists of a single-mode resonator coupled to a cascade
three-level emitter in the deep-strong-coupling regime. The

superconducting quantum circuit with the weak anharmonicity
is considered as the three-level quantum emitter. The coherent
control pulse �c can be fed into the system to coupled
resonantly to two excited states of the emitter. The Hamiltonian
of the system is given by (h̄ = 1)

H = H0 + Hd, (1)

with

H0 = ωca
†a + 2ωq |f 〉〈f | + ωq |e〉〈e| + g1(a† + a)(|e〉〈g|

+ |g〉〈e|) + g2(a† + a)(|f 〉〈e| + |e〉〈f |), (2)

where the first, second, and third terms of Eq. (2) represent
the free Hamiltonian of the single-mode resonator and three-
level emitter, and the last two terms of Eq. (2) represent the
interaction between the resonator and emitter. Hd describes the
coupling of a coherent control pulse with two excited states of
an emitter with

Hd = �c(t )|f 〉〈e| + �∗
c (t )|e〉〈f |. (3)

Here, a (or a†) is the annihilation (or creation) operator of the
resonator with resonance frequency ωc. ωq is the transition fre-
quency between adjacent energy levels |e〉 (or |f 〉) and |g〉 (or
|e〉) of the emitter, where the level |g〉 should be considered as
the ground state of the emitter. �c(t ) = A cos(ωt ) exp[−(t −
tc )2(2τ 2)]/(τ

√
2π ) represents the Gaussian control pulse, A

and τ are the amplitude and standard deviation of the pulse,
respectively, and tc is the arrival time of pulse. Note that
the Hamiltonian H0 contains counter-rotating terms of forms
a†|e〉〈g|, a|g〉〈e|, a†|f 〉〈e|, and a|e〉〈f |, which cannot be
ignored in the deep-strong-coupling regime.

For the system without a coherent control pulse fed into the
emitter, the resonator-emitter Hamiltonian H0 has parity (or
Z2) symmetry with a well-defined parity operator

� = exp[iπN ] = exp[iπ (a†a + 2|f 〉〈f | + |e〉〈e|)]
= (|f 〉〈f | − |e〉〈e| + |g〉〈g|)(−1)a

†a, (4)

which commutes with the Hamiltonian H0. �|p〉 = p|p〉 (p =
±1), measuring the odd-even parity of the system. The system
dynamics moved inside the Hilbert space is split into two
unconnected parity chains, i.e., odd parity (p = −1) and even
parity (p = +1) [25,30–32], as displayed in Fig. 1(c). States
within each parity chain may be connected via either rotating
or counter-rotating terms. For example, in the even-parity
chain (p = +1), the counter-rotating term a†|f 〉〈e| induces
the transition |e1〉 → |f 2〉, and the rotating term a|f 〉〈e|
induces the transition |e1〉 → |f 0〉. These transitions induced
by rotating and counter-rotating terms can only occur in a
certain-parity chain, and the transition between the two parity
chains is forbidden due to the protection of Z2 symmetry. Here,
the counter-rotating terms correspond to the virtual transitions,
which are crucial for the dynamical evolution of the system in
each parity chain.

III. DYNAMICS OF SYSTEM WITHOUT
COHERENT PULSES

We consider that our system is designed to operate in the
condition of no feeding of the coherent pulses. Assuming the
limit of ωq/ωc = 0, the three emitter levels are degenerate.
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FIG. 2. Round trip of the photon number wave packet due to the
dynamical evolution of the system in the even-parity chain, where
the initial state |ψ0〉 = | + 0〉 = (|g0〉 + |f 0〉)/

√
2, ωq/ωc = 0, and

g1/ωc = g2/ωc = 1.

Here the three-level system still allows only two transitions;
i.e., |g〉 ↔ |e〉 and |e〉 ↔ |f 〉. The transition between levels
|g〉 and |f 〉 is forbidden due to the fact that they have the same
parities in the emitter [28]. In the cases of g1/ωc = g2/ωc = 1
and the initial state |ψ (0)〉 = | + 0〉 = (|g0〉 + |f 0〉)/

√
2, we

study the quantum dynamics of the system

|ψ (t )〉 = U (t )|ψ (0)〉 = e−iH t |ψ (0)〉, (5)

where the first and second indices in state | + 0〉 denote the
parity and photon number state, respectively. We find that
the photon population Pn goes back and forth on the even
chain independently with period T = 2π/ωc. The round trip
of the photon number wave packet is displayed in Fig. 2.
To understand the dynamics of the system more clearly, we
calculate numerically the probability of the initial state in the
process of system evolution, i.e., P+0 = |〈ψ (t )|ψ (0)〉|2, in
Fig. 3(a), which shows the collapses and revivals with a period
of T = 2π/ωc. The reason for this behavior is that, in the deep-
strong-coupling regime, the system allows the occurrence of
high-order transition processes induced by the rotating and
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FIG. 3. The probabilities of initial states at different times of
the evolution when g1/ωc = g2/ωc = 1. Here the initial states (a)
|ψ (0)〉 = | + 0〉 = (|g0〉 + |f 0〉)/

√
2, (b) |ψ (0)〉 = | + 1〉 = |e1〉,

and (c) |ψ (0)〉 = | + 2〉 = (|g2〉 + |f 2〉)/
√

2. The black solid lines
and red dashed line correspond to ωq/ωc = 0 and ωq/ωc = 0.2,
respectively.

FIG. 4. The Wigner function W (x, y ) of the state for differ-
ent times of dynamical evolution. The quadrature variables are
x = (a† + a)/

√
2 and y = (ia† − ia)/

√
2. For all panels, the ini-

tial states |ψ (0)〉 = | + 0〉 = (|g0〉 + |f 0〉)/
√

2, ωq/ωc = 0.2 and
g1/ωc = g2/ωc = 1.

counter-rotating terms of the Hamiltonian H0. Note that the
round trip of the photon number wave packet and the collapse-
revival of the initial-state probability cannot be seen in the case
of including the RWA. Moreover, we show the time evolutions
of the probabilities of the initial states |ψ (0)〉 = | + 1〉 = |e1〉
and |ψ (0)〉 = | + 2〉 = (|g2〉 + |f 2〉)/

√
2 in Figs. 3(b) and

3(c), respectively. A series of subpeaks can be seen in the
two figures because the dynamics of the system leads to
the generation of counterpropagating photon number wave
packets, whose spreading in both directions bounce back and
forth, giving rise to the interference. Comparing Figs. 3(b)
and 3(c), we find that the latter curve has more subpeaks than
the former; this result implies that the degree of interference
depends on the selection of initial state.

Furthermore, we investigate the dynamics of the system in
the case of ωq/ωc �= 0, where the degeneracy of the emitter
is broken. In Fig. 3(a), although the dynamical evolution is
still in a certain-parity chain, the probability of the initial
state cannot be revived fully due to the self-interference of
the photon number wave packet [25]. To better understand
the collapses and revivals that happened here, we present the
Wigner function of the state in the phase space, as shown in
Fig. 4. Comparing Figs. 4(a) with 4(d), we find that the state
cannot be revived fully after two periods of evolution, which is
consistent with the previous result. From Figs. 4(b) and 4(c), we
observe that the initial state is split into two parts to evolve in the
even-parity chain. The reason is that the three-level structure
of the emitter determines the evolution of initial state with
different types of transitions; see Fig. 1(c).

IV. SWITCHING OF DYNAMICS
WITH COHERENT PULSES

In this section, we study how to control the time evolution
of the system populations by feeding coherent control pulses
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FIG. 5. (a), (c) Dynamics of the photon population Pn in the
presence of two π control pulses (blue arrows). (b) Time evolution of
the probabilities of the states |ψ (0)〉 = | + 0〉 = (|g0〉 + |f 0〉)/

√
2

and |ψA〉 = (|g0〉 − |f 0〉)/
√

2. (d) Time evolution of the probability
of the state |ψ (0)〉 = | − 0〉 = |e0〉. Here the initial states |ψ (0)〉 =
| + 0〉 = (|g0〉 + |f 0〉)/

√
2 for panels (a) and (b), |ψ (0)〉 = | −

0〉 = |e0〉 for panels (c) and (d). The system parameters used here
are ωq/ωc = ω/ωc = 0.01, g1/ωc = g2/ωc = 0.5, γ /ωc = κ/ωc =
0.005, A = π , and τ = 0.1/ωc.

into the system. To describe the dynamics of the system more
realistically, the losses of resonator and quantum emitter need
to be taken into account. The effective Hamiltonian of the
system reads

Heff = H0 + Hd − i
κ

2
a†a − i

γ

2
(|f 〉〈f | + |e〉〈e|), (6)

whereκ is the decay rate of the resonator, andγ is the relaxation
rate of the levels |f 〉 and |e〉. Starting from the effective
Hamiltonian, we derive the evolution of the system

|ψ (t )〉 = U (t )|ψ (0)〉 = e−iHefft |ψ (0)〉. (7)

If ωq/ωc = 0.01, i.e., ωq 	 ωc, and the initial state |ψ (0)〉 =
| + 0〉 = (|g0〉 + |f 0〉)/

√
2, we calculate the dynamics of the

photon population and the probability of the initial state.
The results are shown in Figs. 5(a) and 5(b). Note that the
initial state is a symmetry even-parity state, whose dynamical
evolution can only occur in the even-parity chain. At the
initial time, the emitter is in the superposition state and the
resonator is in the vacuum state, and the average photon number
is zero. Then the photon population and the probability of
the initial state exhibit periodic collapses and revivals due
to the dynamical evolution of system. However, the occupation
of the resonator in the nonzero photon state cannot be recovered
when the first π pulse with the width τ = 0.1/ωc arrives in
the system at tc = 4π/ωc, while the probability of the initial
state suddenly goes to zero. Here the system has come back
to the initial state (|g0〉 + |f 0〉)/

√
2 before the arrival of

the pulse. The results imply that the time evolution of the
photon population in the parity chain have stopped. The reason
for the sudden disappearance of evolution is that the first π

control pulse sent at a minimum photon population induces the
transitions between levels of quantum emitter |f 〉 → |e〉 →
−|f 〉, the transitions allow the system to change from a
symmetry state |ψ (t )〉 = (|g0〉 + |f 0〉)/

√
2 to an asymmetry

state |ψ〉A = (|g0〉 − |f 0〉)/
√

2. Note that, in the numerical
calculation, we apply the pules with width τ at the special time
tc = 4π/ωc. Normally, the width of the pulses may affect the
evolution of the system, but here we use the picosecond pulses
to excite the emitter [7,33]. The width τ of the pulses is much
smaller than the typical timescale ς of the system evolution,
where ς ∼ 0.02 ns (ωc ∼ 50 GHz). Thus the evolution of the
system is hardly influenced by the width of the pulses.

In Fig. 5(b), the dashed red line represents the probability
of the state |ψ〉A, which reaches the maximum value when
the first pulse arrives in the system. Note that, if the system is
in an asymmetry state such as (|g0〉 − |f 0〉)/

√
2 and (|g1〉 −

|f 1〉)/
√

2, the dynamical evolution of the system cannot be
carried out in each parity chain. This is because the different
transition paths between the two states lead to destructive
quantum interference, making the effective coupling rates
between two transition states go to zero, i.e.,

�eff = 〈e1|H0|ψA〉

= 1√
2
〈e1|H0|g0〉 − 1√

2
〈e1|H0|f 0〉 = 0 (P = +1),

(8)

or

�eff = 〈e2|H0|ψA〉

= 1√
2
〈e2|H0|g1〉 − 1√

2
〈e2|H0|f 1〉 = 0 (P = −1).

(9)

From Fig. 5(a), we also find that the average photon number
begins to increase when the second control π pulse arrives in
the system at tc = 6π/ωc. The reason is that the second control
pulse fed into the system at this time induces the transitions
|f 〉 → |e〉 → −|f 〉, which changes the system from an asym-
metric state to a symmetric state, i.e., (|g0〉 − |f 0〉)/

√
2 →

(|g0〉 + |f 0〉)/
√

2. The result is also displayed in Fig. 5(b):
the sudden recover of the symmetry state induces the rebirth
of the dynamical evolution of the system in the even-parity
chain. Thus, we can switch off and on the evolution of system
by feeding the control pulses with specific arrival times into the
emitter. Moreover, in Fig. 6, we show the dynamics of photon
population for different resonator-emitter coupling strengths
g/ωc. Upon enhancing the coupling strength, the maximum
value of photon population increases, since a large value of
g/ωc allows the presence of higher-order transitions in the
parity chain. But the collapses and revivals of the photon
population are independent of the changes of coupling strength
g/ωc.

Furthermore, we investigate the quantum dynamics of the
system when the initial state is the product state |e0〉, i.e.,
| − 0〉. We observe the collapses and revivals of the photon
population with a period 2π/ωc in Fig. 5(c). The time evolution
of photon population is not affected by the control pulses with
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FIG. 6. Dynamics of photon population Pn for different coupling
rates g/ωc in the presence of two π control pulses. The initial state
|ψ (0)〉 = | + 0〉 = (|g0〉 + |f 0〉)/

√
2 and other system parameters

used here are in the same as Fig. 5.

the special arrival times. The result arises from the fact that the
first pulse, arrived at a minimum photon population, induces
the transitions |e〉 → −|f 〉 → −|e〉 in a very short period of
time. These transitions between two excited levels of the emit-
ter cannot change the state of the system. To better understand
the transitions induced by the control pulse, we display the
time evolution of the probability of the initial state in Fig. 5(d).
The probability shows the collapses and revivals in the first two
cycles, and the system changes suddenly from the state |e0〉 to
the state−|f 0〉when the first control pulse arrives in the system
at tc = 4π/ωc. Then the state quickly undergoes the transition
−|f 0〉 → −|e0〉. Here the presence of the intermediate state
can be seen by the valley of the curve in Fig. 5(d). Such rapid
transitions processes, i.e., |e0〉 → −|f 0〉 → −|e0〉, cannot
modify the state of the system. Similarly, the second control
pulse with arrival time tc = 6π/ωc induces the transitions
−|e0〉 → |f 0〉 → |e0〉. Thus the collapses and revivals of the
photon population are still not affected. To combine the present
and previous results, when only the system is originally in the
symmetry superposition state, can the specific arrival times of

control pulses switch off and on the time evolution of photon
population and initial-state probability.

V. CONCLUSION

In summary, we have studied the quantum dynamics of the
three-level emitter interacting with the single-mode resonator
in the deep-strong-coupling regime. In this case, the method
involving the RWA is not applied, and the rotating and
counter-rotating terms induce the transitions between states in a
certain-parity chain. The transition between two parity chains
is forbidden due to the presence of Z2 symmetry. We have
observed the collapses and revivals of the system populations
when the system is originally in a product state or symmetry
superposition state (a superposition state is formed of state
components belonging to the same-parity chain).

Specifically, we have demonstrated that the collapses and
revivals of the photon population can be controlled by feeding
the control pulses with specific arrival times into the emitter.
Such an operation of switching off and on the dynamical
evolutions of photon population and initial state probability
can be achieved only when the initial state of the system is
the symmetry superposition state, whereas this is no longer
the case for the asymmetry superposition state and product
state. Moreover, we have found that the change of the coupling
strength between resonator and emitter does not affect the
collapses and revivals of the photon population. Thus, the
control pulse may be exploited to control the the evolution
of system populations even when the system is in a weaker-
coupling regime. This work offers a promising approach to
manipulate the dynamical evolution of system populations,
which has potential application in quantum engineering and
quantum science.
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