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Simultaneous cooling of coupled mechanical resonators in cavity optomechanics
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Quantum manipulation of coupled mechanical resonators has become an important research topic in
optomechanics because these systems can be used to study the quantum coherence effects involving multiple
mechanical modes. A prerequisite for observing macroscopic mechanical coherence is to cool the mechanical
resonators to their ground state. Here we propose a theoretical scheme to cool two coupled mechanical resonators
by introducing an optomechanical interface. The final mean phonon numbers in the two mechanical resonators
are calculated exactly and the results show that the ground-state cooling is achievable in the resolved-sideband
regime and under the optimal driving. By adiabatically eliminating the cavity field in the large-decay regime,
we obtain analytical results of the cooling limits, which show the smallest achievable phonon numbers and the
parameter conditions under which the optimal cooling is achieved. Finally, the scheme is extended to the cooling
of a chain of coupled mechanical resonators.
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I. INTRODUCTION

The radiation-pressure coupling between electromagnetic
fields and mechanical oscillation is at the heart of cavity
optomechanics [1–3]. This coupling is the basis for both
the control of the mechanical properties through the optical
means and the manipulation of the field statistics by me-
chanically changing the cavity boundary [4–12]. In recent
years, much attention has been paid to optomechanical systems
involving multiple mechanical resonators [13–18]. This is
because the multimode mechanical systems can be used to
study macroscopic mechanical coherence such as quantum
entanglement [19–26] and quantum synchronization [27,28].
Moreover, coupled mechanical systems have been widely ap-
plied to sensors for detecting various physical signals [29,30],
especially in nanomechanical systems [29–33].

To observe the signature of quantum effects in mechanical
systems, a prerequisite might be the cooling of the systems
to theirs ground states such that the thermal noise can be
suppressed. So far, several physical mechanisms such as
feedback cooling [34–38], backaction cooling [39,40], and
sideband cooling [41–49] have been proposed to cool a single
mechanical resonator in optomechanics. Moreover, various
schemes have been proposed to cool mechanical resonators,
such as transient cooling [50,51], cooling based on the quantum
interference effect [52–55], and quantum cooling in the strong-
optomechanical-coupling regime [56,57]. In particular, the
ground-state cooling has been realized in typical optomechan-
ical systems, which is composed of a single cavity mode
and a single mechanical mode [58,59]. Correspondingly, to
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manipulate the quantum coherence in multimode optomechan-
ical systems, it is desired to cool these mechanical modes for
further quantum manipulation [60–62]. Nevertheless, how to
cool multiple mechanical resonators remains an unresolved
question.

In this paper, we present a practical scheme to cool two
coupled mechanical resonators in an optomechanical sys-
tem which is formed by an optomechanical cavity coupled
to another mechanical resonator. Here, the two mechanical
resonators are coupled to each other through the so-called
position-position coupling, which can be physically realized
either by using a piezoelectric transducer in paired GaAs-based
mechanical resonators [31] or by introducing an electrostatic
force between the two resonators [32,33,63,64]. In the strong-
driving regime, the system is linearized to a three-mode
cascade system, which is composed of a cavity mode and two
mechanical modes. To include the cooling channel and the en-
vironments, we assume that the cavity field is connected with a
vacuum bath, and the two mechanical resonators are connected
with two heat baths at finite temperatures. Physically, the
vacuum bath of the cavity field extracts the thermal excitations
in the mechanical resonators via a manner of nonequilibrium
dynamics, and then the total system reaches a steady state.
By exactly calculating the final mean phonon numbers in the
resonators, we find that the ground-state cooling of the two
mechanical resonators can be realized simultaneously under
the optimal driving detuning and in the resolved-sideband
regime. Specifically, the cooling limits of the two mechanical
resonators are analytically derived by adiabatically eliminating
the cavity field in the large-decay regime. Finally, we extend
the optomechanical scheme to the cooling of a chain of
coupled mechanical resonators. The results show that ground-
state cooling is achievable in multiple mechanical resonators,
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FIG. 1. (a) Schematic of the three-mode optomechanical system.
A single-mode cavity field with resonance frequency ωc is coupled
to an oscillating end mirror with resonance frequency ω̃1 via the
radiation-pressure coupling. The movable end mirror is coupled to
another mechanical resonator with resonance frequency ω̃2 via the
“position-position” interaction. (b) By adiabatically eliminating the
cavity mode, the model in (a) is simplified to a system of two coupled
mechanical modes b1 and b2, with the coupling strength η0. The
mechanical resonator bl=1,2 is coupled to the heat bath with the decay
rate γl and thermal occupation number n̄l . Additionally, the mode b1

is coupled to an effective optical bath with the effective decay rate
γopt and thermal occupation number n̄opt.

and that the cooling efficiency is higher for the mechanical
oscillator, which is closer to the cavity.

The rest of this paper is organized as follows. In Sec. II, we
introduce the physical model and present the Hamiltonians.
In Sec. III, we derive the equations of motion and find the
solutions. In Sec. IV, we calculate the final mean phonon
numbers, analyze the parameter dependence, and derive the
cooling limits of the two mechanical resonators. In Sec. V, we
extend our studies to the case of a chain of coupled mechanical
resonators. Finally, we present some discussions and a brief
conclusion in Sec. VI. Two appendices are presented to display
the detailed calculations of the final mean phonon numbers and
the cooling limits.

II. MODEL AND HAMILTONIAN

We consider a three-mode optomechanical system, which
is composed of one cavity mode and two mechanical modes,
as illustrated in Fig. 1(a). The cavity-field mode is coupled to
the first mechanical mode via the radiation-pressure coupling,
and the two mechanical modes are coupled to each other via
the so-called position-position interaction. To manipulate the
optical and mechanical degrees of freedom, a proper driving
field is applied to the optical cavity. The Hamiltonian of the

system reads (h̄ = 1)

H = ωca
†a +

∑
l=1,2

(
p2

xl

2ml

+ mlω̃
2
l x

2
l

2

)
− λa†ax1

+ η(x1 − x2)2 + �(a†e−iωLt + aeiωLt ), (1)

where a and a† are, respectively, the annihilation and creation
operators of the cavity mode with the resonance frequency
ωc. The coordinate and momentum operators xl and pxl are
introduced to describe the lth (l = 1, 2) mechanical resonator
with mass ml and resonance frequency ω̃l . The optomechanical
coupling between the cavity field and the first mechanical mode
is described by the λ term in Eq. (1), where λ = ωc/L denotes
the optomechanical force of a single photon, with L being the
rest length of the optical cavity. The η term depicts the me-
chanical interaction between the two mechanical resonators.
The parameters ωL and � are, respectively, the optical driving
frequency and driving amplitude, which is determined by the
driving power via the relation � = √

2PLκ/ωL, where PL is
the power of the driving laser and κ is the decay rate of the
cavity field.

For convenience, below we introduce the normalized res-

onance frequencies ωl=1,2 =
√

ω̃2
l + 2η/ml and the dimen-

sionless position and momentum operators ql=1,2 = √
mlωlxl

and pl=1,2 = √
1/(mlωl )pxl ([ql, pl] = i) for the mechanical

resonators. Then, in the rotating frame defined by the unitary
transformation operator exp(−iωLta†a), the Hamiltonian of
the system becomes

HI = �ca
†a +

∑
l=1,2

ωl

2

(
q2

l + p2
l

) − λ0a
†aq1

− 2η0q1q2 + �(a† + a), (2)

where �c = ωc − ωL is the driving detuning of the cavity field,
and λ0 = λ

√
1/(m1ω1) and η0 = η

√
1/(m1m2ω1ω2) denote

the strength of the optomechanical coupling and the mechani-
cal coupling in the dimensionless representation, respectively.
The Hamiltonian (2) is the starting point of our consideration.
Below, we will study the cooling performance by seeking the
steady-state solution of the system.

III. THE LANGEVIN EQUATIONS

Quantum systems are inevitably coupled to their environ-
ments. To treat the damping and noise in our model, we
consider the case where the optical mode is linearly coupled
to a vacuum bath and the two mechanical modes experience
the Brownian motion. In this case, the evolution of the system
can be described by the Langevin equations,

ȧ = −[κ + i(�c − λ0q1)]a − i� +
√

2κain, (3a)

q̇l = ωlpl, l = 1, 2, (3b)

ṗ1 = −ω1q1 − γ1p1 + λ0a
†a + 2η0q2 + ξ1, (3c)

ṗ2 = −ω2q2 − γ2p2 + 2η0q1 + ξ2, (3d)

where κ and γl=1,2 are the decay rates of the cavity mode and
the lth mechanical mode, respectively. The operators ain (a†

in)
and ξl=1,2 are the noise operator of the cavity field and the

023860-2



SIMULTANEOUS COOLING OF COUPLED MECHANICAL … PHYSICAL REVIEW A 98, 023860 (2018)

Brownian force which acts on the lth mechanical resonator,
respectively. These operators have zero mean values and the
following correlation functions:

〈ain(t )a†
in(t ′)〉 = δ(t − t ′), 〈a†

in(t )ain(t ′)〉 = 0, (4a)

〈ξl (t )ξl (t
′)〉 = γl

ωl

∫
dω

2π
e−iω(t−t ′ )ω

[
coth

(
ω

2kBTl

)
+ 1

]
,

(4b)

where kB is the Boltzmann constant, and Tl=1,2 is the bath
temperature of the lth mechanical resonator.

To cool the mechanical resonators, we consider the strong-
driving regime of the cavity such that the average photon
number in the cavity is sufficient large and then the lineariza-
tion procedure can be used to simplify the physical model.
To this end, we express the operators in Eq. (3) as the sum
of their steady-state mean values and quantum fluctuations,
namely, o = 〈o〉ss + δo for operators a, a†, ql=1,2, and pl=1,2.
By separating the classical motion and the quantum fluctuation,
the linearized equations of motion for the quantum fluctuations
can be written as

δȧ = −(κ + i�)δa + iGδq1 +
√

2κain, (5a)

δq̇l = ωlδpl, l = 1, 2, (5b)

δṗ1 = −ω1δq1 − γ1δp1 + 2η0δq2 + G
δa + Gδa† + ξ1,

(5c)

δṗ2 = −ω2δq2 − γ2δp2 + 2η0δq1 + ξ2, (5d)

where � = �c − λ0〈q1〉ss is the driving detuning normalized
by the linearization and G = λ0〈a〉ss denotes the strength of
the linearized optomechanical coupling. Here, the steady-state
solution of the quantum Langevin equations in Eq. (3) can be
obtained as

〈a〉ss = −i�

κ + i�
, (6a)

〈q1〉ss = λ0ω2〈a†〉ss〈a〉ss

ω1ω2 − 4η2
0

, (6b)

〈q2〉ss = 2λ0η0〈a†〉ss〈a〉ss

ω1ω2 − 4η2
0

, (6c)

〈p1〉ss = 〈p2〉ss = 0. (6d)

The cooling problem can be solved by calculating the
steady-state solution of Eq. (5). This can be realized by
solving the variables in the frequency domain with the Fourier
transformation method. Under the definition for operator r

(r = δa, δql, δpl, ain, ξ ) and its conjugate r†,

r (t ) = 1√
2π

∫ ∞

−∞
eiωt r̃ (ω)dω, (7a)

r†(t ) = 1√
2π

∫ ∞

−∞
e−iωt r̃†(ω)dω, (7b)

the equations of motion (5) can be expressed in the frequency
domain as

iωδã(ω) = −(κ + i�)δã(ω) + iGδq̃1(ω) +
√

2κãin(ω),

(8a)

iωδq̃l (ω) = ωlδp̃l (ω), l = 1, 2, (8b)

iωδp̃1(ω) = −ω1δq̃1(ω) − γ1δp̃1(ω) + G
δã(ω)

+Gδã†(ω) + 2η0δq̃2(ω) + ξ̃1(ω), (8c)

iωδp̃2(ω) = −ω2δq̃2(ω) − γ2δp̃2(ω) + 2η0δq̃1(ω) + ξ̃2(ω),

(8d)

which can be further solved as

δã(ω) = {iGC1(ω)ã†
in(ω) + [iGC


1 (−ω) +
√

2κB(ω)]

× ãin(ω) + iGW1(ω)ξ̃1(ω) + iGW2(ω)ξ̃2(ω)}
× [κ + i(� + ω)]−1B−1(ω), (9a)

δq̃1(ω) = [C1(ω)ã†
in(ω) + C


1 (−ω)ãin(ω) + W1(ω)ξ̃1(ω)

+W2(ω)ξ̃2(ω)]B−1(ω), (9b)

δq̃2(ω) = [C2(ω)ã†
in(ω) + C


2 (−ω)ãin(ω) + W2(ω)ξ̃1(ω)

+W3(ω)ξ̃2(ω)]B−1(ω), (9c)

where we introduced the variables

B(ω) = (
iγ1ω − ω2 + ω2

1

)(−iγ2ω + ω2 − ω2
2

)
[(κ + iω)2

+�2] + 2ω1
(
iγ2ω − ω2 + ω2

2

)|G|2�
+ 4ω1ω2η

2
0[(κ + iω)2 + �2], (10a)

C1(ω) =
√

2κGω1
[
γ2ω + i

(
ω2 − ω2

2

)]
(−iκ + ω + �),

(10b)

C2(ω) = −2
√

2κη0Gω1ω2[κ + i(ω + �)], (10c)

W1(ω) = ω1
(−iγ2ω + ω2 − ω2

2

)
[(κ + iω)2 + �2], (10d)

W2(ω) = −2η0ω1ω2[(κ + iω)2 + �2], (10e)

W3(ω) = 2ω1ω2|G|2� + ω2
(−iγ1ω + ω2 − ω2

1

)
× [(κ + iω)2 + �2]. (10f)

In principle, the expressions of these quantum fluctuations
δa, δql=1,2, and δpl=1,2 in the time domain can be calculated by
performing the inverse Fourier transformation. For our cooling
task, we will focus on the steady-state mean values of the
phonon numbers in the mechanical resonators.

In the above consideration, we do the linearization around
the steady state of the system. Therefore, we need to analyze
the stability of the system. By applying the Routh-Hurwitz
criterion [65], it is found that the stability condition, under
which the system reaches a steady state, is given by

�6 > 0, (11)

where the expression of �6 is defined in Eq. (A6). In the
following consideration, all the used parameters satisfy this
stability condition.
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IV. COOLING OF TWO MECHANICAL RESONATORS

In this section, we study the cooling efficiency of the
mechanical resonators by calculating the final mean phonon
numbers and deriving the cooling limits.

A. The final mean phonon numbers

For the purpose of quantum cooling, we prefer to calculate
the fluctuation spectra of the position and momentum oper-
ators for the two mechanical resonators, and then the final
mean phonon numbers in the mechanical resonators can be
obtained by integrating the corresponding fluctuation spectra.
Mathematically, the final mean phonon numbers in the two
mechanical resonators can be calculated by the relation [45]

n
f

l = 1

2

[〈
δq2

l

〉 + 〈
δp2

l

〉 − 1
]
, (12)

where the variances δq2
l and δp2

l of the position and momentum
operators can be obtained by solving Eq. (8) in the frequency
domain and integrating the corresponding fluctuation spectra,

〈
δq2

l

〉 = 1

2π

∫ ∞

−∞
Sql

(ω)dω, l = 1, 2, (13a)

〈
δp2

l

〉 = 1

2π

∫ ∞

−∞
Spl

(ω)dω

= 1

2πω2
l

∫ ∞

−∞
ω2Sql

(ω)dω, l = 1, 2. (13b)

Here the fluctuation spectra of the position and momentum
of the two mechanical oscillators are defined by

So(ω) =
∫ ∞

−∞
e−iωτ 〈δo(t + τ )δo(t )〉ssdτ, (14)

for o = ql=1,2 and pl=1,2. Here the average 〈·〉ss are taken over
the steady state of the system. The fluctuation spectrum can
also be expressed in the frequency domain as

〈δõ(ω)δõ(ω′)〉ss = So(ω)δ(ω + ω′) (o = ql, pl ). (15)

Based on the results given in Eqs. (9) and (15), and the corre-
lation function (4) in the frequency domain, the position and
momentum fluctuation spectra of the mechanical resonators
can be obtained as

Sq1 (ω) = 1

|B(ω)|2
{
|C1(ω)|2

+ |W1(ω)|2 γ1ω

ω1

[
1 + coth

(
ω

2kBT1

)]

+ |W2(ω)|2 γ2ω

ω2

[
1 + coth

(
ω

2kBT2

)]}
, (16a)

Sq2 (ω) = 1

|B(ω)|2
{
|C2(ω)|2

+ |W2(ω)|2 γ1ω

ω1

[
1 + coth

(
ω

2kBT1

)]

+ |W3(ω)|2 γ2ω

ω2

[
1 + coth

(
ω

2kBT2

)]}
, (16b)

Spl
(ω) =

(
ω

ωl

)2

Sql
(ω), l = 1, 2. (16c)

In terms of Eqs. (12), (13), and (16), the exact analytical
results of the final mean phonon numbers in the two mechanical
resonators can be obtained (see Appendix A for details).

B. Ground-state cooling

Based on the above results, we now study the cooling of
the two coupled mechanical resonators by the optomechanical
coupling. Physically, the system becomes, by linearization, a
chain of three modes with the bilinear-type coupling between
the neighboring modes. As a result, the excitation energy can
be exchanged between the two neighboring modes by the
rotating-wave term (namely, the beam-splitter-type coupling)
in the near-resonance and weak-coupling regimes. In this
system, the two mechanical resonators are connected to two
heat baths and the cavity field is connected to a vacuum bath.
Hence the final mean phonon numbers in the two mechanical
resonators would be finite numbers, which should be smaller
than the thermal phonon occupations in the heat baths because
the thermal excitations can be finally extracted to the vacuum
bath. In this sense, the mechanical resonators can be cooled
by the optomechanical coupling. Below, we will show how the
final mean phonon numbers in the two mechanical resonators
depend on the parameters of the system.

In Fig. 2, we plot the final mean phonon numbers n
f

1

and n
f

2 as a function of the driving detuning �/ω1 and the
cavity-field decay rate κ/ω1. Here we choose the mechanical
frequency ω1 as the frequency scale so that we can clearly see
the relationship between the optimal driving detuning and the
phonon sidebands, and the influence of the sideband-resolution
condition on the cooling performance. When κ/ω1 � 1, the
phonon sidebands can be resolved from the cavity-emission
spectrum, and this regime is called the resolved-sideband
limit. We can see from Fig. 2 that the two resonators can
be cooled efficiently (nf

1 , n
f

2 � 1) in the resolved-sideband
limit and under the driving �/ω1 ∼ 1, which means that the
ground-state cooling is achievable in this system. For the
used parameters, the minimum phonon numbers for the two
resonators are n

f

1 ≈ 0.15 and n
f

2 ≈ 0.35. For a given value of
the ratio κ/ω1, the optimal driving detuning is given by � ≈
ω1. This is because the energy extraction efficiency between the
cavity mode and the first mechanical mode should be maximum
at � = ω1, and the small deviation of the exact value of ω1 in
realistic simulations is caused by the counter-rotating-wave
term in the linearized interaction between the cavity mode and
the first mechanical mode. Physically, the generation of an anti-
Stokes photon will cool the mechanical oscillator by taking
away a phonon from the mechanical resonator. For the optimal
cooling detuning � ≈ ω1, the frequency ω1 of the phonon
exactly matches the driving detuning � and hence �/ω1 = 1
corresponds to the optimal cooling. At the optimal driving
� = ω1, the final mean phonon numbers become worse with
the increase of the ratio κ/ω1. In order to clearly illustrate the
dependence of the mean phonon numbers on the parameters,
we show a rough boundary of ground-state cooling (nf

1 and
n

f

2 = 1), as shown by the black solid curves in Figs. 2(a)

023860-4



SIMULTANEOUS COOLING OF COUPLED MECHANICAL … PHYSICAL REVIEW A 98, 023860 (2018)

 1.4    1.0        0.6

1.4

1.0

 0.6

   0.2

 1.4

1.6

1.2

0.8

0.4

1.4

 1.0

0.6

  0.2

/ 1

/
1

/
1

0.6

1.0

   0.2

FIG. 2. The final mean phonon numbers (a) n
f

1 and (b)
n

f

2 in the two mechanical resonators vs the effective driving
detuning �/ω1 and the decay rate κ/ω1. The used parameters
are given by ω1/2π = ω2/2π = 10 MHz, γ1/ω1 = γ2/ω1 =
10−5, ωc/ω1 = 2.817 × 107, η0/ω1 = 0.04, m1 = m2 = 250 ng,
n̄1 = n̄2 = 1000, L = 0.5 mm, PL = 50 mW, and λ = 1064 nm.
The black solid curves correspond to n

f

1 = n
f

2 = 1.

and 2(b). These results are consistent with the sideband cooling
results in a typical optomechanical system [41,42,45,46].

Since the cavity provides the direct channel to extract
the thermal excitations in the first mechanical resonator, the
optimal driving (corresponding to a resonant beam-splitter-
type interaction) is important to the cooling efficiency. At
the same time, the coupling between the two mechanical res-
onators provides the channel to extract the thermal excitations
from the second mechanical resonator, as a cascade-cooling
process. Consequently, the cooling efficiency of the second
mechanical resonator should depend on the rotating-wave
coupling between the two mechanical resonators, which is
determined by the resonance frequencies of the two resonators
and the coupling strength between them. To see this effect,
in Fig. 3 we plot the final mean phonon numbers n

f

1 and n
f

2
as a function of the mechanical coupling strength η0 between
the two resonators when the cavity decay rate takes different
values. Based on the fact that the second mechanical resonator
will not be cooled at η0 = 0, we confirm that the coupling
between the two mechanical resonators provides the cooling
channel for the second resonator. With the increase of η0,

FIG. 3. The final mean phonon numbers (a) n
f

1 and (b) n
f

2 as a
function of η0/ω1 when the cavity-field decay rate takes different
values κ/ω1 = 0.5, 1, and 1.5. The inset in (b) is a zoomed-in plot
of n

f

2 as a function of η0/ω1, which clearly shows the dependence
of n

f

2 on the cavity-field decay rate. Here we consider the optimal
driving case � = ω1, and other parameters are the same as those used
in Fig. 2.

the phonon number n
f

1 increases, while the phonon number
n

f

2 decreases. This is because the first resonator provides
the cool channel of the second resonator by extracting its
thermal excitations, while the second resonator will encumber
the cooling efficiency of the first resonator. Additionally, the
final mean phonon numbers are larger for larger values of
the decay rate κ/ω1, which is consistent with the analyses
concerning the dependence of the cooling efficiency on the
sideband-resolution condition.

This cascade-cooling process can also be seen by consider-
ing the case where the two mechanical resonators have different
resonance frequencies. In Fig. 4, we display the dependence of
the final mean phonon numbers n

f

1 and n
f

2 on the frequency ω2

of the second resonator. Here we choose � = ω1 such that the
cooling efficiency of the first resonator is optimal. The result
shows that both of the resonators have good cooling efficiency
when the two resonators are resonant and near resonant (ω2

around ω1). With the increase of the detuning between the
two resonance frequencies, the cooling efficiency becomes
worse. The reason for this phenomenon is that the efficiency
of energy extraction from the second resonator decreases with
the increase of the detuning |ω1 − ω2|, and that the counter-
rotating-wave interaction terms, which simultaneously create
phonon excitations in the two resonators, become important
when the frequency detuning becomes comparable to the
mechanical frequencies. When ω2/ω1 > 2, the cooling of the
second resonator is almost turned off because the interaction
between the two resonators is approximately negligible under
the condition η0/|ω1 − ω2| � 1. In this case, the cooling of the
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FIG. 4. The final mean phonon numbers (a) n
f

1 and (b) n
f

2 vs the
ratio ω2/ω1. The inset in (b) is a zoomed-in plot of n

f

2 as a function
of ω2/ω1 from 0.8 to 1.2. Here we choose � = ω1 and κ/ω1 = 0.2.
Other parameters are the same as those given in Fig. 2.

first resonator becomes better because the thermalization effect
induced by the bath of the second resonator is turned off, and
then the system is reduced to a typical optomechanical system
with one cavity mode and one mechanical mode.

We note that the final mean phonon numbers n
f

1 and n
f

2
in the two resonators also depend on the mechanical decay
rates γ1 and γ2. In Fig. 5, we show the final phonon numbers
as a function of the decay rates. Here we see that n

f

1 and n
f

2
increase with the increase of the mechanical decay rates. This
is because the energy exchange rates between the mechanical
resonators and their heat baths are faster for larger values of
the decay rates, and then the thermal excitation in the heat bath
will raise the phonon numbers in the mechanical resonators.

FIG. 5. The final mean phonon numbers n
f

1 and n
f

2 as a function
of (a) γ1 and (b) γ2. Here we take � = ω1 and κ/ω1 = 0.2. Other
parameters are the same as those given in Fig. 2.

In the plots in this section, we see that the first mechanical
resonator is cooled better than the second resonator, i.e., nf

1 <

n
f

2 under the same parameters. This phenomenon is a physical
consequence of the cascade-cooling process in this system. The
vacuum bath of the cavity plays the role of the pool to absorb
the thermal excitations extracted from the two mechanical
resonators. The cavity extracts the thermal excitations from the
first resonator and transfers the excitations to its vacuum bath.
The first resonator extracts the thermal excitations from the
second resonator. Each mechanical resonator is connected to
an independent heat bath, and the two heat baths have the same
temperature. Hence, the relation n

f

1 < n
f

2 can be understood
from the point of view of the nonequilibrium physical process.

C. The cooling limits

Our exact results show that the ground-state cooling (with
n

f

1,2 � 1) is achievable for the two mechanical resonators
under proper parameters. However, the cooling limits (i.e.,
the smallest achievable phonon numbers) of the resonators
remain unclear. In this section, we derive the approximate
cooling results in the bad-cavity regime such that analytical
expressions of the cooling limits can be obtained. This is
achieved by eliminating adiabatically the cavity field in the
large-decay regime (κ 
 G̃) and then calculating the final
phonon numbers in the two mechanical modes under the
rotating-wave approximation (ω1,2 
 G̃). In this case, the
system is reduced to two coupled modes b1 and b2, where
mode b1 is contacted with the optomechanical cooling channel
(γopt and n̄opt) and one heat bath (γ1 and n̄1), and mode b2 is
contacted with the heat bath (γ2 and n̄2), as shown in Fig. 1(b).
Without loss of generality, we assume that the resonance
frequencies of two mechanical resonators are the same, namely,
ω1 = ω2 = ωm. By a lengthy calculation (see Appendix B), the
approximate expressions of the final mean phonon numbers
can be obtained as

n
f

1 ≈ γ1n̄1

�1
+ γoptn̄opt + χn1,χ

�1 − 4χ
, (17a)

n
f

2 ≈ γ2n̄2 + χn2,χ

χ + γ2
, (17b)

with

n̄opt = κ2

4(ωm + �)2
, (18a)

n1,χ = γ2n̄2(4χ + �1)

(�1 + γ2)(χ + γ2)
, (18b)

n2,χ = γ1n̄1 + γ2n̄2 + γoptn̄opt

�1 + γ2
, (18c)

where �1 = γ1 + γopt. We also introduce the effective decay
rates γopt = 4|G̃|2/κ and χ = 4η2

0/(γ1 + γopt) corresponding
to the optomechanical channel and the mechanical coupling
channel, respectively. The parameter relations in this case are

ω1,2 
 κ 
 G̃ 
 {�1, γopt} 
 γ1,2. (19)

In the optimal-detuning case � = ωm, the corresponding cool-
ing limits nlim

1 and nlim
2 can be obtained with n̄opt = κ2/(16ω2

m).
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FIG. 6. The final mean phonon numbers (a) n
f

1 and (b) n
f

2 as
a function of κ/ωm. The exact results are given by Eq. (A5) (blue
solid curve) and the approximate results obtained by the adiabatic
elimination method are given by Eq. (17) (red dashed curve). In
addition, we take � = ωm, γ1/ωm = γ2/ωm = 10−6, and η0/ωm =
0.02. Other parameters are the same as those given in Fig. 2.

To evaluate the approximate cooling results, we compare
the approximate results given in Eq. (17) with the exact results
given in Eq. (A5). In Figs. 6 and 7, we plot the final mean
phonon numbers n

f

1 and n
f

2 as a function of κ and η0 when
the optimal effective detuning � = ωm. It shows that the
approximate and exact mean phonon numbers coincide well
with each other in κ ≈ 0.1ωm ∼ 0.5ωm and η0 ≈ 0 ∼ 0.05ωm.
Figure 6(a) shows that the difference between the approximate
result and the exact result increases when κ < 0.1ωm. This is
because the adiabatic elimination procedure only works under
the condition κ 
 G̃. In Fig. 7(a), we see that the two results
do not match well for a large η0 (for example, η0/ωm > 0.05 in
our simulations). This phenomenon can be explained based on
the parameter requirement of the stability in the approximate
analyses after the elimination of the cavity field. As shown
in Eq. (B8), we can see that to ensure the stability of the
equations of motion, the real part of the eigenvalues of the

FIG. 7. The final mean phonon numbers (a) n
f

1 and (b) n
f

2 as
a function of η0/ωm. The exact results (blue solid curve) and the
approximate results (red dashed curve) are given by Eqs. (A5)
and (17), respectively. The insets are zoom-in plots of the phonon
numbers in a narrower range of η0/ωm. We take � = ωm, κ/ωm =
0.2, and PL = 70 mW. Other parameters are the same as those given
in Fig. 6.

FIG. 8. The final average phonon numbers n
f

1 and n
f

2 in the
two mechanical resonators vs the driving laser power PL. The used
parameters are given by � = ωm, κ/ωm = 0.2, and γ1,2/ωm = 10−6.
Other parameters are same as those used in Fig. 2.

coefficient matrix M should be positive [65]. In the case of
�1 ≈ ω2 and γ1 = γ2, the parameter condition is reduced to
γopt > 4χ . Corresponding to Fig. 7(b), when η0/ωm > 0.05,
the stability condition γopt > 4χ of the equations of motion in
the approximate analyses is violated.

The key physical mechanism in this cooling scheme is that
the effective optical vacuum bath successively extracts the
excitation energy from the two mechanical modes through the
optomechanical cooling channel and the mechanical coupling
channel. This physical picture can also be seen from the
parameter relation γopt > 4χ 
 γ1,2, which indicates that the
rate of the cooling channel should be much larger than the
thermalization channel. The physical picture can also be seen
by analyzing the following special cases. When we turn off
the mechanical coupling channel, i.e., η = 0, then the first
mechanical resonator will be cooled in the same manner as
the typical optomechanical sideband cooling scheme [41,42],
and the second resonator will be thermalized to a thermal
equilibrium state at the same temperature as its bath.

In our above simulations, the final average phonon oc-
cupations in the mechanical resonators are smaller than 1.
To better test interesting quantum effects in the resonators,
the redundant single-phonon probability could be further
suppressed by choosing mechanical resonators with smaller
decay rates. In Fig. 8, we plot the final average phonon
occupations n

f

1 and n
f

2 as a function of the laser power PL

when higher quality factors of the two resonators are taken
(e.g., Ql=1,2 = ωl/γl = 106). Here we see that the phonon
numbers in the two resonators can be effectively decreased
from 1000 to 0.035 and 0.045, respectively. In these cases, the
mechanical resonators are cooled to sufficiently low phonon
number (nf

1,2 � 1) to test interesting quantum effects. This is
because the mechanical resonators are prepared in their ground
states with high fidelities.

V. COOLING OF A CHAIN OF COUPLED
MECHANICAL RESONATORS

In this section, we extend the optomechanical cooling
means to the cooling of a coupled-mechanical-resonator chain.
Concretely, we consider an optomechanical cavity coupled to
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an array of N mechanical resonators connected in series. The
nearest-neighboring mechanical resonators are coupled to each
other through “position-position” coupling. Without loss of
generality, we assume that all the mechanical resonators are
identical, having the same frequency, decay rate, and thermal
occupation number. Meanwhile, the couplings between the
mechanical resonators are much smaller than the mechanical
frequency and hence the rotating-wave approximation is justi-
fied. Similarly, we consider the strong driving case of the cavity
and then perform the linearization procedure to the system. In
this case, the Hamiltonian of the system can be written in a
frame rotating at the driving frequency as

HI = �a†a + ωm

N∑
j=1

b
†
j bj − (Ga†b1 + G
b

†
1a)

−
N−1∑
j=1

η0(b†j bj+1 + b
†
j+1bj ) + �(a† + a), (20)

where a (a†) and bj=1−N = (qj + ipj )/
√

2 [b†j = (qj −
ipj )/

√
2] are the annihilation (creation) operators of the

cavity mode and the j th resonator. The parameter � is the
driving detuning after the linearization of the optomechanical
coupling, G is the strength of the linearized optomechanical
coupling, and ωm and η0 are the frequency of these resonators
and the coupling strength between the neighboring mechanical
resonators, respectively. To include the dissipations, we assume
that the cavity is coupled to a vacuum bath and the mechanical
resonators are coupled to independent heat baths at the same
temperatures. Then the evolution of the system can be governed
by the quantum master equation

ρ̇ = i[ρ,HI ] + κ

2
(2aρa† − a†aρ − ρa†a)

+ γm

2
(n̄m + 1)

N∑
j=1

(2bjρb
†
j − b

†
j bjρ − ρb

†
j bj )

+ γmn̄m

2

N∑
j=1

(2b
†
j ρbj − bjb

†
j ρ − ρbjb

†
j ), (21)

where ρ is the density matrix of the coupled cavity-resonator
system, n̄m is thermal phonon number of the heat baths of these
mechanical resonators, and κ and γm are the decay rates of the
cavity mode and the mechanical resonators, respectively.

To evaluate the cooling efficiency, we solve the steady-state
solution of quantum master equation (21) and calculate the
average occupation numbers in the cavity and these mechanical
resonators. As examples, we consider the cases of three and
four mechanical resonators (i.e., N = 3, 4) in our simulations.
In Fig. 9, we plot the final mean phonon numbers in these
mechanical resonators as a function of the effective driving
detuning � for the cases of (a) N = 3 and (b) N = 4. We see
that the ground-state cooling is achievable and the final phonon
numbers successively increase from n

f

1 to n
f

N at the optimal
effective detuning � = ωm. This means that the closer to the
optomechanical cavity the resonator is, the smaller the final
phonon number in this resonator is. The physical reason for
this phenomenon is that the system is a cascade system and the
vacuum bath of the optomechanical cavity provides the cooling

FIG. 9. The final mean phonon numbers in the mechanical res-
onators as a function of the effective driving detuning � when
(a) N = 3 and (b) N = 4. Other parameters are given by G/ωm =
0.2, η0/ωm = 0.1, κ/ωm = 0.3, γm/ωm = 10−5, and n̄ = 1000.

reservoir to extract the thermal excitations in these mechanical
resonators, which are thermally excited by their heat baths.
After the linearization, the system is reduced to an array of
coupled bosonic modes. Then the vacuum bath provides the
cooling channel of the cavity, and the cavity provides the cool-
ing channel of the first mechanical resonator. Successively, the
former resonator provides the cooling channel for the next res-
onator. In this way, the thermal occupations can be extracted to
the vacuum bath and then the system approaches to a nonequi-
librium steady state. As a result, the cooling efficiency is higher
for a mechanical oscillator which is closer to the cavity.

VI. DISCUSSIONS AND CONCLUSION

Finally, we present some discussions on the understand-
ing of the cooling problem in the mechanical normal-mode
representation. In our system, the first mechanical resonator is
coupled to the cavity field through the radiation-pressure inter-
action, and the neighboring mechanical resonators are coupled
to each other by the so-called position-position coupling. By
diagonalizing the coupled mechanical resonators, the present
physical model is reduced to a multimode optomechanical
model which is composed of a single-mode cavity field coupled
to all the mechanical normal modes [60]. In the presence
of the mechanical coupling, the frequencies of these normal
modes are different, and this hence provides a natural method
to remove the dark-mode effect, which is a major obstacle
of the cooling of many mechanical resonators coupled to a
common cavity [60]. In principle, we can calculate the cooling
problem in the representation of the mechanical normal modes.
However, the physical mechanism could be explained clearly in
the cascade-cooling picture because we consider the cooling of
these mechanical resonators in the bare-mode representation.

It is worthwhile to present some discussions of the relation-
ship between the coupled-mechanical-resonator system and
the multiple modes in a single-mechanical-resonator system.
In a realistic single-mechanical-resonator system, there are
many normal modes with different resonance frequencies and
these normal modes decouple from each other. Therefore, each
of these normal modes can be cooled to its quantum ground
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state by introducing the optomechanical cooling scheme. In
a coupled-mechanical-resonator system, these coupled me-
chanical resonators can be diagonalized and then this system
can be described by a similar Hamiltonian as that of the
single-mechanical-resonator system. Basing on the fact that
the frequencies of these diagonalized mechanical modes are
governed by the coupling strength between these coupled
mechanical resonators, we can design proper driving fields for
realizing ground-state cooling of these diagonalized mechan-
ical modes. Here, the dark-mode effect induced by the many
mechanical resonators coupled to a common cavity field should
be avoided by utilizing the frequency differences among these
coupled mechanical resonators.

In conclusion, we have proposed a scheme to realize the
ground-state cooling of coupled mechanical resonators in a
three-mode optomechanical system where an optomechanical
cavity is coupled to another mechanical resonator. By the
linearization, the system is reduced to a cascade-type three-
mode coupled system; then the thermal excitations in the
mechanical resonators can be extracted to the vacuum bath of
the cavity and the system can be cooled by the optomechanical
coupling channel. We found that the coupled mechanical
resonators can be simultaneously cooled to their ground states
when the system works in the resolved-sideband regime and
under a proper driving frequency. In the large-decay limit,
we derived analytical expressions of the cooling limits by
adiabatically eliminating the cavity field. We also extend the
optomechanical method to the cooling of a chain of coupled
mechanical resonators. The numerical results show that the
ground-state cooling is achievable in this system.
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APPENDIX A: CALCULATION OF THE
FINAL MEAN PHONON NUMBERS

In this appendix, we present the detailed calculations of the
final mean phonon numbers in the two mechanical resonators.
As shown in Sec. IV A, the exact results of the final mean

phonon numbers in the two mechanical resonators can be
obtained by calculating the integral in Eq. (13) for the position
and momentum fluctuation spectra. Below, we consider the
high-temperature limit case kBTl 
 h̄ω1,2; then it is safe to
perform the approximation

γl

ω

ωl

coth

(
h̄ω

2kBTl

)
≈ γl (2n̄l + 1), l = 1, 2. (A1)

In this case, the integral kernels in Eq. (13) take the form
gn(ω)/[hn(ω)hn(−ω)]. This kind of integral can be calculated
exactly by the following formula [65]:∫ ∞

−∞

gn(ω)

hn(ω)hn(−ω)
dω = iπ

a0

Mn

�n

, (A2)

where the functions gn(ω) and hn(ω) in the integral kernels
take the form

gn(ω) = b0ω
2n−2 + b1ω

2n−4 · · · + bn−1,

hn(ω) = a0ω
n + a1ω

n−1 · · · + an, (A3)

with b0,1,2,... and a0,1,2,... being the coefficients. The variables
�n and Mn in Eq. (A2) are defined by

�n =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · 0

a0 a2 a4 0

0 a1 a3 0
...

. . .

0 0 0 an

∣∣∣∣∣∣∣∣∣∣∣∣
,

Mn =

∣∣∣∣∣∣∣∣∣∣∣∣

b0 b1 b2 · · · bn−1

a0 a2 a4 0

0 a1 a3 0
...

. . .

0 0 0 an

∣∣∣∣∣∣∣∣∣∣∣∣
, (A4)

where | · | stands for the determinant. By using the above
formula, the integrals in Eq. (13) can be calculated exactly and
then the final mean phonon numbers in the two mechanical
resonators can be obtained as (n = 6 for our three-mode
system)

n
f

1 = 1

2

(
iD

(1)
6

2�6
+ iM

(1)
6

2�6
− 1

)
,

n
f

2 = 1

2

(
iD

(2)
6

2�6
+ iM

(2)
6

2�6
− 1

)
. (A5)

Here, we introduce the variables

�6 = a5
{
a4

( − a1a2a3 + a2
3 + a2

1a4
) + [−a2a3 + a1

(
a2

2 − 2a4
)]

a5 + a2
5

} − [
a3

3 − a1a3(a2a3 + 3a5)

+ a2
1 (a3a4 + 2a2a5)

]
a6 + a3

1a
2
6, (A6)

D
(s=1,2)
6 = [−a3a4a5 + a2

3a6 + a5(a2a5 − a1a6)
]
b

(s)
1 + (

a1a4a5 − a2
5 − a1a3a6

)
b

(s)
2 + (−a1a2a5 + a3a5 + a2

1a6
)
b

(s)
3

+ [−a2
3 − a2

1a4 + a1(a2a3 + a5)
]
b

(s)
4 + 1

a6

[
a2

3a4 − a2a3a5 + a2
5 + a2

1

(
a2

4 − a2a6
) + a1

(−a2a3a4 + a2
2a5

− 2a4a5 + a3a6
)]

b
(s)
5 , (A7)
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and

M
(s=1,2)
6 = 1

ω2
s

(−{
a5

[−a2a3a4 + a2
2a5 + a4(a1a4 − a0a5)

] + [−a1a3a4 + a0a3a5 + a2
(
a2

3 − 2a1a5
)]

a6 + a2
1a

2
6

}
b

(s)
1

+ [−a3a4a5 + a2
3a6 + a5(a2a5 − a1a6)

]
b

(s)
2 + (

a1a4a5 − a2
5 − a1a3a6

)
b

(s)
3 + (−a1a2a5 + a3a5 + a2

1a6
)
b

(s)
4

+ [−a2
3 − a2

1a4 + a1(a2a3 + a5)
]
b

(s)
5

)
, (A8)

where the coefficients in our three-mode system are defined by

a0 = 1,

a1 = −i(2κ + γ1 + γ2),

a2 = −[
κ2 + γ1γ2 + ω2

1 + ω2
2 + �2 + 2κ (γ1 + γ2)

]
,

a3 = i
[
(κ2 + �2)(γ1 + γ2) + 2κ

(
γ1γ2 + ω2

1 + ω2
2

) + γ2ω
2
1 + γ1ω

2
2

]
,

a4 = (κ2 + �2)
(
γ1γ2 + ω2

1 + ω2
2

) + 2κ
(
γ2ω

2
1 + γ1ω

2
2

) + ω1ω2
(
ω1ω2 − 4η2

0

) − 2ω1|G|2�,

a5 = −i
{
κ2

(
γ2ω

2
1 + γ1ω

2
2

) + 2κω1ω2
(
ω1ω2 − 4η2

0

) + �
[
γ1ω

2
2� + γ2ω1(−2|G|2 + ω1�)

]}
,

a6 = ω1ω2
{
�

[
2ω2|G|2 − ω1ω2� + 4η2

0�
] + κ2(−ω1ω2 + 4η2

0

)}
, (A9)

b
(1)
0 = 0,

b
(1)
1 = (1 + 2n̄1)γ1ω

2
1,

b
(1)
2 = b

(1)
1

[
2κ2 + γ 2

2 − 2
(
ω2

2 + �2
)] + 2ω2

1κ|G|2,
b

(1)
3 = b

(1)
1

[
κ4 + 2κ2

(
γ 2

2 − 2ω2
2 + �2

) + ω4
2 − 2γ 2

2 �2 + �4 + 4ω2
2�

2
] + 4b

(2)
1 η2

0ω
2
1 + 2ω2

1|G|2κ[
κ2 + γ 2

2 − 2ω2
2 + �2

]
,

b
(1)
4 = b

(1)
1

[
2ω4

2(κ2 − �2) + (
γ 2

2 − 2ω2
2

)
(κ2 + �2)2

] + 8b
(2)
1 η2

0ω
2
1(κ2 − �2) + 2κω2

1|G|2[ω4
2 + (

γ 2
2 − 2ω2

2

)
(κ2 + �2)

]
,

b
(1)
5 = (

b
(1)
1 ω4

2 + 4b
(2)
1 η2

0ω
2
1

)
(κ2 + �2)2 + 2κω2

1ω
4
2(κ2 + �2)|G|2, (A10)

and

b
(2)
0 = 0,

b
(2)
1 = (1 + 2n̄2)γ2ω

2
2,

b
(2)
2 = b

(2)
1

[
2κ2 + γ 2

1 − 2
(
ω2

1 + �2
)]

,

b
(2)
3 = b

(2)
1

[
κ4 + 2κ2

(
γ 2

1 − 2ω2
1 + �2

) + �2
(
�2 − 2γ 2

1 + 4ω2
1

) + ω4
1 − 4|G|2ω1�] + 4b

(1)
1 ω2

2η
2
0,

b
(2)
4 = b

(2)
1

[
4|G|2�ω1

(
2κγ1 + κ2 + ω2

1 + �2
) + (

γ 2
1 − 2ω2

1

)
(κ2 + �2)2 + 2ω4

1(κ2 − �2)
]

+ 8b
(1)
1 ω2

2η
2
0(κ2 − �2) + 8|G|2κ (ω1ω2η0)2,

b
(2)
5 = b

(2)
1 ω2

1

{
κ4ω2

1 + (−2|G|2 + ω1�)[−2|G|2�2 + (�2 + 2κ2)ω1�]
} + 4b

(1)
1 ω2

2η
2
0(κ2 + �2)2

+ 8|G|2κ (ω1ω2η0)2(κ2 + �2). (A11)

Note that the results given by Eq. (A5) are exact but com-
plicated. In the large-decay regime, the cavity field can be
adiabatically eliminated and we can then obtain analytical and
concise expressions of the cooling limits.

APPENDIX B: DERIVATION OF EQS. (17)

In this appendix, we show a detailed derivation of the
cooling limits, which are obtained by adiabatically eliminating
the cavity field in the large-decay regime. For calculation con-
venience, we introduce the annihilation and creation operators
of the mechanical modes as

bl=1,2 = (ql + ipl )/
√

2, b
†
l=1,2 = (ql − ipl )/

√
2. (B1)

The Hamiltonian (2) can then be expressed as

HI = �ca
†a +

∑
l=1,2

ωlb
†
l bl − η0(b†1 + b1)(b†2 + b2)

− 1√
2
λ0a

†a(b†1 + b1) + �(a† + a), (B2)

where �c = ωc − ωL denotes the detuning between the cav-
ity frequency and the driving frequency. By performing the
linearization, we write the operators of the system as a
summation of their steady-state values and fluctuations: a →
〈a〉ss + δa, b1 → 〈b1〉ss + δb1 and b2 → 〈b2〉ss + δb2, where
〈o〉ss represents the steady-state value of the operator o, and
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δa, δb1, and δb2 are the corresponding fluctuations. The
Langevin equations of these fluctuation operators become

δȧ = (−κ/2 − i�)δa + iG̃(δb†1 + δb1) + √
κain, (B3a)

δḃ1 = (−γ1/2 − iω1)δb1 + iη0(δb†2 + δb2)

+ (iG̃
δa + iG̃δa†) + √
γ1bin,1, (B3b)

δḃ2 = (−γ2/2 − iω2)δb2 + iη0(δb†1 + δb1) + √
γ2bin,2,

(B3c)

where � = �c − λ0(〈b1〉
ss + 〈b1〉ss)/
√

2 is the normalized
detuning and G̃ = λ0〈a〉ss/

√
2 is the strength of the linearized

optomechanical coupling.
To obtain the cooling limits of the mechanical modes, we

consider the parameter regime ω1,2 
 κ 
 G̃ 
 γ1,2. In this
case, the cavity field can be eliminated adiabatically and then
the solution of the operator δa(t ) at the timescale t 
 1/κ can
be obtained as

δa(t ) ≈ iG̃

κ/2 + i(� + ω1)
δb

†
1(t )

+ iG̃

κ/2 + i(� − ω1)
δb1(t ) + Fa,in(t ), (B4)

where we introduce the noise operator

Fa,in(t ) = √
κe−(κ/2+i�)t

∫ t

0
e(κ/2+i�)sain(s)ds. (B5)

Substitution of Eq. (B4) into Eqs. (B3b) and (B3c) leads to
the equations of motion

δḃ1(t ) = −(�1/2 + i�1)δb1(t ) + iη0δb2(t ) + iG̃
Fa,in(t )

+ iG̃F
†
a,in(t ) + √

γ1bin,1(t ), (B6a)

δḃ2(t ) = iη0δb1(t ) − (γ2/2 + iω2)δb2(t ) + √
γ2bin,2(t ),

(B6b)

where �1 = γ1 + γopt and �1 = ω1 − ωopt with γopt =
4|G̃|2/κ and ωopt = |G̃|2/(2ω1), which denote the decay rate
and frequency shift induced by the cavity coupling channel,
respectively.

The final mean phonon numbers (namely, the steady-state
expected values of the phonon number operators) can be
obtained by solving Eq. (B6). To be concise, we reexpress
Eq. (B6) as

v̇(t ) = −Mv(t ) + N(t ), (B7)

where v(t ) = [δb1(t ), δb2(t )]T , and M and N(t ) are defined
by

M =
(

�1/2 + i�1 −iη0

−iη0 γ2/2 + iω2

)
,

N(t ) =
(

iG̃
Fa,in(t ) + iG̃F
†
a,in(t ) + √

γ1bin,1(t )√
γ2bin,2(t )

)
. (B8)

The formal solution of Eq. (B7) can be written as

v(t ) = e−Mtv(0) + e−Mt

∫ t

t0

eMsN(s)ds. (B9)

The final mean phonon numbers can be obtained by calculating the elements of the variance matrix. By a lengthy calculation,
we obtain the approximate analytical expressions for the final mean phonon numbers as

n
f

1 = 1

4|u|2
[
γ1n̄1

( |u − 2(�1 − γ2) − 4i(�1 − ω2)|2
λ1 + λ


1

+ |u + 2(�1 − γ2) + 4i(�1 − ω2)|2
λ2 + λ


2

+ 2Re

{
[u − 2(�1 − γ2) − 4i(�1 − ω2)][u
 + 2(�1 − γ2) − 4i(�1 − ω2)]

λ1 + λ

2

})

+ |G̃|2
{

(κ + λ

1 + λ1)|u − 2(�1 − γ2) − 4i(�1 − ω2)|2

(λ1 + λ

1)

∣∣ κ
2 + λ1 + i�

∣∣2 + (κ + λ

2 + λ2)|u + 2(�1 − γ2) + 4i(�1 − ω2)|2

(λ2 + λ

2)

∣∣ κ
2 + λ2 + i�

∣∣2

+ 2Re

[
(κ + λ1 + λ


2)[u
 + 2(�1 − γ2) − 4i(�1 − ω2)][u − 2(�1 − γ2) − 4i(�1 − ω2)]

(λ1 + λ

2)

(
κ
2 + λ1 + i�

)(
κ
2 + λ


2 − i�
)

]}

+ 64η2
0γ2n̄2

(λ1 + λ

1 + λ2 + λ


2)[(λ

1 + λ2)(λ1 + λ


2) + (λ1 + λ

1)(λ2 + λ


2)]

(λ

1 + λ1)(λ


2 + λ2)(λ

1 + λ2)(λ1 + λ


2)

]
, (B10)

n
f

2 = 1

4|u|2
[

64η2
0

(
γ1n̄1

(λ1 − λ2)(λ

1 − λ


2)(λ1 + λ

1 + λ2 + λ


2)

(λ

1 + λ1)(λ


2 + λ2)(λ

1 + λ2)(λ1 + λ


2)
+ |G̃|2

{
κ + λ1 + λ


1

(λ1 + λ

1)

∣∣ κ
2 + λ1 + i�

∣∣2

+ κ + λ2 + λ

2

(λ2 + λ

2)

∣∣ κ
2 + λ2 + i�

∣∣2 − 2Re

[
κ + λ1 + λ


2

(λ1 + λ

2)

(
κ
2 + λ1 + i�

)(
κ
2 + λ


2 − i�
)
]})
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+ γ2n̄2

{ |u + 2(�1 − γ2) + 4i(�1 − ω2)|2
λ1 + λ


1

+ |u − 2(�1 − γ2) − 4i(�1 − ω2)|2
λ2 + λ


2

+ 2Re

[
[u
 − 2(�1 − γ2) + 4i(�1 − ω2)][u + 2(�1 − γ2) + 4i(�1 − ω2)]

λ1 + λ

2

]}]
, (B11)

where λ1 and λ2 (λ

1 and λ


2 are complex conjugate) are the eigenvalues of the coefficient matrix M,

λ1,2 = 1

4
(�1 + γ2) + 1

2
i(�1 + ω2) ∓ 1

8
u, u =

√
4[(�1 − γ2) + 2i(�1 − ω2)]2 − 64η2

0. (B12)

Under the parameter condition ω1,2 
 κ 
 G̃ 
 {�1, γopt} 
 γ1,2, we have ω1 
 ωopt. In the case of ω1 = ω2 = ωm, Eqs. (B10)
and (B11) can then be reduced to the results in Eqs. (17).

[1] T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-
action at the mesoscale, Science 321, 1172 (2008).

[2] P. Meystre, A short walk through quantum optomechanics, Ann.
Phys. (Berlin) 525, 215 (2013).

[3] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[4] P. Rabl, Photon Blockade Effect in Optomechanical Systems,
Phys. Rev. Lett. 107, 063601 (2011).

[5] A. Nunnenkamp, K. Børkje, and S. M. Girvin, Single-Photon
Optomechanics, Phys. Rev. Lett. 107, 063602 (2011).

[6] J.-Q. Liao, H. K. Cheung, and C. K. Law, Spectrum of single-
photon emission and scattering in cavity optomechanics, Phys.
Rev. A 85, 025803 (2012).

[7] A. Kronwald, M. Ludwig, and F. Marquardt, Full photon
statistics of a light beam transmitted through an optomechanical
system, Phys. Rev. A 87, 013847 (2013).

[8] J.-Q. Liao and C. K. Law, Correlated two-photon scattering in
cavity optomechanics, Phys. Rev. A 87, 043809 (2013).

[9] J.-Q. Liao and F. Nori, Photon blockade in quadratically coupled
optomechanical systems, Phys. Rev. A 88, 023853 (2013).

[10] X.-W. Xu, Y.-J. Li, and Y.-X. Liu, Photon-induced tunneling in
optomechanical systems, Phys. Rev. A 87, 025803 (2013).

[11] G. S. Agarwal and S. Huang, The electromagnetically induced
transparency in mechanical effects of light, Phys. Rev. A 81,
041803 (2010).

[12] B. P. Hou, L. F. Wei, and S. J. Wang, Optomechanically induced
transparency and absorption in hybridized optomechanical sys-
tems, Phys. Rev. A 92, 033829 (2015).

[13] M. Bhattacharya and P. Meystre, Multiple membrane cavity
optomechanics, Phys. Rev. A 78, 041801(R) (2008).

[14] A. Xuereb, C. Genes, and A. Dantan, Strong Coupling and Long-
Range Collective Interactions in Optomechanical Arrays, Phys.
Rev. Lett. 109, 223601 (2012).

[15] B. Nair, A. Xuereb, and A. Dantan, Cavity optomechanics with
arrays of thick dielectric membranes, Phys. Rev. A 94, 053812
(2016).

[16] N. Spethmann, J. Kohler, S. Schreppler, L. Buchmann, and
D. M. Stamper-Kurn, Cavity-mediated coupling of mechanical
oscillators limited by quantum back-action, Nat. Phys. 12, 27
(2016).

[17] F. Massel, Mechanical entanglement detection in an optome-
chanical system, Phys. Rev. A 95, 063816 (2017).

[18] E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease,
C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, Light-

Mediated Cascaded Locking of Multiple Nano-Optomechanical
Oscillators, Phys. Rev. Lett. 118, 063605 (2017).

[19] J. P. Paz and A. J. Roncaglia, Dynamics of the Entanglement
between Two Oscillators in the Same Environment, Phys. Rev.
Lett. 100, 220401 (2008).

[20] X.-W. Xu, Y.-J. Zhao, and Y.-X. Liu, Entangled-state engineer-
ing of vibrational modes in a multimembrane optomechanical
system, Phys. Rev. A 88, 022325 (2013).

[21] Y.-D. Wang and A. A. Clerk, Reservoir-Engineered Entangle-
ment in Optomechanical Systems, Phys. Rev. Lett. 110, 253601
(2013).

[22] J.-Q. Liao, Q.-Q. Wu, and F. Nori, Entangling two macroscopic
mechanical mirrors in a two-cavity optomechanical system,
Phys. Rev. A 89, 014302 (2014).

[23] M. J. Woolley and A. A. Clerk, Two-mode squeezed states in
cavity optomechanics via engineering of a single reservoir, Phys.
Rev. A 89, 063805 (2014).

[24] M. Wang, X.-Y. Lü, Y.-D. Wang, J. Q. You, and Y. Wu, Macro-
scopic quantum entanglement in modulated optomechanics,
Phys. Rev. A 94, 053807 (2016).

[25] E. Damskägg, J.-M. Pirkkalainen, and M. A. Sillanpää, Dynami-
cally creating tripartite resonance and dark modes in a multimode
optomechanical system, J. Opt. 18, 104003 (2016).

[26] C. F. Ockeloen-Korppi, E. E. Damskägg, J.-M. Pirkkalainen,
A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, Sta-
bilized entanglement of massive mechanical oscillators, Nature
(London) 556, 478 (2018).

[27] A. Mari, A. Farace, N. Didier, V. Giovannetti, and R. Fazio,
Measures of Quantum Synchronization in Continuous Variable
Systems, Phys. Rev. Lett. 111, 103605 (2013).

[28] M. H. Matheny, M. Grau, L. G. Villanueva, R. B. Karabalin,
M. C. Cross, and M. L. Roukes, Phase Synchronization of Two
Anharmonic Nanomechanical Oscillators, Phys. Rev. Lett. 112,
014101 (2014).

[29] P. A. Truitt, J. B. Hertzberg, C. C. Huang, K. L. Ekinci, and
K. C. Schwab, Efficient and sensitive capacitive readout of
nanomechanical resonator arrays, Nano Lett. 7, 120 (2007).

[30] I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P.
Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and
M. L. Roukes, Large-scale integration of nanoelectromechanical
systems for gas sensing applications, Nano Lett. 12, 1269
(2012).

[31] H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I.
Mahboob, E. Y. Chang, and H. Yamaguchi, Coherent phonon

023860-12

https://doi.org/10.1126/science.1156032
https://doi.org/10.1126/science.1156032
https://doi.org/10.1126/science.1156032
https://doi.org/10.1126/science.1156032
https://doi.org/10.1002/andp.201200226
https://doi.org/10.1002/andp.201200226
https://doi.org/10.1002/andp.201200226
https://doi.org/10.1002/andp.201200226
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevA.85.025803
https://doi.org/10.1103/PhysRevA.85.025803
https://doi.org/10.1103/PhysRevA.85.025803
https://doi.org/10.1103/PhysRevA.85.025803
https://doi.org/10.1103/PhysRevA.87.013847
https://doi.org/10.1103/PhysRevA.87.013847
https://doi.org/10.1103/PhysRevA.87.013847
https://doi.org/10.1103/PhysRevA.87.013847
https://doi.org/10.1103/PhysRevA.87.043809
https://doi.org/10.1103/PhysRevA.87.043809
https://doi.org/10.1103/PhysRevA.87.043809
https://doi.org/10.1103/PhysRevA.87.043809
https://doi.org/10.1103/PhysRevA.88.023853
https://doi.org/10.1103/PhysRevA.88.023853
https://doi.org/10.1103/PhysRevA.88.023853
https://doi.org/10.1103/PhysRevA.88.023853
https://doi.org/10.1103/PhysRevA.87.025803
https://doi.org/10.1103/PhysRevA.87.025803
https://doi.org/10.1103/PhysRevA.87.025803
https://doi.org/10.1103/PhysRevA.87.025803
https://doi.org/10.1103/PhysRevA.81.041803
https://doi.org/10.1103/PhysRevA.81.041803
https://doi.org/10.1103/PhysRevA.81.041803
https://doi.org/10.1103/PhysRevA.81.041803
https://doi.org/10.1103/PhysRevA.92.033829
https://doi.org/10.1103/PhysRevA.92.033829
https://doi.org/10.1103/PhysRevA.92.033829
https://doi.org/10.1103/PhysRevA.92.033829
https://doi.org/10.1103/PhysRevA.78.041801
https://doi.org/10.1103/PhysRevA.78.041801
https://doi.org/10.1103/PhysRevA.78.041801
https://doi.org/10.1103/PhysRevA.78.041801
https://doi.org/10.1103/PhysRevLett.109.223601
https://doi.org/10.1103/PhysRevLett.109.223601
https://doi.org/10.1103/PhysRevLett.109.223601
https://doi.org/10.1103/PhysRevLett.109.223601
https://doi.org/10.1103/PhysRevA.94.053812
https://doi.org/10.1103/PhysRevA.94.053812
https://doi.org/10.1103/PhysRevA.94.053812
https://doi.org/10.1103/PhysRevA.94.053812
https://doi.org/10.1038/nphys3515
https://doi.org/10.1038/nphys3515
https://doi.org/10.1038/nphys3515
https://doi.org/10.1038/nphys3515
https://doi.org/10.1103/PhysRevA.95.063816
https://doi.org/10.1103/PhysRevA.95.063816
https://doi.org/10.1103/PhysRevA.95.063816
https://doi.org/10.1103/PhysRevA.95.063816
https://doi.org/10.1103/PhysRevLett.118.063605
https://doi.org/10.1103/PhysRevLett.118.063605
https://doi.org/10.1103/PhysRevLett.118.063605
https://doi.org/10.1103/PhysRevLett.118.063605
https://doi.org/10.1103/PhysRevLett.100.220401
https://doi.org/10.1103/PhysRevLett.100.220401
https://doi.org/10.1103/PhysRevLett.100.220401
https://doi.org/10.1103/PhysRevLett.100.220401
https://doi.org/10.1103/PhysRevA.88.022325
https://doi.org/10.1103/PhysRevA.88.022325
https://doi.org/10.1103/PhysRevA.88.022325
https://doi.org/10.1103/PhysRevA.88.022325
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevA.89.014302
https://doi.org/10.1103/PhysRevA.89.014302
https://doi.org/10.1103/PhysRevA.89.014302
https://doi.org/10.1103/PhysRevA.89.014302
https://doi.org/10.1103/PhysRevA.89.063805
https://doi.org/10.1103/PhysRevA.89.063805
https://doi.org/10.1103/PhysRevA.89.063805
https://doi.org/10.1103/PhysRevA.89.063805
https://doi.org/10.1103/PhysRevA.94.053807
https://doi.org/10.1103/PhysRevA.94.053807
https://doi.org/10.1103/PhysRevA.94.053807
https://doi.org/10.1103/PhysRevA.94.053807
https://doi.org/10.1088/2040-8978/18/10/104003
https://doi.org/10.1088/2040-8978/18/10/104003
https://doi.org/10.1088/2040-8978/18/10/104003
https://doi.org/10.1088/2040-8978/18/10/104003
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1103/PhysRevLett.111.103605
https://doi.org/10.1103/PhysRevLett.111.103605
https://doi.org/10.1103/PhysRevLett.111.103605
https://doi.org/10.1103/PhysRevLett.111.103605
https://doi.org/10.1103/PhysRevLett.112.014101
https://doi.org/10.1103/PhysRevLett.112.014101
https://doi.org/10.1103/PhysRevLett.112.014101
https://doi.org/10.1103/PhysRevLett.112.014101
https://doi.org/10.1021/nl062278g
https://doi.org/10.1021/nl062278g
https://doi.org/10.1021/nl062278g
https://doi.org/10.1021/nl062278g
https://doi.org/10.1021/nl2037479
https://doi.org/10.1021/nl2037479
https://doi.org/10.1021/nl2037479
https://doi.org/10.1021/nl2037479


SIMULTANEOUS COOLING OF COUPLED MECHANICAL … PHYSICAL REVIEW A 98, 023860 (2018)

manipulation in coupled mechanical resonators, Nat. Phys. 9,
480 (2013).

[32] P. Huang, P. Wang, J. Zhou, Z. Wang, C. Ju, Z. Wang, Y. Shen, C.
Duan, and J. Du, Demonstration of Motion Transduction Based
on Parametrically Coupled Mechanical Resonators, Phys. Rev.
Lett. 110, 227202 (2013).

[33] P. Huang, L. Zhang, J. Zhou, T. Tian, P. Yin, C. Duan, and J. Du,
Nonreciprocal Radio Frequency Transduction in a Parametric
Mechanical Artificial Lattice, Phys. Rev. Lett. 117, 017701
(2016).

[34] S. Mancini, D. Vitali, and P. Tombesi, Optomechanical Cooling
of a Macroscopic Oscillator by Homodyne Feedback, Phys. Rev.
Lett. 80, 688 (1998).

[35] P. F. Cohadon, A. Heidmann, and M. Pinard, Cooling of
a Mirror by Radiation Pressure, Phys. Rev. Lett. 83, 3174
(1999).

[36] D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling
of a micromechanical resonator, Nature (London) 444, 75
(2006).

[37] T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith,
S. Whitcomb, and N. Mavalvala, Optical Dilution and Feedback
Cooling of a Gram-Scale Oscillator to 6.9 mK, Phys. Rev. Lett.
99, 160801 (2007)

[38] M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, Feedback
Cooling of a Cantilever’s Fundamental Mode below 5 mK, Phys.
Rev. Lett. 99, 017201 (2007).

[39] A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J.
Kippenberg, Radiation Pressure Cooling of a Micromechanical
Oscillator Using Dynamical Backaction, Phys. Rev. Lett. 97,
243905 (2006).

[40] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews,
P.-L. Yu, K. W. Lehnert, and C. A. Regal, Laser Cooling of a
Micromechanical Membrane to the Quantum Backaction Limit,
Phys. Rev. Lett. 116, 063601 (2016).

[41] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg,
Theory of Ground State Cooling of a Mechanical Oscillator
Using Dynamical Backaction, Phys. Rev. Lett. 99, 093901
(2007).

[42] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum
Theory of Cavity-Assisted Sideband Cooling of Mechanical
Motion, Phys. Rev. Lett. 99, 093902 (2007).

[43] F. Xue, Y.-D. Wang, Y.-X. Liu, and F. Nori, Cooling a microme-
chanical beam by coupling it to a transmission line, Phys. Rev.
B 76, 205302 (2007).

[44] K. R. Brown, J. Britton, R. J. Epstein, J. Chiaverini, D. Leibfried,
and D. J. Wineland, Passive Cooling of a Micromechanical
Oscillator with a Resonant Electric Circuit, Phys. Rev. Lett. 99,
137205 (2007).

[45] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer,
Ground-state cooling of a micromechanical oscillator: Compar-
ing cold damping and cavity-assisted cooling schemes, Phys.
Rev. A 77, 033804 (2008); Erratum: Ground-state cooling of
a micromechanical oscillator: Comparing cold damping and
cavity-assisted cooling schemes [Phys. Rev. A 77, 033804
(2008)], 79, 039903(E) (2009).

[46] Y. Li, Y.-D. Wang, F. Xue, and C. Bruder, Quantum
theory of transmission line resonator-assisted cooling of
a micromechanical resonator, Phys. Rev. B 78, 134301
(2008).

[47] Y. Li, L.-A. Wu, and Z. D. Wang, Fast ground-state cooling
of mechanical resonators with time-dependent optical cavities,
Phys. Rev. A 83, 043804 (2011).

[48] Y.-L. Liu and Y.-X. Liu, Energy-localization-enhanced ground-
state cooling of a mechanical resonator from room temperature
in optomechanics using a gain cavity, Phys. Rev. A 96, 023812
(2017).

[49] X. Xu, T. Purdy, and J. M. Taylor, Cooling a Harmonic Oscillator
by Optomechanical Modification of Its Bath, Phys. Rev. Lett.
118, 223602 (2017).

[50] J.-Q. Liao and C. K. Law, Cooling of a mirror in cavity
optomechanics with a chirped pulse, Phys. Rev. A 84, 053838
(2011).

[51] S. Machnes, J. Cerrillo, M. Aspelmeyer, W. Wieczorek, M. B.
Plenio, and A. Retzker, Pulsed Laser Cooling for Cavity Op-
tomechanical Resonators, Phys. Rev. Lett. 108, 153601 (2012).

[52] K. Xia and J. Evers, Ground State Cooling of a Nanomechanical
Resonator in the Nonresolved Regime via Quantum Interference,
Phys. Rev. Lett. 103, 227203 (2009).

[53] X.-T. Wang, S. Vinjanampathy, F. W. Strauch, and K. Jacobs,
Ultraefficient Cooling of Resonators: Beating Sideband Cooling
with Quantum Control, Phys. Rev. Lett. 107, 177204 (2011).

[54] Y. Li, L.-A. Wu, Y.-D. Wang, and L.-P. Yang, Nondeterministic
ultrafast ground-state cooling of a mechanical resonator, Phys.
Rev. B 84, 094502 (2011).

[55] L.-L. Yan, J.-Q. Zhang, S. Zhang, and M. Feng, Efficient cooling
of quantized vibrations using a four-level configuration, Phys.
Rev. A 94, 063419 (2016).

[56] Y.-C. Liu, Y.-F. Xiao, X. Luan, and C. W. Wong, Dynamic Dis-
sipative Cooling of a Mechanical Resonator in Strong Coupling
Optomechanics, Phys. Rev. Lett. 110, 153606 (2013)

[57] Y.-C. Liu, Y.-F. Shen, Q. Gong, and Y.-F. Xiao, Optimal limits
of cavity optomechanical cooling in the strong-coupling regime,
Phys. Rev. A 89, 053821 (2014).

[58] J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause,
S. Groeblacher, M. Aspelmeyer, and O. Painter, Laser cooling
of a nanomechanical oscillator into its quantum ground state,
Nature (London) 478, 89 (2011).

[59] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K.
Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W.
Simmonds, Sideband cooling of micromechanical motion to the
quantum ground state, Nature (London) 475, 359 (2011).

[60] C. Genes, D. Vitali, and P. Tombesi, Simultaneous cooling and
entanglement of mechanical modes of a micromirror in an optical
cavity, New J. Phys. 10, 095009 (2008).

[61] M. Karuza, C. Molinelli, M. Galassi, C. Biancofiore, R. Natali,
P. Tombesi, G. Di Giuseppe, and D. Vitali, Optomechanical
sideband cooling of a thin membrane within a cavity, New J.
Phys. 14, 095015 (2012).

[62] N. Kralj, M. Rossi, S. Zippilli, R. Natali, A. Borrielli, G. Pan-
draud, E. Serra, G. Di Giuseppe, and D. Vitali, Enhancement of
three-mode optomechanical interaction by feedback-controlled
light, Quantum Sci. Technol. 2, 034014 (2017).

[63] L. Tian and P. Zoller, Coupled Ion-Nanomechanical Systems,
Phys. Rev. Lett. 93, 266403 (2004).

[64] S. Schmid, L. G. Villanueva, and M. L. Roukes, Fundamentals
of Nanomechanical Resonators (Springer, Switzerland, 2016).

[65] I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series, and
Products (Academic, New York, 2014).

023860-13

https://doi.org/10.1038/nphys2665
https://doi.org/10.1038/nphys2665
https://doi.org/10.1038/nphys2665
https://doi.org/10.1038/nphys2665
https://doi.org/10.1103/PhysRevLett.110.227202
https://doi.org/10.1103/PhysRevLett.110.227202
https://doi.org/10.1103/PhysRevLett.110.227202
https://doi.org/10.1103/PhysRevLett.110.227202
https://doi.org/10.1103/PhysRevLett.117.017701
https://doi.org/10.1103/PhysRevLett.117.017701
https://doi.org/10.1103/PhysRevLett.117.017701
https://doi.org/10.1103/PhysRevLett.117.017701
https://doi.org/10.1103/PhysRevLett.80.688
https://doi.org/10.1103/PhysRevLett.80.688
https://doi.org/10.1103/PhysRevLett.80.688
https://doi.org/10.1103/PhysRevLett.80.688
https://doi.org/10.1103/PhysRevLett.83.3174
https://doi.org/10.1103/PhysRevLett.83.3174
https://doi.org/10.1103/PhysRevLett.83.3174
https://doi.org/10.1103/PhysRevLett.83.3174
https://doi.org/10.1038/nature05231
https://doi.org/10.1038/nature05231
https://doi.org/10.1038/nature05231
https://doi.org/10.1038/nature05231
https://doi.org/10.1103/PhysRevLett.99.160801
https://doi.org/10.1103/PhysRevLett.99.160801
https://doi.org/10.1103/PhysRevLett.99.160801
https://doi.org/10.1103/PhysRevLett.99.160801
https://doi.org/10.1103/PhysRevLett.99.017201
https://doi.org/10.1103/PhysRevLett.99.017201
https://doi.org/10.1103/PhysRevLett.99.017201
https://doi.org/10.1103/PhysRevLett.99.017201
https://doi.org/10.1103/PhysRevLett.97.243905
https://doi.org/10.1103/PhysRevLett.97.243905
https://doi.org/10.1103/PhysRevLett.97.243905
https://doi.org/10.1103/PhysRevLett.97.243905
https://doi.org/10.1103/PhysRevLett.116.063601
https://doi.org/10.1103/PhysRevLett.116.063601
https://doi.org/10.1103/PhysRevLett.116.063601
https://doi.org/10.1103/PhysRevLett.116.063601
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevB.76.205302
https://doi.org/10.1103/PhysRevB.76.205302
https://doi.org/10.1103/PhysRevB.76.205302
https://doi.org/10.1103/PhysRevB.76.205302
https://doi.org/10.1103/PhysRevLett.99.137205
https://doi.org/10.1103/PhysRevLett.99.137205
https://doi.org/10.1103/PhysRevLett.99.137205
https://doi.org/10.1103/PhysRevLett.99.137205
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.79.039903
https://doi.org/10.1103/PhysRevA.79.039903
https://doi.org/10.1103/PhysRevA.79.039903
https://doi.org/10.1103/PhysRevB.78.134301
https://doi.org/10.1103/PhysRevB.78.134301
https://doi.org/10.1103/PhysRevB.78.134301
https://doi.org/10.1103/PhysRevB.78.134301
https://doi.org/10.1103/PhysRevA.83.043804
https://doi.org/10.1103/PhysRevA.83.043804
https://doi.org/10.1103/PhysRevA.83.043804
https://doi.org/10.1103/PhysRevA.83.043804
https://doi.org/10.1103/PhysRevA.96.023812
https://doi.org/10.1103/PhysRevA.96.023812
https://doi.org/10.1103/PhysRevA.96.023812
https://doi.org/10.1103/PhysRevA.96.023812
https://doi.org/10.1103/PhysRevLett.118.223602
https://doi.org/10.1103/PhysRevLett.118.223602
https://doi.org/10.1103/PhysRevLett.118.223602
https://doi.org/10.1103/PhysRevLett.118.223602
https://doi.org/10.1103/PhysRevA.84.053838
https://doi.org/10.1103/PhysRevA.84.053838
https://doi.org/10.1103/PhysRevA.84.053838
https://doi.org/10.1103/PhysRevA.84.053838
https://doi.org/10.1103/PhysRevLett.108.153601
https://doi.org/10.1103/PhysRevLett.108.153601
https://doi.org/10.1103/PhysRevLett.108.153601
https://doi.org/10.1103/PhysRevLett.108.153601
https://doi.org/10.1103/PhysRevLett.103.227203
https://doi.org/10.1103/PhysRevLett.103.227203
https://doi.org/10.1103/PhysRevLett.103.227203
https://doi.org/10.1103/PhysRevLett.103.227203
https://doi.org/10.1103/PhysRevLett.107.177204
https://doi.org/10.1103/PhysRevLett.107.177204
https://doi.org/10.1103/PhysRevLett.107.177204
https://doi.org/10.1103/PhysRevLett.107.177204
https://doi.org/10.1103/PhysRevB.84.094502
https://doi.org/10.1103/PhysRevB.84.094502
https://doi.org/10.1103/PhysRevB.84.094502
https://doi.org/10.1103/PhysRevB.84.094502
https://doi.org/10.1103/PhysRevA.94.063419
https://doi.org/10.1103/PhysRevA.94.063419
https://doi.org/10.1103/PhysRevA.94.063419
https://doi.org/10.1103/PhysRevA.94.063419
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1103/PhysRevA.89.053821
https://doi.org/10.1103/PhysRevA.89.053821
https://doi.org/10.1103/PhysRevA.89.053821
https://doi.org/10.1103/PhysRevA.89.053821
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1088/1367-2630/10/9/095009
https://doi.org/10.1088/1367-2630/10/9/095009
https://doi.org/10.1088/1367-2630/10/9/095009
https://doi.org/10.1088/1367-2630/10/9/095009
https://doi.org/10.1088/1367-2630/14/9/095015
https://doi.org/10.1088/1367-2630/14/9/095015
https://doi.org/10.1088/1367-2630/14/9/095015
https://doi.org/10.1088/1367-2630/14/9/095015
https://doi.org/10.1088/2058-9565/aa7d7e
https://doi.org/10.1088/2058-9565/aa7d7e
https://doi.org/10.1088/2058-9565/aa7d7e
https://doi.org/10.1088/2058-9565/aa7d7e
https://doi.org/10.1103/PhysRevLett.93.266403
https://doi.org/10.1103/PhysRevLett.93.266403
https://doi.org/10.1103/PhysRevLett.93.266403
https://doi.org/10.1103/PhysRevLett.93.266403



