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In a recent paper [Barral et al., Phys. Rev. A 96, 053822 (2017)], we proposed a strategy to generate bipartite and
quadripartite continuous-variable entanglement of bright quantum states based on degenerate down-conversion in
a pair of evanescently coupled nonlinear χ (2) waveguides. Here, we show that the resources needed for obtaining
these features can be optimized by exploiting the regime of second harmonic generation: the combination of
depletion and coupling among pump beams indeed supplies all necessary wavelengths and appropriate phase
mismatch along propagation. Our device thus entangles the two fundamental classical input fields without the
participation of any harmonic ancilla. Depending on the propagation distance, the generated harmonics are
entangled in bright or vacuum modes. We also evidence two-color bipartite and quadripartite entanglement over
the interacting modes. The proposed device represents a boost in continuous-variable integrated quantum optics
since it enables a broad range of quantum effects in a very simple scheme, which optimizes the resources and can
be easily realized with current technology.
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I. INTRODUCTION

The merge between continuous variables (CV) and inte-
grated optics is a hot topic in the quantum optics community
[1–6]. By exploiting strong optical confinement, integrated
nonlinear optics permits one to enhance the efficiency of
quantum light sources, in broadband single pass configura-
tion [7,8]. In addition, it allows cascading multiple optical
functions on a single component, thus ensuring crucial benefits
in terms of device stability, compactness, and loss reduction.
Even more attractively, an adequate integration strategy can
strongly diminish the number of resources that are required
to implement a given quantum function. In this article, we
apply this concept and show that versatile and simultaneous
generation of bi- and quadripartite entanglement is possible
by exploiting second harmonic generation (SHG) in coupled
nonlinear waveguides. More specifically, we analyze the per-
formances of a nonlinear coupler of the kind of Fig. 1, designed
in such a way that fundamental input beams at a frequency
ωf are coupled evanescently and, simultaneously, undergo an
SHG process.

As a first result, we demonstrate that the device entangles
the input fundamental beams. We note that, compared to
spontaneous parametric down-conversion (SPDC) or ampli-
fication, this strategy yields entanglement at a frequency
ωf without using ancillary pump beams at higher frequen-
cies [7,8]. By exploiting such a property, standard lasers
and amplifiers from classical telecommunication technology
could directly produce entanglement at telecom wavelength
without the need of auxiliary frequency conversion stages.

*Corresponding author: david.barral@c2n.upsaclay.fr

Afterwards, we demonstrate that the simultaneous interplay of
fundamental modes up-conversion and coupling also produces
entanglement between the noninteracting second harmonic
beams at frequency ωh = 2ωf . Strikingly, by an adequate
choice of the coupler geometry, these fields can be set to
present features corresponding to Einstein-Podolsky-Rosen
(EPR) states (two-mode squeezed vacuum) such as those
generated by SPDC [9]. This scheme opens the possibility
to generate entanglement at mid-infrared wavelengths using
as resource widely available telecom lasers instead of blue or
UV lasers. Eventually, we show the coexistence of two-color
bipartite and quatripartite entanglement among fundamental
and second harmonic modes.

The ensemble of these remarkable features proves the
outstanding capabilities of the nonlinear coupler as a versatile
and powerful resource for the flourishing field of CV quantum
information [10]. It is to be noted that this device has no bulk-
optics analog, as it strongly relies on distributed coupling and
nonlinearity that are only accessible to guided-wave nonlinear
components. We prove this unique aspect by comparing the
performances of our proposed component with those of an
integrated two-mode squeezer, where SHG and nonlinear
coupling occur in sequence as in bulk-optics schemes for
generation of dual-rail two-mode squeezed states [11,12].

The article is organized as follows: In Sec. II, we introduce
the device under investigation and recall the equations which
run the propagation and generation of quantum fields. We then
describe the classical and quantum propagation of light in the
SHG configuration. In Secs. III and IV we study the generation
and evolution of bipartite and quadripartite entanglement in the
device, respectively. In Sec. V we compare the performance
of our device with that of the integrated two-mode squeezer.
Finally, the main results of this work are summarized in
Sec. VI.
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FIG. 1. Sketch of the proposed nonlinear directional coupler
made of two identical waveguides a and b with second-order suscep-
tibilities χ (2). The phase matching condition is only fulfilled in the
coupling zone (dashed box). Two input fundamental fields excited in
coherent states produce second harmonic fields in this region through
SHG. In red are the fundamental waves, evanescently coupled (f).
In blue, and more confined, are the non-interacting second harmonic
waves generated (h).

II. SHG IN THE NONLINEAR DIRECTIONAL COUPLER

The nonlinear directional coupler, sketched in Fig. 1, is
made of two identical χ (2) waveguides in which SHG takes
place. In each waveguide, two fundamental photons from
an input coherent state at frequency ωf are up-converted
into one second-harmonic photon at frequency ωh, all in the
same polarization mode. We consider that the phase matching
condition is fulfilled only in the coupling zone. The energy
of the fundamental modes propagating in each waveguide is
exchanged between the coupled waveguides through evanes-
cent waves, whereas the interplay of the generated second
harmonic waves is negligible for the considered propagation
lengths due to their high confinement into the guiding re-
gion [13]. The relevant operator which describes this system
is the interaction momentum M̂ = h̄ {g ÂhÂ

† 2
f + g B̂hB̂

† 2
f +

C Âf B̂
†
f + H.c.}, where Â and B̂ are slowly varying amplitude

annihilation operators of fundamental (f) and second harmonic
(h) photons corresponding to the upper (a) and lower (b)
waveguides, respectively, g is the nonlinear constant propor-
tional to χ (2), C the linear coupling constant, h̄ the Planck
constant, and H.c. stands for Hermitian conjugate. From this
momentum operator, the following Heisenberg equations are
obtained [14,15]:

dÂf

dz
= iCB̂f + 2igÂhÂ

†
f ,

dÂh

dz
= igÂ2

f ,

dB̂f

dz
= iCÂf + 2igB̂hB̂

†
f ,

dB̂h

dz
= igB̂2

f , (1)

where z is the coordinate corresponding to the direction of
propagation, and C and g have been taken as real without loss
of generality.

To gain physical insight we linearize and solve the
propagation of the quantum states for a specific available
technology, although the analysis applies to any material
substrate. We consider lithium niobate waveguides. Only the
coupling region is periodically poled (PPLN) to compensate
for the phase mismatch between the fundamental and
harmonic waves and ensure an efficient second-order
nonlinear effect. We further consider C = 8×10−2 mm−1

and g = 25×10−4 mm−1 mW−1/2, which will be used in the
remainder of the paper. These are standard values in PPLN
waveguides [16]. Unlike SPDC, the undepleted approximation
which linearize Eqs. (1) cannot be used in the SHG case [7].
We thus implement the linearization of the equations by

means of quantum-fluctuation operators âj = Âj − αj and
b̂j = B̂j − βj , with αj and βj the mean values related to
the input operators Âj , B̂j , with j = f, h; a scheme that
holds for periodically poled systems [17,18]. These new
operators exhibit zero mean values and the same variances
as the input operators. This method was recently used in the
analysis of this device in the SPDC and optical parametric
amplification (OPA) regimes [8]. In the following we adopt
the same procedure and normalizations [19]. Under the
linearization approximation, we first solve the propagation of
the classical fields αf (αh) and βf (βh) (zeroth order in quantum
fluctuations) with appropriate initial conditions αj (0), βj (0)
(αh(0) = βh(0) = 0 for SHG), to obtain the evolution of the
quantum fluctuations. In order to solve the classical equations,
we use dimensionless amplitudes uj (vj ) and phases θj (φj )
related to the classical fields via αj = √

P uj exp (i θj ),
βj = √

P vj exp (i φj ), with P the total input energy. We also
introduce a normalized propagation coordinate ζ = √

2Pgz,
which is defined only in the coupling region where phase
matching is guaranteed. Applying this change of variables
into the classical version of Eqs. (1), we obtain

duf

dζ
= −κ vf sin(φf − θf ) − uf uh sin(�θ ),

dθf

dζ
= κ

vf

uf

cos(φf − θf ) + uh cos(�θ ),

duh

dζ
= u2

f sin(�θ ),
dθh

dζ
= u2

f

uh

cos(�θ ). (2)

Four additional equations can be obtained by exchanging
u ↔ v and θ ↔ φ. The two governing parameters
of the system are the nonlinear phase mismatch
�θ ≡ θh − 2θf (�φ ≡ φh − 2φf ) and the effective coupling
κ = C/(

√
2Pg). The nonlinear phase mismatch drives the

nonlinear optical processes whereas the effective coupling
indicates which of the two competing effects is stronger:
either the linear or the nonlinear interactions.

In the SHG regime, the classical operation of the nonlinear
directional coupler as an all-optical switch was numerically
analyzed in Ref. [20]; however, propagation was not dealt
with in that work. The spectral quantum correlations produced
in a nonlinear directional coupler inside a Fabry-Perot cavity
were theoretically evaluated in Ref. [21]. However, in that
work the specifics of cavities were used, i.e., steady-state
solutions and coupling between the harmonic fields, whereas
our approach deals with single-pass traveling waves and
noninteracting harmonic fields. Since there is no known exact
analytical solution to Eqs. (2), we solve them numerically.
We set fundamental input powers and phases to be equal in
each waveguide, which leads to the excitation of the even
fundamental supermode related to the coupled system [22].
Inasmuch as numerical simulations cannot deal with input
vacuum states, we input harmonic coherent states with a mean
number of photons very close to zero (<1 photon). We thus
set the ratio between the fundamental and harmonic powers
at each waveguide as Ph/Pf = 10−18, such that u2

f (0) =
v2

f (0) ≈ 1/2 and u2
h(0) = v2

h(0) ≈ 0. The harmonic initial
phases are set equal as those of fundamentals. It should be
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FIG. 2. Classical-fields power and phase difference propagation.
Dimensionless fundamental (solid) and second harmonic (dash)
powers, and phase difference of the classical waves �θ (�φ) (dot).
κ = 1.13 and Ph/Pf = 10−18. ζ is the normalized propagation
coordinate.

noted that in SPDC and OPA κ = 1 represents the threshold
for which the linearization approximation remains valid [8].
In SHG, however, the regime of the quantum-noise-induced
fundamental mode revivals appears only when κ → 0, leading
to an exponential growth of the fluctuations and the breakdown
of the linear approach [21,23]. Below we choose an effective
coupling κ = 1.13, since it is a feasible value with PPLN
technology and for the sake of comparison with the results
obtained for SPDC and OPA in Ref. [8]. ζ = 1 then stands for
an interaction length z ≈ 14 mm, a coupling length accessible
with present fabrication technology. We emphasize, however,
that our approach remains valid for values of κ as small
as 0.02.

Figure 2 displays the dimensionless classical powers for
each mode in each waveguide and the nonlinear phase mis-
match along the propagation. Although all parameters other
than the initial conditions are identical to those in Ref. [8],
where u2

f (0) = v2
f (0) ≈ 0 and u2

h(0) = v2
h(0) ≈ 1/2, a strong

fundamental field depletion is observed here in SHG in contrast
with the harmonic undepletion in SPDC (Figure 2(a) in
Ref. [8]). In both cases the classical fundamental and harmonic
powers are solely driven by the coupling-based nonlinear
phase mismatch �θ (�φ), since the single phases have the
same evolution along propagation [θf (ζ ) = φf (ζ )]. The linear
coupling of the fundamental modes yields this phase mismatch,
which cyclically destroys the phase matching produced by the
PPLN, driving two cascaded nonlinear optical processes: up-
conversion followed by down-conversion. Thus the evolving
phase mismatch periodically switches the system from an
efficient fundamental-to-harmonic conversion to an efficient
harmonic-to-fundamental conversion. In the SHG case, as
soon as the propagation in the waveguides starts, this phase
difference jumps to π/2 and evolves down to −π/2 cyclically.
Note that this phase jump and evolution also arises in SHG
with a depleted input in uncoupled single waveguides with
imperfect phase matching [24].

The solutions of the classical system of equations are
then fed into first-order equations in the quantum fluctuations
keeping only the linear terms. We solve the evolution of the
amplitude and phase quadratures of the field related to each
optical mode, X̂(A,B )

(f,h) and Ŷ
(A,B )
(f,h) [8]. In terms of dimensionless

variables, the propagation of the quantum field quadratures are

given by [25]

dX̂A
f

dζ
= −uh sin(θh)X̂A

f + uh cos(θh)Ŷ A
f − κŶ B

f

+
√

2uf sin(θf )X̂A
h −

√
2uf cos(θf )Ŷ A

h ,

dŶ A
f

dζ
= uh cos(θh)X̂A

f + uh sin(θh)Ŷ A
f + κX̂B

h

+
√

2uf cos(θf )X̂A
h +

√
2uf sin(θf )Ŷ A

h ,

dX̂A
h

dζ
= −

√
2uf sin(θf )X̂A

f −
√

2uf cos(θf )Ŷ A
f ,

dŶ A
h

dζ
=

√
2uf cos(θf )X̂A

f −
√

2uf sin(θf )Ŷ A
f , (3)

and the other four equations are obtained by exchanging
again u ↔ v, θ ↔ φ and A ↔ B. This system of equa-
tions can be rewritten in compact form as dξ̂/dζ = �(ζ ) ξ̂ ,
where �(ζ ) is a 8×8 matrix of coefficients, and ξ̂ =
(X̂A

f , Ŷ A
f , X̂A

h , Ŷ A
h , X̂B

f , Ŷ B
f , X̂B

h , Ŷ B
h )T . The formal solution of

this equation is given by ξ̂ (ζ ) = S(ζ ) ξ̂ (0), with the evo-
lution operator S(ζ ) = exp { ∫ ζ

0 �(ζ ′) dζ ′} [7]. Experimen-
tally, the most interesting observables of our system in
terms of CV entanglement are the second-order moments of
the quadrature operators, elements of the covariance matrix
V: V (ξO

j , ξO ′
k ) = 1

2 (〈�ξ̂O
j �ξ̂O ′

k 〉 + 〈�ξ̂O ′
k �ξ̂O

j 〉), with �ξ̂ ≡
ξ̂ − 〈ξ̂ 〉, and where i, j = f, h and O,O ′ = A,B [26]. V is
a real symmetric matrix that contains all the useful infor-
mation about the quantum states propagating in the device,
and V can be efficiently measured by means of homodyne
detection [27] or quasiresonant analysis cavities in the case of
bright beams [28]. The covariance matrix at any normalized
propagation plane ζ is given by V(ζ ) = S(ζ ) V(0) ST (ζ ),
where V(0) = (1/2) 1 is the covariance matrix related to the
input Gaussian fields, with a 1/2 shot noise in our convention.
Evolution of squeezing and quantum correlations between any
pair of quadratures can be obtained at any length from the
elements of this matrix.

III. BIPARTITE ENTANGLEMENT

The amount of CV entanglement in bipartite splittings of the
system is easily quantified through the logarithmic negativity
EN [29,30]. It can be obtained from the covariance matrix V
and is defined in such a way that any value EN > 0 indicates
entanglement in any bipartite splitting of the system, made up
of one or various modes. Figure 3 shows the EN corresponding
to two modes of the quadripartite system, i.e., tracing out
the two modes not considered. Notably, both the fundamen-
tal modes (solid) and the generated noninteracting second
harmonic modes (dash) are entangled for all the propagation
distances here considered, whereas entanglement between the
fundamental and harmonic modes propagating in the same
waveguide (dot) and in different waveguides (dash-dot) is
obtained at specific distances. The main causes of these effects
are the simultaneous depletion and evanescent coupling of the
fundamental modes and the periodic alternation between up-
and down-conversion driven by the coupling-based nonlinear
phase mismatch �θ (�φ).
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FIG. 3. Bipartite entanglement between single-mode parties.
Logarithmic negativity EN corresponding to the subsystem of funda-
mentals (solid), harmonics (dash), fundamental-harmonic in the same
waveguide (dot), and fundamental-harmonic in different waveguides
(dot-dash). κ = 1.13 and Ph/Pf = 10−18. ζ is the normalized prop-
agation coordinate.

In more detail, the entanglement of the fundamental modes
is caused by depletion-based squeezing and linear coupling of
the input coherent fields. This is similar to the entanglement
of two single-mode squeezed states in a bulk-optics beam
splitter [31], but in a distributed way. Further comparison is
given at the final section. In the case of the harmonic modes
the supermodes framework enables a clearer view: as the even
fundamental supermode propagates along the nonlinear direc-
tional coupler, a pair of supermode photons is up-converted to
an harmonic photon which is delocalized in the two waveg-
uides, like an effective harmonic supermode. Therefore the
harmonic fields are entangled in the individual modes basis.
The device acts thus as a distributed nonlinear beam splitter,
where two input fundamental photons propagating in each
waveguide are transformed in one entangled dual-rail harmonic
photon. Both fundamental modes and harmonic modes present
maximum values of entanglement for device lengths less than
z ≈ 3.5 cm, feasible with current technology. Strikingly, at
ζ0 ≈ 2.1 the harmonic fields present zero mean value (Fig. 2)
and a value of entanglement EN ≈ 1/3. Analyzing the entries
in the main diagonal of the covariance matrix V, squeezing in
the harmonic modes is also found (not shown). These features
and the Gaussian nature of the states under study lead us to
conclude that an EPR state, or two-mode squeezed vacuum,
is present in the harmonic modes at this propagation distance.
It is important to emphasize that, unlike the total system that
is a pure state, each single-color subsystem is a mixed state.
The purity of the quantum state corresponding to the harmonic
modes can be obtained from the covariance matrix related
to that subsystem, Vh, through μh = 1/(4

√
det Vh) [26]. In

this case a purity μh = 97.4% is found at ζ0. Likewise, the
fidelity of this harmonic mixed state with regard to a two-mode
squeezed vacuum of covariance matrix Vsq and squeezing
parameter r can also be easily worked out from Vh [32].
In this case it is given by F ≈ 1/

√
det(Vh + Vsq ). At ζ0, a

value of F = 98.0% is obtained for r = 0.11, equivalent to
−1 dB squeezing. Further, fundamental-modes depletion leads
to two-color entanglement between the modes propagating in
each waveguide and in different waveguides through linear
coupling of the fundamental fields [25,33].

E
N

FIG. 4. Bipartite entanglement between two-mode parties. Loga-
rithmic negativity EN corresponding to the subsystem of (fundamen-
tal a, fundamental b)-(harmonic a, harmonic b) (solid), (fundamental
a, harmonic a)-(fundamental b, harmonic b) (dash), and (fundamental
a, harmonic b)-(fundamental b, harmonic a) (dot). κ = 1.13 and
Ph/Pf = 10−18. ζ is the normalized propagation coordinate.

The above features present important applications at the
technological level. First, compared to standard SPDC, squeez-
ing at frequency ωf is obtained at the output of the nonlinear
directional coupler without the need for additional frequency
doubling stages to generate pump beams. One can thus use the
same laser in both generation and detection stages, simplifying
setups and avoiding problems of mode matching. This simple
device opens the possibility of producing bright entangled
states on demand at telecom wavelengths, where low-loss
optical fibers and high-performance standard components are
available. On top of this, the generation of EPR states at the
harmonic frequency is an asset. It could represent eventually a
novel way of generating twin photons, but further investigation
in this direction has to be carried out. Notably, there are
distances where values of entanglement as high as EN ≈ 1/3
are found in both fundamental and harmonic subsystems.
Bipartite entanglement increases as κ decreases. When dou-
bling the total input power (κ = 0.8) peaks of EN = 2/3
in both single-mode parties are obtained. These values are
on the order of those reported with the nonlinear directional
coupler in an OPA regime [8] or with schemes involving optical
cavities [21]. These bipartite entangled states are the resources
of prominent CV-based quantum protocols such as quantum
teleportation [34], quantum cryptography [35], quantum imag-
ing [36], and optomechanical entanglement [37].

Bipartite entanglement can also be analyzed when more
than two modes are involved. As an example, Fig. 4 shows the
logarithmic negativity EN corresponding to the four modes
of the system in a bipartite splitting, i.e., the entanglement of
two subsystems made up of two modes each. The subsystems
(fundamental a, fundamental b)-(harmonic a, harmonic b)
(solid), (fundamental a, harmonic a)-(fundamental b, harmonic
b) (dash), and (fundamental a, harmonic b)-(fundamental b,
harmonic a) (dot) are sketched. Note the strength hierarchy
between them and the single-mode case, obtaining always
higher values of entanglement than that corresponding to the
parts involved. This feature appears because negativities can
only decrease after tracing out a part of the full system, such that
the same trend would be obtained with a different entanglement
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E
N

FIG. 5. Bipartite entanglement between single-mode parties with
propagation losses. Logarithmic negativity EN corresponding to the
subsystem of fundamentals: ideal (solid) and realistic (dot-dash)
cases; and harmonics: ideal (dash) and realistic (dot) cases. γf =
0.14 dB cm−1, γh = 0.55 dB cm−1, κ = 1.13 and Ph/Pf = 10−18. ζ

is the normalized propagation coordinate.

estimator [29]. A very interesting consequence of this effect
is that the measurement of entanglement on one subsystem,
single- or two-color, can be used as a nondemolition measure
of entanglement on its complementary.

We can now estimate the influence of losses on the CV
entanglement generated in the nonlinear directional coupler.
Linear propagation losses η, such as scattering and absorption,
can indeed be easily included in our analysis by inserting
fictitious beam splitters with effective transmittivity

√
η, mix-

ing appropriately output quantum states with vacuum [38].
The covariance matrix of the thus computed realistic quantum
states VR is easily found as V R (ξO

i , ξO ′
j ) = η V I (ξO

i , ξO ′
j ) +

1/2×(1 − η) δi,j δO,O ′ , where VI is computed from the loss-
less solutions of Eq. (3) and δ stands for the Kronecker delta.
From VR we can analyze the bipartite entanglement in a
nonideal case. Typical values of propagation losses in PPLN
waveguides for 780 and 1560 nm are γh = 0.55 dB cm−1 and
γf = 0.14 dB cm−1, respectively. These values are included
in the covariance matrix by means of ηi (γi, z) = e−γiz. We
assume the same losses in both waveguides. Figure 5 shows the
logarithmic negativity EN corresponding to the fundamentals
and harmonics bipartite splittings of the system deduced from
VI and VR , i.e., for the lossless and lossy cases. A drop
in bipartite entanglement of ≈3% at ζ = 1.3 and ≈18% at
ζ = 2.1 is obtained for the fundamental and harmonic fields,
respectively. We outline that in both cases the entanglement
is quite robust under losses. Note that this analysis can also
be extended to extrinsic losses such as coupling, transmission,
and detection efficiency.

IV. QUADRIPARTITE ENTANGLEMENT

Measuring multipartite full inseparability in CV systems
requires the simultaneous fulfillment of a set of conditions
which leads to genuine multipartite entanglement when pure
states are involved [39,40]. This criterion, known as van
Loock–Furusawa inequalities, can be easily calculated from
the elements of the covariance matrix V [41]. Figure 6
shows the three inequalities where four arbitrary parameters
have been optimized in order to maximize their violation

FIG. 6. Optimized van Loock–Furusawa inequalities (VLF). Si-
multaneous values under the threshold value imply CV quadripartite
entanglement. Solid line: the first and third inequalities. Dash line: the
second inequality. Dot line: quadripartite entanglement threshold. In
gray the area where the violation of the three inequalities is obtained.
κ = 1.13 and Ph/Pf = 10−18. ζ is the normalized propagation
coordinate.

(VLF < 2). Due to the symmetry of the system, two of the in-
equalities show equal values (solid). Notably, there are lengths
over which all the inequalities are violated, therefore showing
two-color quadripartite entanglement within the system (Fig. 6,
gray area). As for the bipartite entanglement case, a higher
degree of entanglement is obtained with lower values of κ .
Multipartite entanglement can be extended to a higher number
of modes by means of waveguide arrays [42]. These devices
could also show multicolor entanglement under appropriate
tuning of the parameters. We emphasize that multipartite
entanglement of bright beams opens up interesting avenues in
CV-based quantum information processing such as multipartite
EPR steering [43].

V. COMPARISON WITH A BULK-OPTICS ANALOG

Finally, let us now compare the performance of the proposed
device with an usual bulk-optics scheme for generation of
dual-rail two-mode squeezed states [31]. To establish a fair
comparison, we consider an integrated version of such an
approach, that we call the integrated two-mode squeezer. This
is a chip made up of two independent PPLN waveguides
which are connected by a linear directional coupler [11,12,44].
Unlike the nonlinear directional coupler, which works in
a distributed way, this device operates sequentially: first it
produces fundamental-harmonic squeezing and then couples
only the fundamental fields. The integrated two-mode squeezer
can be easily analyzed in the framework of Eqs. (1): C = 0
stands for the uncoupled nonlinear waveguides and g = 0 for
the linear directional coupler.

We analyze first the SHG in each nonlinear waveguide
[Eqs. (1) with C = 0]. Figure 7 shows the dimensionless clas-
sical powers for each mode in each nonlinear PPLN waveguide
along the propagation. For the sake of comparison, we set the
same value of g and the same input power per waveguide as
that corresponding to the nonlinear directional coupler. The
ratio between the fundamental and harmonic powers is again
Ph/Pf = 10−18, and ζ = 1 stands for z ≈ 20 mm. This value
is different from that obtained in the nonlinear directional
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u
f

v
f

u
h

v
h

FIG. 7. Classical-fields power and phase difference propagation
in single nonlinear waveguides. Dimensionless fundamental (solid)
and second harmonic (dash) powers, and phase difference of the
classical waves �θ (�φ) (dot). g = 25×10−4 mm−1 mW−1/2 and
Ph/Pf = 10−18. ζ is the normalized propagation coordinate. The
vertical line shows the plane equivalent to a physical length of
z = 10 mm.

coupler, z ≈ 14 mm. The reason is that in this case the input
power P used in ζ corresponds to that in only one PPLN
waveguide, that we set as half of that used previously in order
to make a fair comparison between the two configurations. The
fundamental mode experiences a strong depletion fueling the
generation of an harmonic wave. As soon as the propagation
in each waveguide starts, the phase difference jumps to π/2,
holding this value invariant along propagation due to phase
matching [24]. The depletion drives an efficient fundamental-
to-harmonic conversion. It also produces strong single-mode
squeezing in both waves and entanglement between them (not
shown) [25,33,45]. After propagating in the two nonlinear
single waveguides, the light finds a linear directional coupler
which only couples the fundamental waves [Eqs. (1) with
g = 0]. We set the coupling constant with the same value as in
the nonlinear directional coupled introduced above. The length
for which the power is totally transferred from one waveguide
to the other, the beat length, is here Lab = π/2C ≈ 19.6 mm.
Since g = 0 in this part of the device, we use as propagation
coordinate the actual z. Using as input covariance matrix V(0)

E
N

FIG. 8. Bipartite entanglement in the bulk-optics configuration.
Logarithmic negativity EN corresponding to the subsystem of funda-
mentals (solid), harmonics (dash), fundamental-harmonic in the same
waveguide (dot), and fundamental-harmonic in different waveguides
(dot-dash). C = 8×10−2 mm−1. The vertical lines show the physical
lengths in integer multiples of Lab/2.

the one obtained in the individual nonlinear waveguides, we
can calculate its evolution and the entanglement generated
following the same steps as above, but without the presence of
the nonlinearity. We choose a typical PPLN-waveguides length
of 10 mm (ζ ≈ 0.5) in our simulations [11]. Figure 8 shows
the logarithmic negativity EN related to both fundamental and
harmonic fields propagating in the linear directional coupler.
The fundamental modes (solid) are maximally entangled at
Lab/2, whereas entanglement disappears at Lab. Values as high
as 1/3 are obtained, similar to those obtained with the nonlinear
directional coupler (Fig. 3). Also note that fundamental and
harmonic modes propagating in the same waveguide (dot) are
entangled at the input of the linear directional coupler, as stated
above. The entanglement between different-color fields propa-
gating in the same waveguide (dot) and in different waveguides
(dash-dot) is complementary, being maximum (null) for the
same (different) waveguides at 2Lab and null (maximum) for
the different (same) waveguides at Lab. However, unlike the
nonlinear directional coupler, the harmonic modes are not
entangled in this case (dash). As a consequence, quadripartite
entanglement is not possible either.

Therefore, we conclude from the above analysis that the
nonlinear directional coupler enables a broader range of
effects. Overall, it is also a more compact scheme since
the generation and coupling stages are distributed instead of
cascaded like in the two-mode squeezer. However, if the aim of
the device is just the generation of entanglement between the
fundamental waves, the integrated two-mode squeezer could
reach higher values than the nonlinear directional coupler at
the cost of increasing the PPLN-waveguides length. In the case
of the nonlinear directional coupler, an increase in the amount
of entanglement could also be obtained by means of suitably
engineered periodic PPLN gratings. This structured nonlinear
directional coupler would present zones with and without
PPLN, whose lengths would be set in order to be always in the
up-conversion regime in the PPLN areas, resulting in a larger
entanglement between the fundamental fields. The analysis of
such structure is beyond the scope of this work.

VI. CONCLUSION

We have studied the CV entanglement in a nonlinear χ (2)

directional coupler in the second-harmonic generation regime
and shown that two input fundamental coherent fields become
entangled along propagation due to the combined effect of
strong depletion and coupling between them. Remarkably, this
effect arises without the need of any ancillary second harmonic
field and thus minimizes the resources compared to previous
schemes. Waiving the multicolor excitation does not narrow the
entanglement capabilities of our minimum-resources device:
we have shown that (i) noninteracting harmonic fields are
generated and entangled along the device; (ii) in addition to
this bright states entanglemement, a new harmonic two-mode
squeezed vacuum arises at specific propagation distances;
(iii) measurement of entanglement on any bipartite subsystem,
single- or two-color, can moreover be used as a nondemolition
measure of entanglement on its complementary as there are
distances where all subsystems exhibit significant values of
entanglement; and (iv) two-color quadripartite entanglement
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is also present in the system under certain conditions. We have
investigated the effect of linear intrinsic losses on entanglement
in quantitative terms. We have also compared the performance
of our device, which relies on the distributed combination
of coupling and nonlinearity, with the performance of an
integrated two-mode squeezer which operates in a sequential
way. We found that the nonlinear directional coupler is more
compact and gives access to a broader range of effects. Finally,
we want to stress that the proposed approach could be relevant
for a number of CV quantum protocols. For instance, our
integrated platform pumped with telecom C-band wavelength

lasers could generate entangled states around 780 nm, that
could be advantageously interfaced with atomic quantum
memories in hybrid quantum protocols [46].
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