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We present a detailed theoretical description of a recently proposed atomic scanning microscope in a cavity
QED setup [D. Yang et al., Phys. Rev. Lett. 120, 133601 (2018)]. The microscope continuously observes atomic
densities with optical subwavelength resolution in a nondestructive way. The superresolution is achieved by
engineering an internal atomic dark state with a sharp spatial variation of population of a ground level dispersively
coupled to the cavity field. Thus, the atomic position encoded in the internal state is revealed as a phase shift
of the light reflected from the cavity in a homodyne experiment. Our theoretical description of the microscope
operation is based on the stochastic master equation describing the conditional time evolution of the atomic
system under continuous observation as a competition between dynamics induced by the Hamiltonian of the
system, decoherence effects due to atomic spontaneous decay, and the measurement backaction. Within our
approach we relate the observed homodyne current with a local atomic density and discuss the emergence of a
quantum nondemolition measurement regime allowing continuous observation of spatial densities of quantum
motional eigenstates without measurement backaction in a single experimental run.
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I. INTRODUCTION

In recent work we proposed and discussed a scanning
quantum microscope for cold atoms to continuously monitor
atomic quantum dynamics [1]. The unique feature of our setup
is that it acts a continuous measurement quantum device which,
depending on the mode of operation, implements an emergent
quantum nondemolition (QND) measurement of local density
of an atomic quantum state with subwavelength resolution. It
is therefore conceptually different from the familiar quantum
gas microscope [2] that takes a fluorescence image of an
instantaneous distribution of atoms over lattice sites in a
many-body system placed in an optical lattice. In the present
experiments, the quantum gas microscope operates as a de-
structive measurement device, making continuous observation
of the atomic dynamics impossible. In contrast, our proposed
microscope does not take pixelized images of atomic lattices
at a given time, but scans in time the atomic quantum state
on the subwavelength scale. In the movie mode, for a fixed
focal region the microscope continuously records the atomic
wave-packet dynamics. In the scanning mode with a good
cavity, the microscope appears as a quantum nondemolition
device such that a single spatial scan of the microscope focal
region maps out the spatial density of an atomic motional
eigenstate.

The quantum scanning microscope [1] continuously mea-
sures the atomic density within its focal region of subwave-
length size via dispersive coupling of atoms to a laser-driven
cavity, while the light reflected from the cavity is monitored
by homodyne detection within the framework of weak contin-
uous measurements [3–5]. It builds on the idea of using the
atom-cavity coupling for measurement and control of atomic
quantum systems, which was employed in experiments [6,7]
as well as in theoretical proposals [8–13]. The microscope

achieves the spatial superresolution by entangling the internal
state of an atom with its position via engineering a spatially
dependent dark state [14,15] (see Refs. [16,17] for pioneering
experiments), however optimized such that the perturbation of
the atomic system by the probe is negligible. This is in contrast
to the existing methods for achieving subwavelength resolution
by correlating the position of an atom with its internal state via
either spatial potential gradients [18,19] or nonlinear optical
response [14,15,20], which typically suffer from the presence
of strong forces acting on atoms. We also note that, according
to Ref. [21], advanced data processing makes it possible to
reach a resolution comparable to the size of vibrational ground
state of atoms in optical lattice wells, but still does not allow
one to “look into” the lattice site and to monitor dynamics
continuously.

It is the purpose of the present paper to elaborate on the
detailed theory behind the operation of the quantum scanning
microscope for cold atoms beyond the short presentation in
Ref. [1], with emphasis on decoherence effects caused by
atomic spontaneous emission and addressing experimental fea-
sibility of the scheme. This also includes a thorough analysis of
the effects of measurement backaction, the emergent quantum
nondemolition regime, and the microscope resolution limit.
The paper is organized as follows. In Sec. II we discuss the
cavity QED (CQED) setup and operation principles of the
microscope. The stochastic master equation (SME) describing
the microscope operation will be derived in Sec. III starting
from a quantum optical model for a CQED setup including
the atomic spontaneous emission. Based on this derivation,
in Sec. IV we present a detailed analysis of the movie and
the scanning operation modes of the microscope illustrated
by several (physically interesting) examples. We discuss the
experimental feasibility of the proposed setup in Sec. V and
summarize in Sec. VI.
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FIG. 1. Overview of the proposed quantum scanning microscope.
(a) The appearance of an atom in the focal region of the microscope,
as defined by the focus function fz0 (z), is accompanied by an internal
spin flip, which shifts the resonance of a cavity mode and can be
detected via homodyne detection. (b) Atomic level structure used
to realize the microscope. The � system |g〉 , |e〉 , |r〉 supports a
dark state |D(z)〉, of which the spin structure is correlated with the
position of the atom due to the spatially varying Rabi frequency
�r (z). This internal spin is detected via dispersively coupling the
|r〉 → |t〉 transition to a cavity mode. Atomic spontaneous emission,
as shown by the wavy lines, results in imperfections in the microscope
performance. Here �e (t ) is the spontaneous-emission rate for the level
|e〉 (|t〉) and Pje (with j = g, r, o) denotes the branching ratio for the
emission channel |e〉 → |j〉, with |o〉 denoting atomic levels outside
the four-level system under consideration. (c) Subwavelength spin
structure of the atomic dark state |D(z)〉 and (d) corresponding laser
configuration (see the description in Secs. II and III D).

II. MICROSCOPE SETUP AND OPERATION PRINCIPLES

We find it worthwhile to start our discussion with a summary
of the microscope operation principles, before entering techni-
cal details. In the present paper we will focus on single-particle
experiments illustrating the main concepts, which, however,
are immediately applicable to many-body systems [1]. The
basic idea behind the quantum scanning microscope is to
entangle, with subwavelength resolution, the position of an
atom with its internal state such that the observation of the
internal state provides information about the atomic position.
In the proposed setup (cf. Fig. 1 and [1]), the entanglement is
achieved by using a position-dependent dark state in an atomic
� system, which realizes an internal state flip in a region of an
optical subwavelength size (the focal region of the microscope)
[14–17,22,23]. Via a dispersive coupling of one of the internal
atomic states to a cavity mode, the change in the internal state of
an atom entering the focal region is detected nondestructively
as a shift in the mode resonance frequency, which is revealed
as a phase shift of the laser light reflected from the cavity in a
homodyne measurement.

To be more specific, we consider an atom (or system of
atoms) with two internal ground (spin) states |g〉 and |r〉 and
one excited state |e〉 moving along the z axis (see Fig. 1)
and we assume strong confinement in the other directions.
The Hamiltonian describing a one-dimensional (1D) atomic

motion is

ĤA,E = p̂2
z

2m
+ V (ẑ), (1)

where V (ẑ) is an external (off-resonant) optical potential
constraining the motion alone the z axis, which we assume
to be identical for all atomic internal states. To entangle the
position of an atom with its internal state, we form a � system
with two Rabi frequencies: a constant weak �g and a strong
position-dependent (periodic) �r (z) indicated in Figs. 1(b)
and 1(d) by the blue and orange, respectively. Note that,
in contrast to Refs. [22,23], here the Rabi frequency �r (z)
is never zero, �r (z) > 0. This configuration, as explained
in detail in Sec. III D, makes it possible to create a dark
state

|D(z)〉 ∼ �r (z) |g〉 − �g |r〉 , (2)

with a subwavelength spatial structure without generating
a noticeable nonadiabatic potential barrier, thus minimizing
backaction. In the dark state [see Fig. 1(c)], the internal state
|r〉 is partially populated only in the narrow focal regions of size
σ � λ0 near the minima of �r (z), which creates the desired
internal-state–position entanglement.

To detect an atom in the internal state |r〉 and therefore inside
the focal region, we place the atomic system into a laser-driven
optical cavity [see Fig. 1(a)] such that the driven cavity mode
[the green area in Fig. 1(a) and the green line in Fig. 1(b)]
couples the state |r〉 to another excited atomic state |t〉 with
detuning �t and strength g(z) (the z dependence is due to a
spatial profile of the cavity mode). For a large detuning |�t | �
|g(z)|, this coupling generates a local dispersive interaction
between the atom and the cavity mode. As detailed in Sec. III C,
this interaction can be written as

Ĥcoup = Afz0 (ẑ) ĉ†ĉ, (3)

where ĉ†(ĉ) is the photon creation (annihilation) operator for
the cavity mode and

Afz0 (ẑ) = h̄g2(ẑ)

�t

|〈r|D(z)〉|2 = h̄g2(ẑ)

�t

ρrr (4)

defines a sharply peaked focusing function fz0 (ẑ) of resolution
(width) σ around the focal point z0 [the minimum of �r (z)]
[see Figs. 1(c) and 1(d)]. Here A is the coupling strength with
the dimension of energy, chosen in such a way that the matrix
element of the focusing function over the atomic motional
eigenstates are of order 1 (the precise definition will be given
below in Sec. III, together with discussion of the effects related
to a finite lifetime of the levels |t〉 and |e〉).

The dispersive coupling (3) implies that the presence of an
atom inside the focal region defined by fz0 (z) shifts the cavity
resonance, which can be detected via homodyne measurement.
In such a measurement the output field of the cavity is
combined with a local oscillator with phase φ, resulting in
a homodyne current of the form (see Sec. III)

I (t ) = √
κ〈X̂φ〉c + ξ (t ). (5)

Here X̂φ ≡ eiφĉ† + e−iφ ĉ is the associated quadrature operator
of the cavity mode, κ is the cavity damping rate, ξ (t ) is the shot
noise of the electromagnetic field, and 〈· · · 〉c ≡ Tr{· · · ρc(t )}
refers to an expectation value with respect to the density
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matrix of the joint atom-cavity system, conditioned on the
measurement outcome. The evolution of ρc(t ) is governed
by a SME to be derived in Sec. III. Based on this equation,
we present a detailed discussion of the two operation modes
of the microscope, the movie mode (Sec. IV A) and the
scanning mode (Sec. IV B), and establish in both cases the
connection between the measured homodyne current and the
atomic motional quantum state.

In the movie mode, the microscope is focused at a given
(fixed) position z0 to “record a movie” of an atomic wave
packet passing through the observation region, which in the
example discussed below will be illustrated by a coherent
state in a harmonic potential V (z). This requires the cavity
response time τC = 1/κ being much smaller than the typical
timescale 1/ω associated with the atomic motion, where ω is
an oscillation frequency, i.e., we are in the bad cavity limit
κ � ω. In this case, as shown in Sec. IV A, the homodyne
current follows the expectation value of the focusing func-
tion 〈fz0 (ẑ)〉c = Tr{fz0 (ẑ)ρ̃c(t )} instantaneously with ρ̃c(t ) the
atomic conditional density matrix,

I (t ) = 2
√

γ
〈
fz0 (ẑ)

〉
c
+ ξ (t ). (6)

Here γ = (4AE/h̄κ )2 is the effective coupling rate for the
measurement with E the amplitude of the driving laser field.
Therefore, the measured homodyne current I (t ) in this mode
directly probes the time evolution of the local atomic density
at z0 with spatial resolution σ . We note that the measurement
backaction is proportional to γ (detailed in Sec. IV A), while
the signal strength is to proportional to

√
γ [see Eq. (6)]. As a

consequence, we can minimize the backaction by taking small
γ and obtain a good signal-to-noise ratio (SNR) by averaging
over repeated runs of the experiment.

In the scanning mode we consider the good cavity limit
κ � ω and perform a slow scan of the focal point z0 ≡ z0(t )
across a spatial region of interest. In this case, the cavity
operates effectively as a low-pass filter for both the measured
photocurrent and the vacuum fluctuations of the electromag-
netic field perturbing the atomic system under observation.
As a result (see Sec. IV B), the homodyne current traces the
atomic dynamics at z0 averaged over many oscillation periods
such that the current is related only to the diagonal part
f̂ (0)

z0
= ∑

n |n〉〈n|fz0 (ẑ)|n〉〈n| of the focusing function in the
basis of the eigenstates |n〉 of the motional Hamiltonian ĤA,E

[Eq. (1)]. The vacuum fluctuations also couple mainly to f̂ (0)
z0

and hence do not interfere with the measurement, thus leading
to a high SNR. The overall effect can be described as emergence
of a new observable f̂ (0)

z0
which commutes with ĤA,E and

therefore represents a QND observable allowing for continuous
quantum measurement without backaction [24–28]. Thus the
microscope in the scanning mode appears as an effective QND
device. Below we show (see Sec. IV B) that a single scan of
the microscope with spatial subwavelength resolution σ will
initially collapse (on a fast timescale ∼1/γ ) the atomic state
to one of the motional eigenstates |n〉. The following (slow)
spatial scan will map out the spatial density of |n〉. The scan of
this spatial density will be reflected in the homodyne current

I (t ) = 2
√

γ 〈n|f̂ (0)
z0(t )|n〉 + ξ (t ). (7)

FIG. 2. Schematics of the quantum optical model for the micro-
scope. It consists of the atomic system which we would like to measure
(described by the Hamiltonian ĤA), the cavity mode which enables
the measurement (described by the Hamiltonian ĤC and coupled to
the atom via the Hamiltonian ĤAC), and external baths (B and B ′).
Bath B is a 1D electromagnetic field (optical fiber), which couples to
the cavity mode and is under continuous homodyne detection. Bath
B ′ is a 3D electromagnetic field, which couples to the atom and gives
rise to the atomic spontaneous emission.

We wish to elaborate briefly on the physics of the emergent
QND measurement. We first note that the spatially localized
focusing function fz0 (ẑ) does not commute with the atomic
motional Hamiltonian ĤA,E and therefore is not an a priori
QND observable. In the good cavity regime, however, the
homodyne current probes only the diagonal part f̂ (0)

z0
of fz0 (ẑ),

which becomes the emergent QND observable. In fact, this is
valid for an arbitrary observable (see Ref. [1]) and was recently
used in a proposal for measuring the number of atoms via a
dispersive coupling to a good cavity [29].

While the discussion in the present paper will focus on
the theory of the quantum scanning microscope for (motion
of) single particles, these concepts generalize to many-body
quantum systems. This was illustrated in [1] (see also Ref. [11]
therein) with the example of Friedel oscillations caused by an
impurity in a Fermi gas.

III. QUANTUM OPTICAL MODEL

In this section we describe the quantum optical model for the
scanning microscope of Sec. II. We will formulate our model
in the language of a quantum stochastic Schrödinger equation
(QSSE) (see, e.g., Chap. 9 in Ref. [5] for an introduction),
which describes the evolution of the joint atom-cavity system
interacting with an external electromagnetic field environment
(Sec. III A). In Sec. III B we take this QSSE as the starting
point to derive the SME for continuous homodyne detection
of the cavity output field (see, e.g., Chap. 20 in Ref. [5] for
an introduction). By further eliminating the atomic internal
degrees of freedom (DOFs), we arrive in Sec. III C at a SME
describing the dynamics of the microscope. Furthermore, we
discuss the engineering of the subwavelength focusing function
and the signal filtering for homodyne detection in Secs. III D
and III E, respectively.

A. Quantum stochastic Schrödinger equation

We consider the quantum optical model of the quantum
scanning microscope as shown schematically in Fig. 2. The
time evolution of the total system is described by the (Itô)
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QSSE [4,5] for the atom-cavity system and the external
electromagnetic field (bath DOFs),

d|�〉 = −
[

i

h̄
ĤS + κ

2
ĉ†ĉ + 1

2
(�t σ̂t t + �eσ̂ee )

]
|�〉 dt

+ √
κĉ dB̂†(t )|�〉 +

∑
n=e,t

j=g,r

∫
du
√

�nPjnNjn(u)σ̂jn

× e−ik0uẑdB̂
†
jn(u, t ) |�〉 . (8)

Here the first line includes the coherent evolution under the
atom-cavity Hamiltonian ĤS , the cavity damping, and the
atomic decay, while the second and third lines represent
the cavity-bath coupling and atomic spontaneous emission
including recoil, respectively. Below we go through each term
of Eq. (8) in detail.

We start with ĤS , which consists of three parts,

ĤS = ĤA + ĤAC + ĤC. (9)

Here ĤA = ĤA,E + ĤA,I is the atomic Hamiltonian, with
ĤA,E describing the external motion of the atom in one
dimension [cf. Eq. (1)] and ĤA,I representing the internal
structure of the atom [see Fig. 1(b)], which in a rotating frame
is given by

ĤA,I = − h̄�t σ̂t t + h̄

2
[�gσ̂ge + �r (z)σ̂re + H.c.]. (10)

Here we have adopted the notation σ̂ij ≡ |i〉〈j |. For simplicity,
we assume a resonant drive on both the |g〉 → |e〉 and |r〉 →
|e〉 transitions and thus exact Raman resonance, while the
transition |r〉 → |t〉 is coupled to the cavity mode with off-
resonant detuning �t = ωC − ωtr , where ωC is the frequency
of the cavity mode. The coupling between the cavity mode and
the atomic transition |r〉 → |t〉 is described by the Hamiltonian

ĤAC = h̄g(ẑ)(ĉ†σ̂rt + H.c.), (11)

where ĉ (ĉ†) is the destruction (creation) operator of the
cavity mode and g(z) is the coupling strength determined by
the spatial profile of the cavity mode. The cavity mode is
resonantly driven by a classical laser beam with amplitude E
(assumed real for simplicity), as described by the Hamiltonian
ĤC in the rotating frame,

ĤC = ih̄
√

κE (ĉ − ĉ†), (12)

with κ the damping rate of the cavity mode.
The cavity is coupled to a waveguide (optical fiber) rep-

resenting the input and output channels of our system. These
external electromagnetic modes are modeled as a 1D bosonic
bath (shown as bath B in Fig. 2) and quantum optics intro-
duces corresponding bosonic noise operators b̂(t ) and b̂†(t ),
satisfying white-noise commutation relations [b̂(t ), b̂†(t ′)] =
δ(t − t ′) [4,5]. In the Itô QSSE (8) these noise operators are
transcribed as Wiener operator noise increments, b̂(t )dt →
dB̂(t ) and b̂†(t )dt → dB̂†(t ). With the incident coherent field
driving the cavity already transformed into the classical field
in Eq. (12), we can assume vacuum inputs and thus have the

Itô table [4,5]

dB̂(t )dB̂†(t ) = dt,

dB̂†(t )dB̂(t ) = dB̂(t )dB̂(t ) = dB̂†(t )dB̂†(t ) = 0. (13)

In this formalism the cavity coupling to the waveguide is now
described by the second line of Eq. (8).1 Apart from such
an explicit cavity-bath coupling term, the inclusion of the 1D
bosonic bath also introduces a cavity damping term −κĉ†ĉ/2
in the first line of Eq. (8). Mathematically, this non-Hermitian
term appears as an Itô correction, when transforming the
Stratonovich QSSE to Itô form [4,5].

The third line of Eq. (8) represents spontaneous emission
of the atom into the 3D background electromagnetic modes
(shown as bath B ′ in Fig. 2), as familiar from the theory of
laser cooling [5]. Here �n (with n = e, t) is the spontaneous-
emission rate of the excited states [see Fig. 1(b)] and Pjn

(with j = g, r) denotes the branching ratio for the emission
channel |n〉 → |j 〉. The function Njn(u) reflects the dipole
emission pattern of channel |n〉 → |j 〉 which, for the 1D
atomic motion considered here, depends on a single variable
u ≡ cos ϕ ∈ [−1, 1], with ϕ the angle between the wave vector
of the emitted photon and the z axis. The spontaneous emission
is accompanied by the momentum recoil to the 1D atomic
motion, which is accounted for by the operator eik0uẑ, with
k0 the wave vector of the emitted photons (for simplicity of
notation assumed to be the same for all the emission channels).
For each emission channel |n〉 → |j 〉 and for each emission
direction u, we introduce the corresponding quantum noise
increment dB̂

†
jn(u, t ) to describe the relevant electromagnetic

modes. Assuming a 3D bath initially in the vacuum state, they
obey the Itô table [5]

dB̂jn(u, t )dB̂
†
j ′n′ (u′, t ) = dtδ(u − u′)δjj ′δnn′ , (14)

with other entries in the Itô table equal to zero. Finally, the
explicit atom-bath coupling term is necessarily accompanied
by the corresponding Itô correction, given by the decay term
−(�t σ̂t t + �eσ̂ee )/2 in the first line of Eq. (8).

Having established the QSSE (8) as the basic dynamical
equation for our model system, we will in the following
section derive the SME for the atom-cavity system. This
SME describes the evolution of the atom-cavity system under
homodyne measurement of the cavity output, conditional to
observing a particular homodyne current trajectory.

B. Stochastic master equation for homodyne measurement

Let us consider homodyne measurement of the output light
of the cavity. In such a measurement, the output light from
the cavity is mixed with a reference laser (a local oscillator),
allowing the measurement of the quadrature dQ̂(t ) of the 1D
electromagnetic field bath [4,5]

dQ̂(t ) = dB̂(t )e−iφ + dB̂†(t )eiφ, (15)

where φ is the phase of the local oscillator. The measurement
will project the state of the bath onto an eigenstate of dQ̂(t )

1The absence of the adjoint term is again due to our assumption√
κĉ†dB̂(t ) |�〉 = 0 of vacuum inputs.
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corresponding to the eigenvalue dq(t ), which defines the ho-
modyne current via dq(t ) ≡ I (t )dt . It can be shown [4,5] that
the measurement outcome dq(t ) obeys a normal distribution
centered at the mean value of the cavity quadrature, i.e.,

dq(t ) ≡ I (t )dt = √
κ〈X̂φ〉cdt + dW (t ), (16)

where X̂φ = eiφĉ† + e−iφ ĉ as defined in Sec. II and dW (t ) is a
random Wiener increment, which is related to the shot noise by
dW (t ) = ξ (t )dt . The expectation value 〈· · · 〉c = Tr(· · ·μc ) is
taken with a conditional density matrix μc of the joint atom-
cavity system.

The evolution of μc is given by a SME derived from
Eq. (8) by projecting out the bath DOFs following standard
procedures [4,5],

dμc = − i

h̄
[ĤS, μc]dt+κD[ĉ]μcdt+√

κH[ĉe−iφ]μcdW (t )

+ �t

∫
duNrt (u)D[e−ik0uẑσ̂rt ]μcdt

− �ePoe

2
{σ̂ee, μc}dt

+ �e

∑
j=g,r

Pje

∫
duNje(u)D[e−ik0uẑσ̂je]μc dt.

(17)

Here D[Ô]ρ ≡ ÔρÔ† − 1
2 Ô†Ôρ − 1

2ρÔ†Ô is the Lindblad
superoperator and H[Ô]ρ ≡ Ôρ − Tr(Ôρ)ρ + H.c. is a su-
peroperator corresponding to homodyne measurement. As can
be seen, the 1D electromagnetic field leads to both a decoher-
ence term and a stochastic term [cf. the first line of Eq. (17)]
to the system evolution, which represent the backaction of
homodyne measurement. In contrast, spontaneous emission
into the 3D electromagnetic field is not continuously monitored
in our model setup and thus leads to pure decoherence, as
captured by the last three lines of Eq. (17).

Incorporating the spontaneous-emission terms in Eq. (17) is
important for a realistic description of an experiment. First, as
is the case in most CQED experiments, we consider the levels
|r〉 and |t〉 to form a closed cycling transition such that |t〉 →
|r〉 is the only dipole-allowed spontaneous-emission channel
for |t〉. Second, in contrast to |t〉, we allow |e〉 to have multiple
spontaneous-decay channels. This includes decays to states
|g〉 and |r〉, with branching ratios Pge and Pre, respectively.
In addition, |e〉 can also spontaneously decay outside the four-
level system, which is modeled as a pure decay term in the third
line of Eq. (17) with branching ratio Poe ≡ 1 − Pge − Pre.

To summarize, the SME (17) and the homodyne cur-
rent (16) provide a complete description of the evolution of the
joint atom-cavity system, subjected to continuous homodyne
measurement of the cavity output in the presence atomic
spontaneous emission. In Eqs. (16) and (17), the atomic DOFs
include both the atom’s external motion and its internal DOFs.
In the next section we will further reduce our equations to a
model where only the cavity mode and atomic external motion
appear, while we adiabatically eliminate the atomic internal
dynamics assuming the atomic system remains in a dark state
[compare Eq. (2)].

C. Adiabatic elimination of the atomic internal dynamics

As mentioned in Sec. II, we are interested in a regime
where (i) the external motion of the atom is much slower
than its internal dynamics, |ĤA,E| � |ĤA,I |, and (ii) the atom
is coupled to the cavity mode dispersively, �t � g(z). In
this regime, according to Eq. (17), we have a hierarchy of
timescales, with the short timescale corresponding to the fast
dynamics of the atomic internal DOFs and the much longer
timescale corresponding to the slow dynamics of cavity mode
plus the atomic external DOFs. This allows us to eliminate the
atomic internal DOFs by an adiabatic assumption.

To be concrete, let us consider the eigenspectrum of ĤA,I

describing the atomic internal dynamics, which is shown in
Fig. 11. As mentioned in Sec. II, it includes a dark state

|D(z)〉 = sin α(z)|g〉 − cos α(z)|r〉 , (18)

with the eigenenergy ED = 0. This state is spectrally well
separated from the other eigenstates, namely, the excited state
|t〉, with the corresponding eigenenergy Et = −h̄�t ; and the
bright states

|±〉 = 1√
2

[± |e〉 + cos α(z)|g〉 + sin α(z)|r〉], (19)

with the corresponding energies E±(z) = ±h̄�(z)/2. Here we
have defined the total Rabi frequency �(z) ≡ [�2

g + �2
r (z)]1/2

and the mixing angle

tan α(z) = �r (z)/�g. (20)

In the absence of ĤAC or ĤA,E , the internal state of the atom
will remain in the dark state |D〉. Thus, the joint atom-cavity
system is described by a product state

μc(t ) = ρc(t ) ⊗ |D〉〈D| , (21)

where ρc(t ) ≡ TrA,I [μc(t )] is the reduced density matrix for
the cavity mode and the atomic external motion, with TrA,I

indicating a trace over the atomic internal DOFs.
Reintroducing ĤAC and ĤA,E couples the dark state |D〉 to

the rest of the atomic internal states. The Hamiltonian ĤAC

couples |D〉 and |t〉 [see Eq. (11)]. The Hamiltonian ĤA,E

couples |D〉 and |±〉, due to the fact that the momentum opera-
tor p̂z in ĤA,E is nondiagonal in this position-dependent dark-
and bright-state basis. Nevertheless, in the weak-coupling limit
|ĤA,E| � h̄�(z) and |ĤAC | � h̄|�t |, the full density matrix
ρc(t ) still preserves the separable form as in Eq. (21), except
that for the atomic internal dynamics the dark state is weakly
mixed with the excited states, which can be calculated in
perturbation theory. The details of this derivation are presented
in Appendix A. The resulting evolution of the reduced density
matrix ρc(t ) reads

dρc = − i

h̄
[ĤA,E + ĤC + Ĥcoup + Vna(ẑ), ρc]dt

+ κD[ĉ]ρcdt + √
κH[ĉe−iφ]ρcdW (t )

+
(

�t

�2
t

L′ + L′′
)

ρcdt. (22)

Correspondingly, the homodyne current is determined accord-
ing to

dq(t ) ≡ I (t )dt = √
κTr(X̂φρc )dt + dW (t ). (23)
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In Eq. (22), Ĥcoup describes the local dispersive coupling
[cf. Eq. (3)] between the atom and the cavity mode,

Ĥcoup = h̄g2(ẑ)

�t

[cos α(ẑ)]2ĉ†ĉ ≡ Afz0 (ẑ)ĉ†ĉ, (24)

and is parameterized in terms of a focusing function fz0 (ẑ) [see
Eq. (3)], which is a dimensionless and normalized function
around z0, and a coupling strength A, with the dimension of
energy. We choose the normalization

∫
dzfz0 (z) = �0, with

�0 being the characteristic length scale of the system under
measurement such that the matrix elements of fz0 (ẑ) taken
over the system states are of order 1. The spatial profile of
fz0 (ẑ) is inherited from the position dependence of the mixing
angle α(z) and can be engineered easily by adjusting the Rabi
frequencies �g and �r (z) of the Raman lasers. In Sec. III D
we will discuss a laser configuration where fz0 (ẑ) is peaked at
z0 with a nanoscale width.

Besides Ĥcoup, Eq. (22) contains several additional terms,
which do not contribute to the homodyne measurement and
thus are imperfections for the evolution of the system. This
includes first of all

Vna(z) = h̄2

2m
(∂zα)2 (25)

as the lowest order nonadiabatic potential for the atomic
external motion [22,23], originating from the spatially varying
internal dark-state structure. As discussed in Sec. III D below,
we can make this term small with a proper choice of the laser
configuration.

Note also that in a driven optical cavity, the atom-cavity
coupling Ĥcoup [Eq. (24)] gives rise to an optical lattice poten-
tial VOL(ẑ) = Afz0 (ẑ)α2

0 for the atom, with α0 = −2E/
√

κ the
amplitude of the stationary cavity field. This potential, how-
ever, can be straightforwardly compensated by introducing a
small detuning �r = g2(z0)α2

0/�t for the |r〉 → |e〉 transition,
resulting in an optical potential Vcomp(ẑ) = −�r [cos α(ẑ)]2 for
the atom, which compensates VOL(ẑ) in the spatial region of
interest.

The Liouvillian (�t /�
2
t )L′ in the last line of (22) describes

the decoherence of the joint atom-cavity system, inherited from
the atomic spontaneous emission in the channel |t〉 → |r〉,
which is used to generate the dispersive atom-cavity coupling.
The detailed expression of L′ is given in Appendix A. Here we
note that, although this decoherence term can be suppressed by
increasing the detuning �t , this will also reduce the dispersive
coupling strength A [cf. Eq. (24)] and therefore the observed
signal. As a consequence, (�t /�

2
t )L′ serves as an intrinsic

decoherence term for our dispersive atom-cavity coupling
scheme and will have important impact on the performance
of the microscope, to be discussed in Sec. IV.

Finally, L′′ in the last line of (22) describes decoherence
due to the coupling between |D〉 and |±〉 resulting from the
motion of the atom, the detailed expression of which is given
in Appendix A. As shown there, L′′ can be made arbitrarily
small by increasing the amplitude of �g and �r (z). We will
neglect L′′ in the following.

To summarize, the SME (22) with internal states being
eliminated and the corresponding expression for the homodyne
current (23) constitute the basic dynamical equations govern-
ing the time evolution of the quantum scanning microscope and

(a) (b)

FIG. 3. Engineering the focusing function fz0 (z), which en-
ables subwavelength detection of the atomic density via Eq. (3).
(a) fz0 (z) ∼ |〈r|D(z)〉|2 (dashed line) is shown together with the
Rabi frequencies for the internal � transition (see Fig. 1), �r (z) =
�c{1 + β − cos[k0(z − z0 )]} (light solid line) and �g = ε�c (dark
solid line), for ε = β/2 = 0.1. Adjusting β and ε enables adjusting
the resolution σ (see the text). (b) Resolution σ , maximal overlap
|〈r|D(z)〉|2

max, and maximal value V max
na of the nonadiabatic potential

Vna (z) (in units of the recoil energy Er ) as a function of β/ε, shown
for ε = 0.1. For β/ε � 1, Vna (z) is strongly suppressed.

provide the basis of our discussion of the microscope operation
in Sec. IV.

D. Engineering the focusing function fz0 ( ẑ)

By eliminating the internal DOFs of the atom, we arrive at a
local dispersive coupling between the atom and the cavity mode
[Eq. (24)], defined via the focusing function fz0 (ẑ). We now
show how to engineer the resolution of the focusing function
down to the deep subwavelength regime and with negligible
nonadiabatic potential.

Let us consider the two Raman laser beams being phase
coherent, with the Rabi frequencies parametrized by

�g = ε�c, �r (z) = �c[1 + β − cos k0(z − z0)], (26)

where �c is a large reference frequency (assumed real and
positive for simplicity) and 0 < ε ∼ β � 1. In practice, �r (z)
can be realized, e.g., by superimposing phase-coherent laser
beams to form the standing wave �c cos k0(z − z0) along the
z axis and another standing wave in an orthogonal direction,
to provide the offset �c(1 + β ), as shown in Fig. 1(d).

The laser configuration (26) completely determines the
focusing function [cf. Eqs. (20) and (24)], which is shown in
Fig 3(a). We define the resolution σ of the focusing function
as its full width at half maximum, which reads

σ

λ0
=

√
2β

π
[
√

2 + (ε/β )2 − 1]1/2, (27)

with λ0 = 2π/k0 the wavelength for the |r〉 → |e〉 transition.
Thus, the resolution can be made subwavelength, by choosing
ε ∼ β � 1.

Moreover, the laser configuration (26) allows for rendering
the nonadiabatic potential Vna(z) negligible [cf. Eq. (25)]. In
the regime of interest ε ∼ β � 1, such a nonadiabatic potential
expanded around the focal point z0 can be calculated with
Eqs. (20) and (25) as

Vna(z) = Er

{
4εk0(z − z0)[

k2
0 (z − z0)2 + 2β

]2 + 4ε2

}2

, (28)
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where Er = h̄2k2
0/2m is the recoil energy of the atom. As

illustrated in Fig. 3(b), Vna(z) decreases rapidly with increasing
the ratio β/ε. Physically, decreasing ε/β reduces the overlap
between the dark state and the state |r〉, |〈r|D(z)〉|2

max = (1 +
β2/ε2)−1, such that the dark state varies more slowly in space,
thus suppressing the corresponding nonadiabatic potential.

In fact, in the considered limit σ � λ0, one can make both σ

andVna(z) arbitrarily small by choosing appropriate values ofβ
and ε/β which scale as β ∼ (σk0)2 and ε/β ∼ σk0

√
V max

na /Er ,
where V max

na = maxz{Vna(z)} is the maximal value of the nona-
diabatic potential Vna(z). As a consequence, (i) the microscope
resolution is unlimited at the level of the focusing function
engineering and (ii) the nonadiabatic potential Vna(ẑ) can be
neglected in the SME (22) hereafter. However, with decreasing
ε/β one also reduces the signal strength in the photocurrent
which is proportional to the population of the |r〉 state such that
a longer measurement time is required to distinguish it from
the shot noise. The long measurement time in turn increases the
role of spontaneous-emission processes which ultimately limit
the microscope resolution, as discussed below in Sec. IV B 4.

We comment that, although we have focused here on a
standing-wave implementation of the focusing function, there
exist alternative designs of the laser profiles for dark-state
microscopy, e.g., exploiting optical vortices created by holo-
graphic techniques or by Laguerre-Gaussian beams [15,20].

E. Filtered homodyne current and the SNR

In this section we discuss the signal filtering for homodyne
detection and thus define the SNR, which will serve as a key
figure of merit to quantify the performance of the microscope
below.

The homodyne current [see e.g., Eq. (5) or (23)] is noisy, as
it contains the (white) shot noise corresponding to the Wiener
increment dW (t ), inherited from the vacuum fluctuation of
the electromagnetic bath. The shot noise can be suppressed by
filtering the homodyne current with a linear low-pass filter,

Iτ (t ) =
∫

dt ′hτ (t − t ′)I (t ′). (29)

Here Iτ (t ) is the filtered homodyne current, while hτ (t ) is the
filter function with a frequency bandwidth characterized by
1/τ . The filter passes the low-frequency components of the
homodyne current including the conditional expectation value√

κ〈X̂φ〉c and attenuates the high-frequency component of the
shot noise, reducing its variance to ∼1/τ . With diminished shot
noise, the filtered homodyne current allows us to directly read
out the signal which, as will be discussed in detail in Sec. IV,
maps out the spatial density of the atomic system.

The quality of the filtered homodyne current is reflected by
its SNR, i.e., the relative power between the signal and the
noise, defined as

SNR(t ) = 〈Iτ (t )〉2
st〈

I2
τ (t )

〉
st − 〈Iτ (t )〉2

st

, (30)

where 〈· · · 〉st denotes statistical averaging over all measure-
ment runs. We note that on the right-hand side (RHS) of
Eq. (30) the total noise variance (in the denominator) includes
not only the filtered shot noise, but also the noise inherited
from the fluctuating signal

√
κ〈X̂φ〉c [cf. Eqs. (5) and (29)].

This noise component is a manifestation of the measurement
backaction.

Both the filtered homodyne current Iτ (t ) and its SNR
depend on the choice of the filter function hτ (t ), in particular
its inverse bandwidth τ . On the one hand, τ should be chosen
as large as possible, to suppress the shot noise thus to enhance
the SNR; on the other hand, τ should be kept small enough
for the signal to pass through. The optimal τ will depend on
the systems under observation and the operation modes of the
microscope. This will be discussed in detail in Sec. IV. In
contrast to the bandwidth, the exact shape of hτ (t ) has much
smaller impact on both the filtered homodyne current and its
SNR, and a simple filter suffices to illustrate the main features
of the measured quantity. In this paper we adopt the filter

h(t ) =
{
τ−1e−t/τ , t � 0
0, t < 0.

(31)

Besides its simplicity, it has the additional benefit that the
corresponding SNR (30) can be calculated efficiently with a
numerical method as detailed in Appendix B.

F. Summary of the model

The key result of the present section is the SME (22)
describing the dynamics of the quantum scanning microscope,
together with the corresponding homodyne current (i.e., the
measurement signal) (23). Altogether, they allow us to study
the various operation modes of the microscope and examine
its performance in the presence of the atomic spontaneous
emission, to be detailed in Sec. IV.

IV. MICROSCOPE OPERATION

With the quantum optical model at hand, we discuss below
in detail the operation of the microscope. The microscope
is characterized by three parameters: the spatial resolution
σ � λ0, the temporal resolution τc = 1/κ , with κ the cavity
linewidth, and the dispersive atom-cavity coupling A control-
ling the measurement strength [see Eq. (24)]. As we will show,
the bad (good) cavity limit, defined as the cavity linewidth
κ being much larger (smaller) than the frequency scale of
atomic motion, corresponds to two operating modes of the
microscope, which we call the movie mode and scanning mode,
respectively. These operation modes feature distinct effective
observables of the atomic system, thus providing different
strategies for measuring the atomic density, with different
applications.

In the following we explore these operating modes, by
analyzing the observables being measured, and the corre-
sponding measurement backaction. We illustrate these features
via numerical simulation of the measurement for a simple
example system, an atom moving in a harmonic oscillator
(HO) potential V (z) = mω2z2/2, with the atomic mass m, trap
frequency ω, and motional eigenstates |n〉, n = 0, 1, 2 . . . . For
this system, the movie mode (scanning mode) is defined by
κ � ω (κ � ω). Further, to resolve the spatial density distribu-
tions, we require a spatial resolution better than the length scale
�0 ≡ √

h̄/mω set by the HO ground state, σ � �0. We include
in this discussion decoherence due to spontaneous emission
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as imperfection, aiming at providing a direct reference for
experimental implementations of the microscope.

A. Bad cavity limit: Movie mode of the microscope

In the bad cavity limit the cavity dynamics is much faster
than the atomic motion such that the former instantaneously
follows the latter. Such a timescale separation allows us to
adiabatically eliminate the cavity mode in Eqs. (22) and (23),
resulting in an equation for the atomic density matrix ρ̃c ≡
TrC (ρc ) alone, where TrC indicates a trace over the cavity
mode. Carrying out this elimination (see Appendix C) results
in the expression for the homodyne current [see also Eq. (6)]

dq(t ) ≡ I (t )dt = 2
√

γ
〈
fz0 (ẑ)

〉
c
dt + dW (t ), (32)

i.e. the homodyne current directly reflects the expectation value
of the focusing function fz0 (ẑ). In Eq. (32)

γ =
(

4AE
h̄κ

)2

≈
(

4EC σ

�0

�t

�t

|〈r|D(z)〉|2
max

)2

(33)

is the measurement rate with C = g2(z0)/κ�t the cavity co-
operativity, and we have chosen the homodyne angle as φ =
−π/2 to maximize the homodyne current (see Appendix C).
Correspondingly, the evolution of the atomic system is given
by

dρ̃c = − i

h̄
[ĤA,E, ρ̃c] dt + γD

[
fz0 (ẑ)

]
ρ̃c dt

+ √
γH

[
fz0 (ẑ)

]
ρ̃c dW (t ) + γ

4CLspρ̃c dt. (34)

Here the first term on the RHS describes the coherent evolution
of the atom according to its motional Hamiltonian ĤA,E ,
while the second and the third terms describe the backaction
resulting from continuous measurement of fz0 (ẑ). The last term
corresponds to decoherence of the motional density matrix of
the atom due to spontaneous emission,

Lspρ̃c = D
[
fz0 (ẑ)

]
ρ̃c + PreD

[
fz0 (ẑ) sin α̂z0

]
ρ̃c

+PgeD
[
fz0 (ẑ) tan α̂z0 sin α̂z0

]
ρ̃c − 1

2

{
f 2

z0
(ẑ)
[

tan2 α̂z0

× (
1 − Pge sin2 α̂z0

)− Pre sin2 α̂z0

]
, ρ̃c

}
, (35)

which will be analyzed in detail in Sec. IV A 2.
Equations (32) and (34) provide a complete description of

the quantum evolution of the atom subjected to continuous
measurement in the movie mode of the microscope. In the
following we study the measurement and its backaction as well
as effects of spontaneous emission, which we illustrate with the
example of monitoring wave-packet dynamics in a harmonic
oscillator potential.

1. Observable and the measurement backaction

The observable in the movie mode is the focusing function
fz0 (ẑ) [cf. Eq. (32)], which provides information of the local
atomic density with a resolution σ [cf. Eq. (27)], where in the
limit σ → 0, fz0 (ẑ) ∼ δ(ẑ − z0) = |z0〉〈z0|. Given that fz0 (ẑ)
does not commute with the Hamiltonian of the atomic system,
[ĤA,E, fz0 (ẑ)] �= 0, the movie mode is obviously not QND,
i.e., measurement backaction competes with the coherent
dynamics generated by ĤA,E .

−4 4z/ 0
−4

0

4

p
z
/
p
0 z

−0.2

(a)

−4 4z/ 0

−0.05

(b)

−4 4z/ 0

−0.1

(c)

0

0.2

0

0.05

0

0.1

FIG. 4. Visualization of the effect of the measurement backaction
in the movie mode of the microscope, via the Wigner function of
(a) ρ̃c = |0〉 〈0|, (b) D[fz0 (ẑ)]ρ̃c, and (c) H[fz0 (ẑ)]ρ̃c, for an atom
in a HO potential. The focal region is shown as the dashed area in
(a), with focal point z0 = 0 and resolution σ = 0.5�0, where �0 ≡√

h̄/mω is the HO length scale. Comparing (a) and (b), we see that the
decoherence term D[fz0 (ẑ)]ρ̃th increases the momentum fluctuation
of the atom. Comparing (a) and (c), we find that H[fz0 (ẑ)]ρ̃th induces
a redistribution of the population between the focal region and the
outside (see the text).

The measurement backaction is represented by terms
D[fz0 (ẑ)]ρ̃c and H[fz0 (ẑ)]ρ̃c in Eq. (34). To visualize the
action of these terms, we plot in Fig. 4 the corresponding
Wigner functions in phase space, where we take the ground
motional state ρ̃c = |0〉〈0| of the atom in the HO potential as
the reference state [with the Wigner function plotted in Fig. 4
(a)]. As can be seen in Figs. 4(b) and 4(c), respectively, the
decoherence term D[fz0 (ẑ)] induces momentum diffusion of
the atom, while the homodyne term H[fz0 (ẑ)] continuously
projects the atomic state inside and outside the focal region,
by stimulating population flow between these two regions.
Both terms elongate the Wigner function of the atom along
pz, manifesting the enhanced momentum fluctuation due to
the measurement.

To visualize the competition between the measurement
backaction and the Hamiltonian, we show in Fig. 5, for
different times, the Wigner function of an atom in a coherent
state evolving according to Eq. (34) and averaged over all
measurement outcomes (i.e., as a solution of the quantum

z/ 0
−8

0

8

p
z
/
p
0 z

t1

−8 8

ω

z/ 0

t2

−8 8 z/ 0

−0.02

t3

−8 8

0

0.02

FIG. 5. Dynamics of the measurement in the movie mode of
the microscope. We show the Wigner function of a coherent state
|α〉, evolving in time according to Eq. (34), and average over all
measurement outcomes to yield a deterministic evolution. At t1 =
0.1Tosc (Tosc ≡ 2π/ω) the coherent state has not yet entered the focal
region (shown as the gray area) and remains an equal distribution of
position and momentum uncertainty. At t2 = 0.25Tosc, as the coherent
state crosses into the focal region (centered at z0 = 0), the distribution
begins to spread out along the pz axis. At t3 = 0.5Tosc, the increased
uncertainty is fed into the z axis, increasing the fluctuation of the
measured homodyne current (see the text). The parameters are chosen
as α = 2, σ = 0.5�0, and γ = 4ω.
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master equation), where for simplicity we set Lsp = 0 in
Eq. (34). As the atom passes through the focal region (here
fixed at z0 = 0), its momentum fluctuation is increased due
to the measurement backaction, causing its Wigner function to
spread out along the pz axis (cf. Fig. 5 at time t2). At later times,
the Wigner function, now including the spread in momentum,
continues to rotate with frequency ω, thus leading to extra
fluctuation along z (cf. Fig. 5 at time t3). The pattern appearing
near the focal region in Figs. 5(b) and 5(c) results from the
coherent interference between the transmitted component and
the reflected component of the atomic wave packet when
crossing the dissipative barrier in the focal region.

2. Decoherence due to spontaneous emission

Spontaneous emission induces extra decoherence in atomic
motion, captured by Eq. (35). This term is derived from L′ of
Eq. (22) [given in Eq. (A23)]. The first three terms of Eq. (35)
describe the momentum diffusion of the atomic wave packet
in the focal region during the excitation–spontaneous-emission
cycle involving the states |t〉 and |r〉. The last term of Eq. (35)
describes the gradual loss of atoms due to the decay from the
bright states |±〉 to levels lying outside the four-level system
under consideration (see Fig. 11), which makes atoms invisible
to the microscope. Altogether, these decoherence processes are
strongly suppressed for cavities with high cooperativity, since
their rate is given by γ /4C [cf. Eq. (34)].

To quantitatively understand the role of these extra decoher-
ence processes, below we perform numerical simulation of the
evolution of the atomic system subjected to continuous mea-
surement and spontaneous emission, where the measurement
rate γ and cooperativity C are chosen according to realistic
experimental parameters (given in Sec. V). The simulations
confirm that the atomic spontaneous emission introduces
negligible detriment to the performance of the microscope for
C � 1, which can be achieved in state-of-the-art cavity QED
experiments [27].

3. Application: Monitoring wave-packet oscillations

We demonstrate the movie mode of the microscope, as
monitoring the oscillation of an atomic wave packet released
in a HO potential. As shown below, the bad cavity condition
κ � ω provides the time resolution to take a movie of time-
dependent density distributions. This is accompanied, due to
the non-QND nature of the measurement, by the competition
between Hamiltonian dynamics and measurement backaction
and as a consequence by limitations due to achievable SNR in
a single measurement run.

We initialize the atom in a coherent state |α〉 and monitor
its subsequent oscillations by focusing the microscope at the
trap center z0 = 0. Without coupling to the microscope, the
atomic wave packet will pass through the trap center with
a velocity v = √

2�0|α|ω at times t = 1/4Tosc, 3/4Tosc, . . .,
where Tosc ≡ 2π/ω is the oscillation period. Once coupled to
the microscope, the atom will evolve according to Eq. (34),
characterized by a competition between free oscillation and
measurement backaction. Such a competition is necessarily
reflected in the measurement records of the microscope. To
show this, in Fig. 6(a) we plot, for different measurement
strengths γ , the ensemble-averaged homodyne current 〈I (t )〉st ,

(a) (b)

(c) (d)
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FIG. 6. Monitoring wave-packet oscillations in the movie mode
of the microscope. (a) Statistically averaged homodyne current
〈I (t )〉st over the oscillation period Tosc ≡ 2π/ω with increasing mea-
surement rate γ = 1, 2, 4ω (light to dark) and without spontaneous
emission (corresponding to C = ∞). The dashed line indicates the
ideal transit signal with no measurement backaction (arbitrary unit).
(b) 〈I (t )〉st for γ = 2ω, and C = 3, 10, ∞ (light to dark). Lower
C corresponds effectively to stronger spontaneous emission, which
degrades the homodyne current. (c) Decay of the dark-state population
due to spontaneous emission, with the same parameters as in (b).
(d) SNR at the first peak (t = 0.25Tosc) for a single measurement run,
as a function of γ τ , with τ the filter integration time (see the text),
for C = 3, 10, ∞ (light to dark).

with I (t ) given by Eq. (32) and 〈· · · 〉st standing for statistical
average. As can be seen clearly, 〈I (t )〉st represents faithfully
the shape of the atomic wave packet passing through the
focusing region and reflects the measurement backaction as
a successive distortion of the signal with time, which becomes
more significant with increasing γ . The impact of atomic
spontaneous emission is illustrated in Fig. 6(b), where we plot
〈I (t )〉st for different strengths of spontaneous emission γ /4C at
a fixed measurement strength γ . As shown there, spontaneous
emission diminishes the measured homodyne current: The
smaller the C, the weaker the homodyne current. This is a
direct consequence of the gradual depletion of the population
in the internal dark state due to spontaneous emission, shown
in Fig. 6(c).

The fact that the measurement backaction competes with the
Hamiltonian evolution provides a limitation on the achievable
SNR of the filtered homodyne current in a single measurement
run. To illustrate this, we plot in Fig. 6(d) the SNR of a
single measurement run against the dimensionless measure-
ment strength γ τ , where τ is the filter integration time (cf.
Sec. III E). We choose an optimal τ defined via τ = σ/v, with
σ the microscope resolution and v the group velocity of the
atomic wave packet at z = 0. It allows the signal (which has a
bandwidth ∼v/σ due to the finite resolution σ of the focusing
function) to pass through while filtering out the shot noise
with frequencies outside the defined bandwidth. In Fig. 6(d),
at small measurement strength γ , the SNR grows with γ ,
due to the enhancement of the signal relative to the shot
noise. At large γ , SNR eventually drops down because of the
strong measurement backaction. The appearance of such an
upper bound of the SNR in a single measurement run is a
general feature of non-QND measurements [30]. Figure 6(d)
also includes the effect of the atomic spontaneous emission.
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As expected, spontaneous emission reduces the SNR further,
since it diminishes the measured signal [cf. Fig. 6(b)].

B. Good cavity limit: Scanning mode of the microscope

We now consider the good cavity limit κ � ω where, as
mentioned in Sec. II, the cavity effectively filters out the fast
dynamics of the atomic system. This can be seen by trans-
forming the SME (22) to an interaction picture with respect to
ĤA,E , the motional Hamiltonian of the atom. In this picture the
focusing function fz0 (ẑ) becomes time dependent and can be
expanded as

∑
� f̂ (�)

z0
e−i�ωt , with the �th sideband component

f̂ (�)
z0

≡ ∑
n fn,n+�|n〉〈n + �| and fmn ≡ 〈m|fz0 (ẑ)|n〉. Due to

the narrow cavity linewidth κ � ω, the cavity will effectively
enhance the light coupling to the zero-frequency component
f̂ (0)

z0
by averaging out the rest of f̂ (�)

z0
with � �= 0. Consequently,

only f̂ (0)
z0

is reflected in the homodyne current. As will be
detailed in Sec. IV B 1, the operator f̂ (0)

z0
serves as an emergent

QND (eQND) observable of the atomic density, which allows
for mapping out the spatial density of energy eigenstates of the
atom in a single measurement run with a high SNR.

In the good cavity limit, we can again eliminate the
cavity mode to obtain equations of motion for the atomic
system alone, the detailed derivation of which is presented in
Appendix C. Summarizing the results, the expression for the
homodyne current is given by [see also Eq. (7)]

dq(t ) = I (t )dt = 2
√

γ
〈
f̂ (0)

z0

〉
c
dt + dW (t ). (36)

We see, as mentioned above, the homodyne current following
the expectation value of the eQND variable f̂ (0)

z0
. Correspond-

ingly, the evolution of the atomic system becomes

dρ̃c = − i

h̄
[ĤA,E, ρ̃c] dt +

∑
� �=0

γ

1 + (2ω�/κ )2
D
[
f̂ (�)

z0

]
ρ̃c dt

+ γD
[
f̂ (0)

z0

]
ρ̃c dt + √

γH
[
f̂ (0)

z0

]
ρ̃c dW (t )

+ γ

4CLspρ̃cdt. (37)

Here γ is the measurement strength defined by Eq. (33) andLsp

describes the extra decoherence introduced by atomic sponta-
neous emission [cf. Eq. (35)]. In Eq. (37), the superoperator
for homodyne measurement contains only f̂ (0)

z0
, while higher

sideband components f̂ (�)
z0

with � �= 0 only induce decoherence
captured by the Lindblad operators D[f̂ (�)

z0
], with a diminished

rate γ [1 + (2ω�/κ )2]−1 → 0 as suppressed by the cavity in
the limit κ/ω → 0. This fact causes distinct measurement
backaction to the atomic system compared to the bad cavity
limit in Sec. IV A, as will be discussed in detail below.

1. Emergent QND measurement of atomic density

In Ref. [1] we introduced the concept of eQND measure-
ment, applicable to an arbitrary observable Ôwhich, in general,
does not necessarily commute with the Hamiltonian of the
system. We define for Ô a corresponding emergent QND
observable as

ÔeQND ≡
∑

n

|n〉〈n| Ô |n〉〈n| , (38)

FIG. 7. The eQND observable f̂ (0)
z0

in the scanning mode of the
microscope. We show the Wigner function of f̂ (0)

z0
for three different

focal points (a) z0 = 0, (b) z0 = �0, and (c) z0 = 2�0, with �0 the
HO length scale. In (b) and (c), the Wigner function manifests as a
doughnut centered on the origin, of radius z0 and of width σ . The
resolution σ = 0.5�0.

with |n〉 energy eigenstates. Measurement of ÔeQND provides
the same information as of Ô for the energy eigenstates, but in
a nondestructive way.

Following this definition, we immediately see that f̂ (0)
z0

is
the eQND observable corresponding to f̂z0 (ẑ). In particular, in
the limit σ → 0, we have fz0 (ẑ) ∼ |z0〉〈z0| such that f̂ (0)

z0
∼∑

n |〈n|z0〉|2 |n〉〈n| directly provides the spatial density of
energy eigenstates at the focal point z0. Since [f̂ (0)

z0
, ĤA,E] = 0,

this measurement is nondestructive.
To gain an intuition of the backaction associated with this

eQND measurement, in Fig. 7 we plot the Wigner function of
f̂ (0)

z0
, which shows a symmetric distribution around the phase-

space center with a finite spread ∼σ . As such, continuous
measurement of f̂ (0)

z0
does not lead to momentum diffusion.

Rather, as in the familiar QND measurement [24–28], it
reduces the coherence between different energy eigenstates
and selects out a particular energy eigenstate. This is illustrated
in Fig. 8, where we show the effect of the homodyne term
H[fz0 (ẑ)] acting on a thermal state of the atom in a HO
potential, which induces redistribution of the population of
motional eigenstates. Moreover, depending on the focal point
z0, the measurement backaction mainly changes the popu-
lation of a particular eigenstate |n〉 with the largest matrix
element 〈n|fz0 (ẑ)|n〉. This can be clearly seen by comparing
Figs. 8(a)–8(c).

The eQND measurement shares the same merit as the
standard QND measurement [30]: Once the atomic state is
projected onto an energy eigenstate, the only noise source in

(a) (b) (c)

FIG. 8. Measurement backaction in the scanning mode of the
microscope. We choose σ = 0.5�0 and plot the Wigner function of
H[fz0 (ẑ)]ρ̃th for a thermal state ρ̃th = ∑

n pn |n〉 〈n| of a HO, with
pn ∝ e−n/nth and nth = 1, for focal points (a) z0 = 0, (b) z0 = �0, and
(c) z0 = 2�0. The Wigner function shows a density flow in the phase
space, corresponding to a redistribution of the population of the energy
eigenstates (see the text).
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the measured homodyne current is the photon shot noise, which
can be made arbitrarily small by increasing the measurement
strength γ (or, equivalently, the measurement time). The
extra decoherence terms in Eq. (37) introduce slight imper-
fections to this ideal scenario. These include D[f̂ �

z0
], � �= 0,

which describes incoherent quantum jumps between energy
eigenstates, and the spontaneous-decay term Lsp qualitatively
analyzed in Sec. IV A 2. The presence of these imperfections
introduces extra noise to the homodyne current, thus reducing
its SNR. Nevertheless, the features of the eQND measurement,
in particular the ability to map out the spatial density of energy
eigenstates with a high SNR in a single measurement run, is
robust against these imperfections, as we show below.

2. Stochastic rate equation

To provide a physical interpretation for the dynamics of
eQND measurement and the impact of imperfections, let
us expand Eq. (37) in the energy eigenbases and obtain a
(nonlinear) stochastic rate equation (SRE) for the eigenstate
populations pn ≡ 〈n|ρ̃c|n〉:

dpn =
∑
� �=0

A�
n(pn+� − pn)dt − Bnpn dt

+ 2
√

γpn

(
fnn −

∑
m

fmmpm

)
dW (t ). (39)

Here we have defined the rates

A�
n ≡

[
γ

1 + (2�ω/κ )2
+ γ

4C

]
|fn,n+�|2, (40)

Bn ≡ γ

4C 〈n| f 2
z0

(ẑ)

[
�r (ẑ)

�g

]2

|n〉 (41)

and have dropped small terms proportional to Pre (ge) as well
as the fast-rotating terms in Lsp.

The effect of the measurement is captured by the stochastic
term in the second line of Eq. (39). It describes the collapse of
the motional density matrix of the atom to a particular energy
eigenstate ρ̃c(t ) → |n〉〈n| within a collapse time Tcoll ∼ 1/γ .
The impact of higher sideband transitions and the atomic
spontaneous emission is contained in the first line of Eq. (39).
Here the first term describes redistribution of the population
between the energy eigenstates, which preserves the total
population

∑
n pn. In the limit of κ/ω � 1 and C � 1 this

process happens on a much longer timescale, the dwell time
Tdwell ∼ [γ /4C + γ (κ/2ω)2]−1 � Tcoll. The second term de-
scribes the decay of the population of the motional eigenstates
due to spontaneous emission. It also happens on a much longer
timescale Tsp ∼ γ /4C � Tcoll.

As a result, the evolution of the atomic system correspond-
ing to Eq. (39) consists of a rapid collapse to an energy
eigenstate |n〉, followed by a sequence of rare quantum jumps
between the energy eigenstates on the timescale Tdwell or loss
of the atom on the timescale Tsp. Such a timescale separation
allows us to define a time window Tcoll � T � Tdwell, Tsp,
during which the information of the energy eigenstates can
be extracted backaction-free. This enables the scanning mode
of the microscope, as discussed in the following.

3. Application: Preparing and scanning motional eigenstates

The scanning mode operates by moving the focal point z0(t )
across the atomic system, −L/2 < z0(t ) < L/2, during a time
T satisfying Tcoll � T � Tdwell, Tsp. By starting the scan, the
motional state of the atom will first collapse to a particular
energy eigenstate |n〉 (note that this stage can be viewed as
state preparation), with the subsequent scan reading out the
spatial density profile 〈n|f̂ (0)

z0
|n〉 = ∫

dz fz0 (z)|〈z|n〉|2, until
the atom jumps to another energy eigenstates or gets lost due
to spontaneous decay.

As an illustration, we consider the scan of an atom trapped
in a HO potential. To this end, we choose ω/κ = 10 and
assume that the atom is prepared at t = 0 in a thermal motional
state of the HO potential ρ̃(0) = ρ̃th = ∑

n pn |n〉〈n|, with
pn ∝ e−n/nth and nth = 1. In our illustration, we perform three
consecutive spatial scans covering −L/2 < z0(t ) < L/2 (L =
8�0), each for a time interval T (γ T = 1000). In Fig. 9(a) we
show the resulting homodyne current and the corresponding
population of the energy eigenstates in a single run, based on
integrating the SRE (39). In filtering the homodyne current, we
choose the optimal filter time τ = σ/v, with σ the microscope
resolution and v = L/T the scanning speed. As can be seen
in Fig. 9(a), in scan 1 the microscope prepares the atom in a
particular energy eigenstate (here the first excited state |1〉) in
a random way according to the initial-state distribution. The
atom stays in |1〉 in scan 2, allowing for a faithful readout of
its spatial density through the detected homodyne current. In
scan 3 the atom stays in |1〉 until it suddenly gets lost due to
spontaneous decay out of its internal dark state, manifesting
in the homodyne current as a sudden jump to zero. Such
a loss event is fast (on a timescale ∼Tcoll) but rare (on a
timescale ∼Tsp after the beginning of scan). In Fig. 9(b) we
show another simulation of Eq. (39) representing another
independent measurement run. In this run the microscope
prepares the atom in the motional ground state |0〉 in scan 1 and
subsequently reveals its spatial density in scan 2. However, in
scan 3 of Fig. 9(b), the atom first stays in |0〉 and then instead
of disappearing suddenly jumps to the second excited state |2〉,
with the homodyne current starting tracing the density profile
of |2〉. Such a quantum jump is induced by the higher sideband
transition terms D[f̂ �

z0
], � �= 0. It is fast (on a timescale ∼Tcoll)

but rare (∼Tdwell between adjacent jumps).
To quantify the performance of the scanning microscope in

the presence of imperfections, we plot in Fig. 9(c) the SNR of
a single scan of a motional eigenstate of the atom as a function
of the (dimensionless) measurement strength γ T for different
ω/κ and different cooperativity C. The solid curves reflects
the effect of higher sideband transitions D[f̂ �

z0
] in Eq. (37),

with Lsp = 0. As can be seen, for small γ the SNR increases
with γ linearly (i.e., in a QND fashion). For large γ , however,
the SNR deviates from linear increase due to these higher
sidebands transitions. By increasing ω/κ we greatly suppress
these processes, rendering them into rarer quantum jumps, thus
improving the SNR. The effect of atomic spontaneous decay
is shown as the dashed curves in Fig. 9(c), where we plot the
behavior of the SNR for different C while keeping ω/κ fixed.
As expected, spontaneous decay degrades the achievable SNR,
as it brings the atomic population out of the dark state. This
effect is however strongly suppressed for large C.
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FIG. 9. Single-run scans in the scanning mode of the microscope. (a) and (b) Simulation of two independent measurement runs for an atom
initialized in a thermal state of a HO with nth = 1 (see the text). Each measurement run consists of three consecutive scans, where the focal point
is moved across the atomic system in a time T . The conditional populations pn(t ) (n = 0, 1, 2) of the energy eigenstates (top panel) and the
filtered homodyne current Iτ (t ) (middle panel) are shown together with the spatial density inferred from the trap populations (bottom panel).
The eQND measurement prepares the atom in a trap eigenstate [|1〉 in (a) and |0〉 in (b)] at a time labeled by t1 in the first scan t ∈ [0, T ], and
Iτ (t ) traces the corresponding density faithfully in the second scan t ∈ [T , 2T ]. In (a), the atom is lost at a time t2 ∈ [2T , 3T ] due to spontaneous
decay, whereas in (b), the atom jumps to the trap state |2〉 at t2 ∈ [2T , 3T ]. The parameters are γ T = 1000, C = 200, and σ = 0.5�0. (c) SNR
vs γ T for a single scan of an atom initialized in the eigenstate |1〉 of the HO, compared to an ideal QND measurement (42) (dotted straight
line), for σ = 0.5�0. The SNR is taken at z0(t ) = −�0 (theoretical maximum). Solid curves show ω/κ = 10, 4, 1, 0.1 (dark to light), assuming
no spontaneous emission (i.e., C = ∞). Dashed curves show C = 1000, 200, 100 (dark to light) and ω/κ = 10. (d) For an atom initialized in
|1〉, we plot its final population in |1〉 after completing a single scan, averaged over all measurement outcomes. We choose γ T = 1000 and
σ = 0.5�0. Increasing ω/κ and improving C greatly suppresses the population depletion.

As another indicator of the microscope performance, we
plot in Fig. 9(d) the remaining population of an initially
populated motional eigenstate after completing a single scan,
averaged over all measurement runs. As can be seen, in the
regime κ � ω and C � 1, the population remains around 1,
indicating a nearly ideal eQND measurement.

To summarize, Fig. 9 demonstrates that by taking a good
cavity κ � ω and choosing sufficiently large cooperativity
C � 1 to suppress the atomic spontaneous emission, the
scanning mode of the microscope is able to map out the spatial
density of energy eigenstates with a high SNR in a single scan
as an eQND measurement.

4. Resolution limit of the microscope

As it was already mentioned in Sec. III D, the spatial
resolution of the microscope is limited by the spontaneous-
decay processes leading to the loss of an atom. In this section
we estimate analytically and evaluate numerically the effect of
the spontaneous emission on the SNR in the scanning mode,
as a function of the resolution σ .

In the limit of high spatial resolution σ � �0, with �0

being the characteristic length of the atomic wave function,
the focusing function fz0 (z) has the form of a narrow peak
with the height ∼�0/σ and the width ∼σ around z0. After
assuming that the system during the scan has already collapsed
to an eigenstate |n〉 and averaging the photocurrent in Eq. (36)
over the time window τ = T σ/L, we obtain an estimate for
the SNR limited by the shot noise

SNR(z0, T ) � 4γ T
σ

L
|ψ̃n(z0/�0)|4, (42)

where we define the dimensionless wave function ψ̃n(z0/�0) =√
�0 〈n|z0〉. The linear dependence of the SNR on the total scan

time T is shown as a dotted line in Fig. 9(c). However, for long
enough T , the decoherence processes become important and
result in the deviation from the linear dependence. In the limit
σ � �0, the corresponding timescale is defined by the Bn terms
in Eq. (39), which, following Eq. (41), can be estimated as

Bn(z0) ∼ γ

C
Er

V max
na

�0

k2
0σ

3
|ψ̃n(z0/�0)|2.

The terms A�
n can be neglected because the matrix elements

|fnm| are of order 1 for any σ and therefore A�
n � Bn for σ �

�0 and ω/κ � 1. As a result, for the total scan over the distance
L during the time T , the atom loss probability reads

B̃nT ∼ γ T

C
Er

V max
na

1

k2
0σ

3

l2
0

L
, (43)

where B̃n = L−1
∫

Bn(z0)dz0 is the spatial average. For
B̃nT � 1, the atom loss can be neglected and the SNR grows
linearly with T following Eq. (42). For longer T , however, the
atom can eventually be lost with the result that the average
photocurrent drops to zero, which we regard as a noise.
Therefore, after taking the effect of the atomic spontaneous
decay into account, the SNR can be written as

SNR(z0, T ) � 4γ T σ
L
|ψ̃n(z0/�0)|4

1 + 4γ T σ
L
|ψ̃n(z0/�0)|4B̃nT

, (44)

which is in a good agreement with the dashed lines in Fig. 9(c)
that represent the direct numerical simulations of Eq. (39).

By evaluating the SNR at the maximum of the wave function
and optimizing it over the measurement time T in Eq. (44), we
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FIG. 10. Resolution limit of the microscope. The relation between
the cavity cooperativity C, the spatial resolution σ (in units of the HO
length �0 ≡ √

h̄/mω), and the maximally achievable SNR for a single
scan of an atom initialized in |1〉 of a HO potential (SNR is calculated
for the maximum of the wave function at z0(t ) = −�0 and optimized
over γ T ) is shown. The parameters are ω/κ = 10 and V max

na = 0.1h̄ω.
The dashed line shows the scaling σ/�0 ∼ C−1/4 according to Eq. (45)
for a fixed SNR.

obtain a universal expression(
σ

λ0

)
min

∼
(

SNR2

C
Er

V max
na

�2
0

λ2
0

)1/4

(45)

for the resolution limit of the microscope. The corre-
sponding optimal measurement time is given by γ T ∼
k0σ (L/�0)

√
C V max

na /Er . It follows from Eq. (45) that the
spatial resolution is limited by the cavity cooperativity C and
by the chosen SNR (of a single measurement run). Improving
the resolution leads to reducing the SNR, which, however,
can be compensated by increasing the cavity cooperativity
C to suppress the atomic spontaneous emission. Figure 10
shows the relation between the maximally achievable SNR, the
spatial resolution, and the cavity cooperativity, calculated from
numerical simulation of Eq. (39) for the case of the harmonic
oscillator, which is in good agreement with the scaling behavior
predicted by Eq. (45).

V. EXPERIMENTAL FEASIBILITY

We now address the experimental feasibility of the quantum
scanning microscope. As we will show below, the present state-
of-the-art experiments provide all the necessary ingredients for
realization of the microscope itself and both operation modes.

First of all, the proposed setup for quantum scanning
microscope requires trapping of atoms inside a high-Q optical
cavity, which has already been realized in several experimental
platforms ranging from cold neutral atoms in optical traps
(lattices) [31] to trapped ions [32]. Another ingredient, the
homodyne detection, is a well-developed technique that can be
performed with nearly unit efficiency [33]. An implementation
of the subwavelength focusing function via the dark-state
engineering in an atomic � configuration (cf. Fig. 1) also looks
realistic in view of the recent experimental realization [34] of
the subwavelength optical barriers and the possibility to shine
additional lasers from the side as was done in [35].

The movie mode of the microscope (Sec. IV A) requires
the bad cavity condition κ � ω. In fact, this is the typical
situation for cavity QED experiments with optically trapped
neutral atoms (see, e.g, Ref. [31]), where the cavity linewidth
κ , on the order of megahertz, is much larger than the frequency
of the atomic motion ω ∼ Er/h̄, on the order of kilohertz.

The scanning mode (Sec. IV B) needs a good cavity with
κ � ω. This condition can be met in cavity QED setups
with optically trapped neutral atoms. For example, Ref. [36]
reports strong coupling between an atomic BEC with a narrow
linewidth optical cavity with κ � 2π × 4.5 kHz, far smaller
than the optical recoil energy for light-mass alkali-metal atoms
(e.g., Er/h̄ � 2π × 23 kHz for 23Na at the D2 line with λ0 �
590 nm). Ions trapped in optical cavities [35] provide another
feasible platform for reaching the good cavity condition due to
their large oscillation frequency (ω on the order of megahertz).

The spontaneous emission, as discussed in Sec. IV A 2,
degrades the measured homodyne current due to gradual
depletion of the atom from the dark state. This detrimental
effect can be strongly suppressed by using high-Q optical
cavities with large cooperativity (e.g., C > 100 in Ref. [37]).

For a concrete illustration, we consider the example of a sin-
gle 23Na atom trapped in an optical lattice with the amplitude
V0 = 5Er , where Er/h̄ � 2π × 23 kHz, which corresponds
to the harmonic oscillator frequency ω = √

2V0Er/h̄ � 2π ×
76 kHz and the size of the ground state �0 = √

h̄/mω �
75 nm. For the focusing function we choose ε = β/3 = 0.1,
which leads to a resolution [see Eq. (27)] σ � 0.07λ0 � 0.5�0

and V max
na � 0.1h̄ω [see Eq. (28)] being much smaller than the

level spacing in the trap. For a cavity with the cooperativityC =
200 we have for the spontaneous emission rate ∼γ /4C � γ ,
which is negligible for the movie mode (cf. Fig. 6) and provides
high enough SNR (cf. Fig. 9) to map out the atomic density
distribution in a single experimental run in the scanning mode.

VI. CONCLUSION AND OUTLOOK

We have presented a detailed theoretical description of the
quantum scanning microscope for cold atoms in the CQED
setup proposed in [1] and discussed its experimental feasibility.
The microscope is conceptually different from the familiar
destructive microscopes in cold-atom experiments by allowing
a continuous monitoring of an atomic system with optical
subwavelength spatial resolution and by demonstrating the
nondemolition observation of the atomic density operator as
an emergent QND measurement. The concept of the emergent
QND measurement extends the notion of the backaction-free
continuous measurement to the case of a general quantum me-
chanical observable monitored in a system energy eigenstate.

Furthermore, we have demonstrated the action of the mi-
croscope as a device for continuous observation with two
examples illustrating the two different operation modes: the
observation of the atomic wave packet moving in a harmonic
trap through the fixed focal region (the movie mode) and a
scan of the atomic density distribution in a motional eigenstate
of a harmonically trapped atom by moving the focal region
slowly across the trap (the scanning mode). In the latter case,
the microscope can be used for a probabilistic preparation of
the atomic system in a pure motional eigenstate starting from
an initial mixed one as a result of the measurement induced

023852-13



YANG, VASILYEV, LAFLAMME, BARANOV, AND ZOLLER PHYSICAL REVIEW A 98, 023852 (2018)

state collapse. These examples demonstrate the fundamental
difference in the action of the proposed microscope allowing
continuous observation of a quantum system from the common
measurement scenario with the quantum gas microscope where
a single shot destructive measurement terminates a given run
of the experiment.

We also mention that the ideas behind the microscope oper-
ation and the emergent QND measurement are not necessarily
restricted to CQEDs implementation considered here, but can
be realized with other experimental platforms, e.g., coupling
the atom of interest to an ensemble of Rydberg atoms for
readout. Finally, we emphasize that continuous observation of a
quantum system provides the basis of a quantum feedback [4]
on the system of interest, which is of particular interest for
quantum many-body systems.
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APPENDIX A: DETAILS OF THE ADIABATIC
ELIMINATION OF THE ATOMIC INTERNAL DYNAMICS

In this Appendix we present details of the adiabatic elimina-
tion of the atomic internal DOFs, which is sketched briefly in
Sec. III C of the main text. As described in Sec. III C, we are in-
terested in the regime where (i) the external motion of an atom
is much slower than its internal dynamics, |ĤA,E| � |ĤA,I |,
and (ii) the atom is coupled to the cavity mode dispersively,
g(z) � �t . Condition (i) allows us to define a small parameter
ε1 = Tr(μcĤA,E )/h̄�(z), where μc is the density matrix for
the joint atom-cavity system introduced in Sec. III B and
�(z) ≡

√
�2

g + �2
r (z) characterizes the energy gap between

the internal dark and bright states. Condition (ii) allows us
to define another small parameter ε2 = Tr(μcĤAC )/h̄�t . Our
aim below is to derive an equation for the reduced density
matrix ρc ≡ TrA,I (μc ) describing the cavity mode and the
atomic external motion, where TrA,I is a trace over the atomic
internal DOFs, by perturbation theory to Eq. (17) in terms of the
small parameters ε1,2. The desired equation has deterministic
terms accurate to second order in the perturbation ε1,2 and a
stochastic term accurate to linear order in the perturbation ε1,2,
i.e.,

dρc = O
(
ε2

1, ε
2
2

)
dt + O(ε1, ε2)dW (t ). (A1)

To this end, in the following we first analyze the structure of
Eq. (17) in the internal dark- and bright-state basis and then
carry out the adiabatic elimination.

1. Stochastic master equation in the dark- and bright-state basis

In order to perform the adiabatic elimination, we express the
SME (17) of the main text in terms of {|D〉, |±〉, |t〉}, i.e., the
eigenstates of the atomic internal Hamiltonian ĤA,I , defined

in Eqs. (18) and (19). In terms of them, we have

|e〉 = 1√
2

(|+〉 − |−〉),

|g〉 = 1√
2

cos α(z)(|+〉 + |−〉) + sin α(z) |D〉,

|r〉 = 1√
2

sin α(z)(|+〉 + |−〉) − cos α(z) |D〉, (A2)

with the mixing angle α(z) defined in Eq. (20). Equation (A2)
allows us to express each term of the SME (17) in the new
basis.

The atomic spontaneous-emission terms (i.e., the last two
lines) of Eq. (17) can be readily simplified in this new basis,
under the condition �t ,�e � �(z), |�t |, |�(z)/2 ± �t |. This
condition allows us to neglect the fast rotating terms in
the spontaneous-emission channels under the rotating-wave
approximation. As a result, Eq. (17) can be expressed as

dμc = − i

h̄
[ĤA,I + ĤA,E + ĤC + ĤAC, μc]dt

+ κD[ĉ]μcdt + √
κH[ĉe−iφ]μcdW (t )

+ �t

2

∑
j=±

Grt
2 [σ̂j t ]μcdt

+ �e

2

∑
j=±

(
PgeGge

2 [σ̂Dj ] + PreGre
1 [σ̂Dj ]

)
μcdt

+ �e

4

∑
j,l=±

(
PgeGge

1 [σ̂j l] + PreGre
2 [σ̂j l]

)
μcdt

− �ePa

4

∑
j=±

{σ̂jj , μc}dt + �tGrt
1 [σ̂Dt ]μcdt. (A3)

Here, to simplify the notation we have defined

Gjn

1 [•] ≡
∫

duNjn(u)D[e−ikuẑ cos α(ẑ)•],

Gjn

2 [•] ≡
∫

duNjn(u)D[e−ikuẑ sin α(ẑ)•], (A4)

with j = r, g; n = e, t ; and • representing a general operator.
In Eq. (A3), the atomic spontaneous emissions are described
by the last three lines, which occur only between the internal
(dressed) eigenstates as a result of the rotating-wave approxi-
mation.

Next we consider the expression of the rest of the terms
(i.e., the first two lines) of Eq. (A3) in the new basis. We
note that these terms are diagonal in {D,±, t} except ĤA,E

and ĤAC , which we now analyze. We first look at ĤA,E =
p̂2

z /2m + V (ẑ). Due to the position dependence of the dark
and bright states, the momentum operator p̂z is nondiagonal in
this basis and acquires an additional gauge potential. We can
write it as

p̂z =
∑

i,j∈{D,±,t}
〈i|p̂z|j 〉σ̂ij = −ih̄∂z ⊗ I − Â,

where the spatial derivative ∂z acts only on the motional DOFs
of the atom, I = ∑

i∈{D,±,t}|i〉〈i| is the identity operator for the
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internal states, and

Â =
[

i√
2
α′(σ̂+D + σ̂−D ) + H.c.

]

is a position-dependent vector potential which couples the
internal dark state to the bright states. As a result, ĤA,E is
nondiagonal in the {D,±, t} basis. Through straightforward
calculation we find that it can be written as the sum of two
parts ĤA,E = Ĥ 0

A,E + Ĥ 1
A,E . The first part does not couple the

dark state to the bright states,

Ĥ 0
A,E =

[
− h̄2∂2

z

2m
+ V (ẑ)

]
⊗ I

+Vna(ẑ) ⊗
⎛
⎝σ̂DD + 1

2

∑
i,j=±

σ̂ij

⎞
⎠. (A5)

Here we have defined an effective potential for the atomic
external motion

Vna(ẑ) ≡ h̄2

2m
[α′(ẑ)]2, (A6)

which corresponds to the lowest-order nonadiabatic correction
to the atomic external motion due to the spatially varying
internal states. The second term Ĥ 1

A,E couples the dark state to
the bright states,

Ĥ 1
A,E = ih̄

2m
(Â∂z + ∂zÂ) = Ĥ1 ⊗ (σ̂+D + σ̂−D + H.c.),

(A7)

with

Ĥ1 = − h̄2

2
√

2m
(2α′∂z + α′′). (A8)

Similarly, the atom-cavity coupling Hamiltonian ĤAC =
h̄g(ẑ)(ĉ†σ̂rt + H.c.) can be written as ĤAC = Ĥ 0

AC + Ĥ 1
AC ;

here

Ĥ 0
AC = 1√

2
h̄g(ẑ) sin α(ẑ)(ĉσ̂−t + ĉσ̂+t + H.c.) (A9)

does not couple the dark state to the other states, while

Ĥ 1
AC = h̄g̃(ẑ)ĉσ̂tD + H.c. (A10)

couples |D〉 to |t〉, with a strength

g̃(ẑ) ≡ −g(ẑ) cos α(ẑ). (A11)

In the following we will eliminate the atomic internal dynamics
by perturbation theory in terms of the coupling Hamiltonians
(A7) and (A10).

2. Adiabatic elimination

We now derive an effective equation of motion for the
reduced density matrix ρc ≡ TrA,I (μc ). To this end, we trace
out the atomic internal DOFs on both sides of Eq. (A3), yielding

dρc =L0ρcdt + √
κH[ĉe−iφ]ρcdW (t )

− i

h̄
[Ĥ1, η+ + η

†
+ + η− + η

†
−]dt

− i([g̃(ẑ)ĉ†, η̂t ] + [g̃(ẑ)ĉ, η̂†
t ])dt + i

h̄

[
Vna(ẑ), ζ̂t

+ 1

2
(ζ̂+ + ζ̂−)

]
dt + �t

(
Krt

1 + Krt
2 − 1

)
ζ̂t dt

+ �e

2

⎡
⎣∑

j=g,r

Pje

(
Kje

1 + Kje

2

)− 1

⎤
⎦(ζ̂+ + ζ̂−)dt.

(A12)

Here we have defined η̂i ≡ TrA,I (σ̂Diμc ) and ζ̂i ≡
TrA,I (σ̂iiμc ), for i ∈ {t,±}, and have neglected terms
proportional to TrA,I (σ̂±tμc ) and to TrA,I (σ̂+−μc ). In
Eq. (A12) we have defined a superoperator

L0ρc = − i

h̄

[
− h̄2∂2

z

2m
+ V (ẑ) + Vna(ẑ) + ĤC, ρc

]
+ κD[ĉ]ρc

(A13)

which includes all the Hamiltonians in Eq. (A3) that do not
couple the dark state to other internal states. We have also
introduced the superoperators

Kjn

1 • ≡ cos α(ẑ)Kjn • cos α(ẑ),

Kjn

2 • ≡ sin α(ẑ)Kjn • sin α(ẑ), (A14)

where • stands for a general operator and the superoperator
Kjn• = ∫

duNjn(u)e−ik0uẑ • eik0uẑ describes the momentum
diffusion for the spontaneous-emission channel |n〉 → |j 〉.

To solve for ρc in Eq. (A12), we should determine η̂i and
ζ̂i . It is easy to see that η̂i ∼ O(ε1, ε2) and ζ̂i ∼ O(ε2

1, ε
2
2 ).

Thus, to achieve the accuracy prescribed by Eq. (A1), we
need to know the evolution of η̂i accurate to a linear or-
der deterministic term in ε1,2 and to a constant stochastic
term dη̂i = O(ε1, ε2)dt + O(1)dW (t ). They can be derived
straightforwardly from Eq. (A3) as

dη̂± = 1

2

[
∓i�(ẑ) − �e

2

]
η̂±dt + L0η̂±dt − i

h̄
Ĥ1ρcdt,

dη̂t =
(

i�t − �t

2

)
η̂t dt + L0η̂t dt − ig̃(ẑ)ĉρcdt, (A15)

where on the RHS we have used the fact TrA,I (σ̂DDμc ) =
ρc + O(ε2

1, ε
2
2 ). In Eq. (A15), stochastic terms drop out as they

are of higher order, proportional to O(ε1, ε2), than the desired
accuracy. Moreover, under the adiabatic assumption,L0 can be
neglected as it is far smaller than the atomic internal dynamics
characterized by �(ẑ), �t , and �e(t ). By keeping terms up
to first order in �e (t ) under the condition under the condition
�t ,�e � �(z), |�t |, |�(z)/2 ± �t |, the above equations can
be solved adiabatically to give

η̂± = 2

h̄
�−2(ẑ)

[
∓�(ẑ) − i

�e

2

]
Ĥ1ρc,

η̂t = 1

�2
t

(
�t − i

�t

2

)
g̃(ẑ)ĉρc. (A16)

Similarly, for ζ̂i we need to know their evolution accurate
to second order in ε1,2 for the deterministic terms and to linear
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order in ε1,2 for the stochastic term, dζ̂i = O(ε2
1, ε

2
2 )dt +

O(ε1, ε2)dW (t ). They are given by

dζ̂t = − �t ζ̂t + L0ζ̂t dt − i[g̃(ẑ)ĉη̂†
t − η̂t g̃(ẑ)ĉ†]dt,

dζ̂± = − �e

2
ζ̂±dt + L0ζ̂±dt − i

h̄
(Ĥ1η̂

†
± − η̂±Ĥ1)dt

+ 1

2

[
�tKrt

2 ζ̂t + �e

2

(
PgeKge

1 + PreKre
2

)
(ζ̂++ζ̂−)

]
dt.

(A17)

The first equation can be solved adiabatically to give

ζ̂t = 1

�2
t

g̃(ẑ)ĉρcg̃(ẑ)ĉ†. (A18)

In solving the second equation, we make an expansion in
the branching ratios Pge, Pre � 1 and retain only first-order
terms in Pge, Pre. This will provide an effective evolution of ρc

accurate to first order in Pge, Pre [see the last line of Eq. (A12)].
We thus get

ζ̂± = �t

�e

(
1 + PgeKge

1 + PreKre
2

)
Krt

2 ζ̂t

± 4i

h̄2�e

[Ĥ1ρcĤ1�
−1(ẑ) − H.c.]

+ 2

h̄2

(
1+PgeKge

1 + PreKre
2

)
[Ĥ1ρcĤ1�

−2(ẑ) + H.c.].

(A19)

Finally, we note that Tr(ĉρc ) = Tr(ĉμc ) + O(ε2
1, ε

2
2 ). Thus,

with the accuracy prescribed by Eq. (A1), it is justified to
express the quadrature in the nonlinear operator H[ĉ] in
Eq. (A12) in terms of the reduced density matrix ρc, i.e., as
〈ĉ〉c = Tr(ĉρc ).

Plugging these solutions into Eq. (A12), we find

dρc =L0ρcdt − i

h̄
[Ĥcoup, ρc]dt + √

κH[ĉe−iφ]ρcdW (t )

+
(

�t

�2
t

L′ + L′′
)

ρcdt. (A20)

Here L0 is defined in Eq. (A13), H[ĉ]ρc = (ĉ − 〈ĉ〉c )ρc +
H.c., with 〈ĉ〉c = Tr(ĉρc ). Further,

Ĥcoup = h̄g2(ẑ)

�t

[cos α(ẑ)]2ĉ†ĉ (A21)

is the desired local atom-cavity coupling. The Liouvillians L′
and L′′ describes the effects of atomic spontaneous emission,

L′ρc = {
Grt

1 [g̃(ẑ)ĉ] + Grt
2 [g̃(ẑ)ĉ]

}
ρc

+ (
PgeKge

2 + PreKre
1 − 1

)
Krt

2 [g̃(ẑ)ĉρcg̃(ẑ)ĉ†],

L′′ρc = 2�e

h̄2

(
PgeKge

2 + PreKre
1

)
[Ĥ1ρcĤ1�

−2(ẑ) + H.c.]

− 2

h̄2 �e{Ĥ1�
−2(ẑ)Ĥ1, ρc}. (A22)

We note that L′′ can be suppressed indefinitely small indepen-
dently of Ĥcoup by increasing the amplitude of �g and �r (z)
while keeping their ratio fixed. In contrast, �t /�

2
t L′ cannot be

FIG. 11. Atomic dressed states and the spontaneous-emission
channels relevant to Eq. (A23). The |D〉 → |t〉 transition interacts
with the cavity mode with a strength g̃(z) = −g(z) cos α(z), which
leads to the local coupling (A21) in second-order perturbation theory.
The wavy lines describe different spontaneous-emission channels; see
the text for a detailed explanation.

suppressed independently of Ĥcoup and constitutes an essential
imperfection to the operation of the microscope. We thus retain
�t /�

2
t L′ and neglect L′′ in the main text.

Using Eqs. (A4) and (A14), we can write down the detailed
form of L′,

L′ρc =
∫

duNrt (u)D[ĉe−ik0uẑv̂z0 ]ρc

+Pge

∫
du du′Nrt (u)Nge(u′)

×D[ĉe−ik0(u+u′ )ẑŵz0 sin α̂z0 ]ρc

+Pre

∫
du du′Nrt (u)Nre(u′)

×D[ĉe−ik0(u+u′ )ẑv̂z0 sin α̂z0 ]ρc

− 1

2

{
ĉ†ĉ

[
ŵ2

z0

(
1−Pge sin2 α̂z0

)−Prev̂
2
z0

sin2 α̂z0

]
, ρc

}
(A23)

Here we have used the shorthand notation α̂z0 ≡ α(ẑ) and have
defined

v̂z0 = g(ẑ) cos2 α̂z0 , ŵz0 = g(ẑ) cos α̂z0 sin α̂z0 = v̂z0 tan α̂z0 .

(A24)

The terms in Eq. (A23) are shown schematically in Fig. 11.
Here the first line describes the process where the atom
virtually absorbs a cavity photon and makes a transition from
|D〉 to |t〉 and then decays back to |D〉 while spontaneously
emitting a photon into free space, shown as channel 1 in Fig. 11.
The second to fifth lines describe another possible route: After
making a virtual transition from |D〉 to |t〉 by absorption of
a cavity photon, the atom first spontaneously decays to the
bright states |±〉 and then undergoes a second spontaneous
emission to go back to |D〉, shown as channel 2 in Fig. 11. The
last line is trace negative and describes the decay of the atomic
population due to the spontaneous emission from |±〉 to states
outside the four-level system, shown as channel 3 in Fig. 11.

Finally, the subwavelength condition σ/λ0 � 1 (cf.
Sec. III D) allows us to simplify Eq. (A23). Expanding
Eq. (A23) in a power series of σ/λ0, to the lowest order we
can replace exp(−ik0uẑ) by exp(−ik0uz0). Consequently, the
momentum diffusion effect in the first three lines of Eq. (A23)
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can be neglected and the mechanical effects on the atom are
captured by the spatially localized operators v̂z0 , ŵz0 , and
α̂z0 . We will adopt this approximated expression for L′ when
deriving the spontaneous-emission-induced decoherence to the
atomic external motion (C2).

APPENDIX B: CALCULATION OF THE
SIGNAL-TO-NOISE RATIO

In this Appendix we detail the technique we adopt for
calculating the SNR of the filtered homodyne current [cf.
Eqs. (29) and (30)]. While the SNR can in principle be
extracted, according to its definition (29) and (30), by statistical
averaging over all measurement trajectories, this is practically
inefficient. Instead, specific for the filter function (31), we can
simplify the calculation by introducing an auxiliary cavity to
the microscope setup as a physical filter. The SNR of the
filtered homodyne current can thus be expressed in terms of the
lower-order moments of the auxiliary cavity mode, which can
be calculated straightforwardly by solving the corresponding
cascade master equation.

Given the microscope setup (cf. Fig. 1), we consider feeding
its output field to an auxiliary cavity mode. We denote the
destruction (creation) operator of this auxiliary mode by ĉa

(ĉ†a) and fix its frequency to be the same as the frequency of
the microscope cavity. Moreover, we choose its linewidth as
κa = 2/τ , where τ is the filter integration time [cf. Eq. (31)].
From such a construction, the auxiliary cavity mode serves as
a physical filter of the output field of the microscope. This is
revealed most directly in the Heisenberg picture, in which the
evolution of the auxiliary mode reads

˙̂ca(t ) = − 1

τ
ĉa(t ) −

√
2

τ
f̂out (t ), (B1)

where f̂out (t ) is the output field of the microscope. Equa-
tion (B1) can be integrated straightforwardly

ĉa(t ) = −
√

2

τ

∫ ∞

0
dt ′e−t ′/τ f̂out (t − t ′). (B2)

Comparing Eq. (B2) to Eqs. (29) and (31), we find that

〈Iτ (t )〉st = −〈X̂φ
a (t )

〉
/
√

2τ ,
〈
δI2

τ (t )
〉
st = 〈[

δX̂φ
a (t )

]2〉
/2τ.

(B3)

Here we have defined the quadrature operator of the auxiliary
cavity mode in the Heisenberg picture, X̂

φ
a (t ) = e−iφ ĉa(t ) +

eiφĉ
†
a(t ), and its fluctuation δX̂

φ
a (t ) = X̂

φ
a (t ) − 〈X̂φ

a (t )〉, where
〈· · · 〉 ≡ Tr[�0 · · · ] is an expectation value with respect to the
initial density matrix of the microscope plus the auxiliary
cavity. Thus, the statistics (and thus the SNR) of the filtered
homodyne current is directly imbedded in the lower-order
moments of the auxiliary cavity mode.

In the above we adopt the Heisenberg picture to arrive at
Eq. (B3). Nevertheless, to calculate Eq. (B3) it is more conve-
nient to adopt the Schrödinger picture. In this picture, the RHS
of Eq. (B3) can be expressed as 〈X̂φ

a (t )〉 = Tr[X̂φ
a �(t )] and

〈[δX̂φ
a (t )]2〉 = Tr[(X̂φ

a )2�(t )] − {Tr[X̂φ
a �(t )]}2, where X̂

φ
a =

e−iφ ĉa + eiφĉ
†
a and �(t ) is the density matrix of the microscope

plus the auxiliary cavity. It evolves according to the cascade

master equation

�̇ = − i

h̄
[ĤA,E+ĤC+Ĥcoup, �]dt + κD[ĉ]�dt + �t

�2
t

L′�dt

+ 2

τ
D[ĉa]� −

√
2κ

τ
([ĉ†a, ĉ�] + [�ĉ†, ĉa]). (B4)

The first line of Eq. (B4) corresponds to the unconditional
dynamics of the microscope setup [cf. Eq. (22)], with small
terms proportional to Vna(ẑ) and to L′′ neglected. The second
line corresponds to the dynamics of the auxiliary cavity mode,
which acts as a physical filter of the homodyne current. By
numerically propagating Eq. (B4), we extract the statistics of
the filtered homodyne current and thus the SNR.

APPENDIX C: PERTURBATIVE ELIMINATION
OF THE CAVITY MODE

In this Appendix we derive the stochastic master equa-
tions (34) and (37) together with the corresponding homodyne
currents (32) and (36), by eliminating the cavity mode perturba-
tively starting from Eqs. (22) and (23) of the joint atom-cavity
system. This will allow us to relate the homodyne current to
effective observables of the atom in the bad or good cavity limit
and thus to define the two operation modes of the microscope.

We start by shifting away the stationary amplitude of
the cavity field. Without coupling to the atom, the driven
cavity mode populates a coherent state with amplitude α0 =
−2E/

√
κ (we assumed α0 being real and α0 � 1 here-

after). We can shift it away via the transformations ρc →
Û (α0)ρcÛ (−α0), Ĥ → Û (α0)Ĥ Û (−α0), etc., with the uni-
tary operator Û (α0) = exp(α0ĉ − α0ĉ

†). As a result, Eq. (22)
is transformed into

dρc = − i

h̄
[ĤA,E + Ĥ ′

coup, ρc]dt + κD[ĉ]ρcdt

+√
κH[ĉe−iφ]ρcdW (t ) + γ

4CLspρcdt. (C1)

Here Ĥ ′
coup = Afz0 (ẑ)(ĉ†ĉ + α0ĉ

† + α0ĉ) � α0Afz0 (ẑ)(ĉ† +
ĉ) andLsp is given by the replacement ĉ → α0 in the expression
of L′ [see Eq. (A23)],

Lspρ =D
[
fz0 (ẑ)

]
ρ + PrD

[
fz0 (ẑ) sin α̂z0

]
ρ

+ PgD
[
fz0 (ẑ) tan α̂z0 sin α̂z0

]
ρ

− 1
2

{
f 2

z0
(ẑ)
[

tan2 α̂z0

(
1 − Pg sin2 α̂z0

)
− Pr sin2 α̂z0

]
, ρ
}
. (C2)

In Eq. (C1) we have dropped an optical lattice potential
VOL(ẑ) = Afz0 (ẑ)α2

0 due to the stationary cavity field, as it
can be compensated straightforwardly by detuning the Raman
resonance with a small offset �r = g2(z0)α2

0/�t . We have also
neglected the small decoherence terms in Lsp involving the
fluctuations of the cavity field. Equation (23) is transformed to

I (t )dt = √
κ〈ĉe−iφ + ĉ†eiφ〉cdt + dW (t ), (C3)

where ĉ and ĉ† now correspond to the fluctuation of the cavity
field and we have dropped a constant term contributed by the
stationary cavity field.
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Next we move to the interaction picture with respect to
ĤA,E , the Hamiltonian for the atomic external motion. As a
result, Eq. (C1) is transformed into

dρc = − i

h̄
Aα0

[
f̂z0 (t )(ĉ + ĉ†), ρc

]
dt + κD[ĉ]ρcdt

+√
κH[ĉe−iφ]ρcdW (t ) + γ

4CLsp(t )ρcdt. (C4)

Here we have defined in the interaction picture f̂z0 (t ) ≡
exp(iĤA,Et/h̄)fz0 (ẑ)exp(−iĤA,Et/h̄). We have also defined
a time-dependent decoherence term Lsp(t ), of which the
expression can be yielded by replacing vz0 (ẑ) and wz0 (ẑ) in
Eq. (35) by the corresponding operators in the interaction
picture. The expression for the homodyne current (C3) remains
the same under this transformation.

Now we eliminate the cavity mode under the condition of
weak atom-cavity couplingAα0 � h̄κ , by perturbation theory
in the small parameter ε = Aα0/h̄κ . We define a conditional
density matrix for the atomic external motion ρ̃c ≡ TrC (ρc ),
where TrC stands for tracing over the states of the cavity mode.
Our aim is to derive an equation for the evolution of ρ̃c up to
second order in the perturbation ε and up to a linear stochastic
term

dρ̃c = O(ε2)dt + O(ε)dW (t ). (C5)

To this end, we trace out the cavity DOF in Eq. (C4), yielding

dρ̃c = − i

h̄
Aα0

[
f̂z0 (t ), η̂+η̂†]dt+√

κ (ς̂e−iφ + H.c.)dW (t ).

(C6)

Here η̂ = TrC (ĉρc ) and ς̂ = η̂ − TrS (η̂)ρ̃c, where TrS stands
for tracing over the states of atomic external motion. The
homodyne current can be related to η̂ as

dq(t ) ≡ I (t )dt = √
κ[TrS (η̂)e−iφ + c.c.]dt + dW (t ).

(C7)

To derive an equation for ρ̃c with the accuracy prescribed by
Eq. (C5), we need to solve for η̂ and ς̂ accurate to first order
in the perturbation ε and up to a zeroth-order stochastic term.
With this accuracy, their evolution is given by

dη̂ = − i

h̄
Aα0f̂ (t )ρ̃cdt − κ

2
η̂dt,

dς̂ = − i

h̄
Aα0[f̂ (t ) − 〈f̂ (t )〉c]ρ̃cdt − κ

2
ς̂dt, (C8)

where we have neglect terms involving Lsp(t ) in view of the
smallness of the energy scale of Lsp(t ) compared to the cavity
damping κ . By solving Eq. (C8) adiabatically and plugging
these solutions back into Eq. (C6), we can derive an effective
equation of motion for ρ̃c. In the following we analyze the
example of measuring a harmonically trapped atom and derive
the effective equation of motion corresponding to the bad and
good cavity limits separately.

1. Bad cavity limit

The bad cavity limit is defined by κ � ω, i.e., the cavity
dynamics is much faster than the atomic motion (quantified

by its oscillation frequency ω) such that the former instanta-
neously follows the latter. Equation (C8) can thus be solved
adiabatically

η̂ = −2iα0
A
h̄κ

f̂ (t )ρ̃c, ς̂ = −2iα0
A
h̄κ

[f̂ (t ) − 〈f̂ (t )〉c]ρ̃c.

(C9)

Plugging these solutions back into Eqs. (C6) and (C7), restor-
ing the Schrödinger picture, and choosing the homodyne angle
φ = −π/2 to maximize the homodyne current, we arrive at
Eqs. (34) and (32).

2. Good cavity limit

The good cavity limit is defined by κ � ω, i.e., the cavity
dynamics is much slower than the atomic motion. To solve
Eq. (C8) in this limit, we expand the time-evolving focusing
function in terms of its sidebands f̂z0 (t ) = ∑

� f̂ (�)
z0

e−i�ωt , with
the �th sideband component f̂ (�)

z0
= ∑

n fn,n+�|n〉〈n + �| and
fmn = 〈m|fz0 (ẑ)|n〉. Assuming that ρ̃c depends on time slowly,
Eq. (C8) can be integrated as

η̂ = − i

h̄
Aα0

∑
�

f̂ (�)
z0

e−i�ωt

κ/2 − i�ω
ρ̃c,

ς̂ = − i

h̄
Aα0

∑
�

(f̂ (�) − 〈f̂ (�)〉c )

κ/2 − i�ω
e−i�ωt ρ̃c. (C10)

Substituting these expressions into Eq. (C6), restoring the
Schrödinger picture, and keeping only the nonrotating terms
in the rotating-wave approximation, we obtain

dρ̃c = − i

h̄
[Ĥeff , ρ̃c] dt +

∑
�

γ

1 + (2ω�/κ )2
D
[
f̂ (�)

z0

]
ρ̃c dt

+ √
γ
∑

�

H
[

f̂ (�)
z0

1 − 2i�ω/κ

]
ρ̃c dW (t ) + γ

4CLspρ̃cdt,

(C11)

where

Ĥeff = ĤS +
∑

�

α2
0A2�ω/h̄

(κ/2)2 + �2ω2
[f̂ (�)f̂ (�)† − f̂ (�)†f̂ (�)]

(C12)

and we have chosen the homodyne angle φ = −π/2 to enhance
the signal proportional to 〈f̂ (0)

z0
〉c. By filtering out higher

sideband components corresponding to � �= 0 in the homodyne
current with a classical filter, the homodyne current can be
expressed as

dq(t ) ≡ I (t )dt = 2
√

γ
〈
f̂ (0)

z0

〉
c
dt + dW (t ), (C13)

which recovers Eq. (36). Since these higher sideband com-
ponents are not resolved, we can drop the stochastic terms
with � �= 0 in Eq. (C11), corresponding to averaging over these
unobserved measurement channels. Finally, in the good cavity
limit κ � ω, the second term in the Hamiltonian Ĥeff [cf.
Eq. (C12)] is much smaller than ĤS and can be neglected.
We thus arrive at Eq. (37).
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