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Recently, it has been shown numerically and by a semiclassical approach [Phys. Rev. Lett. 120, 093902 (2018)]
that second-order exceptional points can appear in the spectrum of weakly deformed microdisk resonators by
coupling of optical modes with different angular momentum. Here, we use a perturbation theory for weak boundary
deformations to derive an effective non-Hermitian Hamiltonian from which we obtain analytical formulas to
describe the formation of second-order exceptional points in such systems. The theory is extended to third-order
exceptional points and confirmed by full numerical calculations.

DOI: 10.1103/PhysRevA.98.023851

I. INTRODUCTION

The observation of interesting and unconventional physics
at and near exceptional points (EPs) in quantum and wave
systems with dissipation and/or gain has triggered significant
activity in recent years. In contrast with conventional degen-
eracies at an EP, not only eigenvalues but also the corre-
sponding eigenstates coalesce [1-3]. Various experiments have
demonstrated the existence of second-order EPs (EP2s), where
exactly two eigenvalues and eigenstates coalesce in physical
systems, e.g., in microwave cavities [4,5], optical microcavi-
ties [6-9], coupled atom-cavity systems [10], exciton-polariton
billiards [11], and acoustic shells [12]. EPs have already found
several applications, e.g., as ultrasensitive sensors [13,14],
unidirectional lasing operation in microlasers [9], orbital
angular-momentum lasers [15], sources of circularly polarized
light [16], and for energy transfer between modes [17,18].

Higher-order EPs, involving more than two eigenstates,
have been experimentally realized only recently by using
coupled acoustic cavities with asymmetric dissipation [19] and
in parity-time-symmetric photonic molecules [20]. Interest-
ing new aspects of higher-order EPs include more complex
topology [21], a different definition of chirality [22], extreme
dynamical behavior [23], and even higher sensitivity [20].

Optical microcavities are essential ingredients of novel
light-emitting devices, e.g., single-photon emitters [24], lasers
with ultralow threshold [25], and sources of entangled photon
pairs [26]. Dissipation is present in the form of material
absorption or gain and radiation losses. Important examples
of microcavities are whispering-gallery cavities where light
is trapped by total internal reflection at the boundary of the
cavity. Deforming or perturbing the boundary of such cavities
can be beneficial for several applications (see Ref. [27] for
a review), e.g., directional free-space light emission [28-32],
mode selection [33], and broadband efficient waveguide cou-
pling [34].
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In a recent paper of the authors, it was shown that EP2s
can be generated in microdisks with extremely weak boundary
deformation after fine tuning the refractive index [35]. This
surprising effect was explained with a semiclassical theory
based on resonance-assisted tunneling in ray-dynamical phase
space. The aim of the present paper is to exploit a perturbation
theory for weak boundary deformations [36] to get an even
deeper understanding of the appearance of EPs in such systems.
The perturbation theory allows us to derive explicit formulas
for the location of the EPs in parameter space. Moreover, we
develop an approach where fine tuning of refractive index is
no longer necessary. Finally, we show that our approach can
be extended to higher-order EPs, which we demonstrate for an
EP of third order (EP3).

This paper is organized as follows: In Sec. II we review
the relevant aspects of the perturbation theory. The effective
Hamiltonian for two nearly degenerate modes is introduced in
Sec. III. This Hamiltonian is used in Sec. IV to find EP2s for
general smooth boundaries with a fine-tuned refractive index
and in Sec. V for specially designed boundaries without the
need of fine tuning the refractive index. In Sec. VI we extend
the theory to an EP3. The paper is concluded in Sec. VII.

II. PERTURBATION THEORY FOR TWO NEARLY
DEGENERATE MODES

In this section we briefly review the main results of the
perturbation theory relevant for the first-order treatment of
two nearly degenerate modes in a slightly deformed microdisk
cavity [36]. The zeroth-order solutions are the modes in the
circular cavity of radius R with complex frequency w (wave
number k = w/c, where c is the speed of light in vacuum)
labeled by the azimuthal (angular momentum) mode number m
and the radial mode number /. The dimensionless frequencies
x = wR/c = kR of these modes for transverse-magnetic (TM)
polarization are given by the roots of

Sp(x) = nﬁ(nx)—

H}’/ﬂ( 1
i, x). (D
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Here, n is the (effective) refractive index, J,, and H,, are the
Bessel and Hankel functions of the first kind and of order m.
The prime (") denotes the first derivative with respect to the
argument of the function.

The theory treats a boundary deformation of the type

r(¢) = R+ Af (), 2)

with formal perturbation parameter A which is set to unity at
the end. The deformation function f(¢) is 27 periodic and
even with respect to ¢ = 0, so only boundary deformations
with a remaining mirror-reflection symmetry can be studied
(see Ref. [37] for more general geometries). The even- and
odd-parity modes of the deformed cavity are expanded in the
even- and odd-parity solutions of the unperturbed disk.

In the near-degenerate situation, i.e., when the frequencies
of two or more modes in the unperturbed disk are very similar,
the perturbation theory needs to be modified [36]. Here, we
discuss first the modifications for the case of two nearly
degenerate modes by using a slightly different notation. The
mode in the unperturbed disk with smaller radial mode number
(and therefore higher Q factor) is called mode 1 and the other
one is called mode 2. The azimuthal mode number of mode 1
is denoted by m, and that of mode 2 by p < m. By convention,
we consider the frequency x; of mode 1 as the zeroth-order
solution, i.e., S,,(x;) = 0. The first-order correction x;8x can
then be computed from the following set of equations [36]:

(51— dx)ay = Af0a, 3)
(s — 8x)ay = AYray, (4)
where a; (a,) is the amplitude of mode 1 (2) and

Sm(x1)

=" — A, 5

T S ®)
Sp(xl)

= P77 _ A 6

2T o1 ©

The Fourier harmonics of the deformation function are given
for even parity as

A, =22 / F(@)cos (pp)cos (m)dg,  (7)
7TR 0

and for odd parity as

Ao, =L f F(@)sin (pg)sin(mp)dp,  (8)
7TR 0

with ¢, =2 if p #0 and ¢, =1 otherwise. Note that, in
Eq. (6), it is assumed that |S,(x;)| < |x{|(n* — 1) which
is satisfied for all interesting cases. This assumption is not
mentioned in Ref. [36].

III. EFFECTIVE HAMILTONIAN FOR TWO NEARLY
DEGENERATE MODES

In this section we rewrite the set of linear equations (3) and
(4) as an eigenvalue problem of an effective Hamiltonian. We
use the derivative [36]

Sm(x)
X

95 () —(n2=1)— -5 [S +2Hr:’ }
5y H=—"-1 (0| S () + 275 (x) |.

ENC)

With the frequency x, of the second mode, S,(x2) =0, we
expand

S,(x1) = (n* — 1)(x2 — x1) (10)

to first order of x, — x;. Using Eq. (10) and S,,(x;) = 0 we
write the Eqgs. (3) and (4) for the complex frequencies as the

eigenvalue equation
ay ay

with effective non-Hermitian Hamiltonian

. Al Anty
H:(’z)1 f)—m( . "‘/’) (12)
2 Apm App

which describes the effect of a weak boundary deformation to
first order in the formal perturbation parameter A. Note that,
for fixed parity, the coupling matrix elements Ag/y and A%
are equal as long as m, p > 0 [see Egs. (7) and (8)] which is
the case that we consider here. The matrix (12) is therefore
complex symmetric.

The complex eigenvalues are the first-order frequencies x =
x1(146x),1e.,

ALY 4+ ALY
2

X1+ x2
X+ = — X1

2

x1 —x2 — x1(ALS — AT
sl T
13)

In following we provide a necessary criterion for the
applicability of the perturbation theory. In the expansion of
Spy(x1) [Eq. (10)] the first order is assumed to be sufficient.
This assumption, however, requires the second order of the
expansion to be much smaller than the first order; i.e.

1928, ) »
3 g2 ) = x)T L rm ) — X)) (14)
By using the second derivative at the root S,(x;) = 0 [36],
RN [ 1 H)
et ()= (7 = D) =+ ZFZ(xz):|7 (15)

and Eq. (9) we can compare the first- and second-order terms
and derive

2[x]

X2 — x| < 7
1+2sz—Z(x2)‘

(16)

as the criterion for the difference of the two initial wave
numbers.

IV. SECOND ORDER EXCEPTIONAL POINT FOR
GENERAL SMOOTH BOUNDARIES WITH FINE
TUNING OF REFRACTIVE INDEX

In this section we restrict ourselves to boundary deforma-
tions that are sufficiently smooth such that the relevant Fourier
integrals

/0 f(@)cos(qp)dd (17
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are exactly zero or are so small that they can be ignored for g >
2p, where p is again the azimuthal mode number of mode 2.
In this regime,

1 T
Ae/o — Ae/o — / d , 18

1 T
A%l = _/ f(@)cos[(p—m)¢ldp. (19
TR 0

Moreover, as in Ref. [35], we adjust the refractive index such
that Re(x;) =Re(x,). Finally, we assume that |Im(x;)| < |x1],
which is always fulfilled for whispering-gallery modes. The
condition for the EP2, given by the vanishing of the radicand
in Eq. (13), is then
1 1

0, O
where Q; = —Re(x;)/[2Im(x;)] is the quality factor of mode
Jj- Equation (20) shows that an extremely weak boundary de-
formation suffices to achieve an EP provided that the involved
modes have high quality factors.

It is straightforward to show that the eigenvector at the EP
is given by

a)age] =

(20)

Ukp = <—i sgL Af,{,f)’ @h
where sgn is the sign function. This is the typical structure
of the eigenvector (1, )7 of a symmetric 2x2 matrix at an
EP2 [38,39]. The phase lag of /2 leads to a well-defined
handedness, called chirality. The sign of the chirality is here
given by — sgn A%y

In the above approximation the Fourier coefficients in
Egs. (18) and (19) are the same for even- and odd-parity modes.
This implies that both EP2s are located at the same parameter
values, which means that, for fixed parameters, there is a pair of
degenerate EP2s. One could take advantage of this degeneracy
by introducing a further weak but now asymmetric deformation
to generate an EP of order three or four.

An example

We consider the cavity with deformation function

R
f@) = sﬁ[cos (4¢) — 1], (22)

where ¢ is the dimensionless deformation parameter. This
deformation function inserted into Eq. (2) is the first-order
approximation in ¢ of the curve

x>+ y*(1 +ex?/R*) = R? (23)

studied in Ref. [35]. With the deformation function (22),
Egs. (12) and (19) imply the selection rule |p — m| = 4, i.e.,
only modes where the azimuthal mode numbers differ by +4
are coupled within the first-order perturbation theory.

For the specific mode pair with m = 22 and p = 18 a short
calculation shows that Ay = A%, = —e/16and A}, =
£/32. Inserting the latter intermediate result into Eq. (20) gives

<L _ L) (24)
0 01)
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FIG. 1. (a) Real and (b) imaginary part of the frequency « =
x — X relative to the mean frequency x of the two involved even-parity
modes in the cavity (22). Marked are the two exceptional points of
second order EP*; mode 1 with (m, ) = (22, 1) and mode 2 with
(p,1) = (18, 2) for & = 0. Filled circles and open squares are BEM
results and solid and dashed curves are the corresponding predic-
tions of the perturbation theory [Eq. (13)]. The refractive index is
n = 2.10509.

both for even and odd parity. Thus, in total there are four EPs:
two for positive ¢ and two for negative . With the above value
of A{}’, it follows that the eigenvector from Eq. (21) is

- 1
UEP = (—i sgn 8)' (25)

Thus, the sign of the chirality of the EP is — sgn €. This implies
that we get for each parity two EPs with opposite sign of the
chirality, one for negative and one for positive ¢; see Eqs. (24)
and (25). Note that the analytical predictions in Eqs. (24)
and (25) are not provided by the resonance-assisted tunneling
approach in Ref. [35].

For the two modes considered with (m,[) = (22, 1) and
(p, 1) = (18, 2) we can tune the real part of their frequency on
resonance by choosing n = 2.105 09. With x; = 12.499 64 —
i1.15948x 1077 and x, = 12.499 64 —i3.39393x10~* we
get from Eq. (24) |¢| = 0.00043 and for both EPs xy =
12.49930 — 1.69754x10~* in very good agreement with
Ref. [35]. Figure 1 demonstrates the agreement with numerical
results for even-parity modes using the boundary element
method (BEM) [40]. Clearly visible is the existence of two
EPs located at ¢ &~ 40.00045. Note that the criterion (16) is
fulfilled because 3.4x 10™* « 1.136. R

Figure 2 shows the Poynting vector J for both EPs.
The chirality of the EPs shows up here by the local vortex
structure of J, which we call local chirality [35]. The opposite
circulation of the vortex in Figs. 2(a) and 2(b) demonstrates
that both EPs have a different sign of the chirality consistent
with the prediction in Eq. (25).

The mode patterns at the EPs and, for comparison, in the
unperturbed cavity are shown in Fig. 3. The irregular nodal
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0.

0
0.0

FIG. 2. Numerically computed Poynting vector J o Im (1//*%1//)
of the mode at (a) EP~ and (b) EP" in Fig. 1. Long arrows mark the
dominant stream of the Poynting vector in the vicinity of the cavity
boundary (quarter-circular curve). Shading represents |J | normalized
to be zero at the minimum (white) and unity at the maximum (gray
or yellow).

pattern and the strongly reduced interference pattern in the
radial direction is a clear signature of the structure in Eq. (25)
and is related to an abnormal localization in ray-dynamical
phase space, as discussed in Ref. [35].

V. SECOND-ORDER EXCEPTIONAL POINT
FOR SPECIALLY DESIGNED BOUNDARIES

This section shows that, for a given nearly degenerate pair
of modes with azimuthal mode numbers m and p < m, we can
design a boundary such that an EP can be generated without the
need to fine tune the refractive index. We consider the family
of cavities

f(¢) = %R cos[(m — p)p] + 20 Rcos 2m¢),  (26)

(a) EPT (b) mode 1

1.1 1.1

y/R

0.0

-1.1
—-1.1

1.1
y/R

0.0

—-1.1
-1.1

1
—-1.1

0.0 x/R 1.1 0.0 x/R 1.1
FIG. 3. Intensities |1|*> of modes calculated by the BEM and

marked by the same labels as in Fig. 1. (a) EP*, (b) mode 1 with

(m,1) = (22, 1), (c) EP~, and (d) mode 2 with (p, 1) = (18, 2).
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FIG. 4. (a) Real and (b) imaginary part of the frequency k = x —
X relative to the mean frequency x of the two modes involved in the
cavity (26) witho = 1.646x 1073 and refractive index n = 3.3. Filled
circles and open squares are BEM results for modes (m, ) = (12, 1)
and (p,I) = (6,3) (x and B when & = 0). Solid and dashed curves
are the predictions of the perturbation theory [Eq. (13)].

with two dimensionless deformation parameters ¢ and o. It is
important to realize that in the following we do not ignore any
Fourier integrals (17). Excluding the special case m # 3p we
get Af,,/; =g/4, Af’,/; =0, and AY° = 4o, where the + (=)
is for even (odd) parity. Stipulating again |[Im(x;)| < |x], it
is straightforward to show that the real part of x; — x; in the
square root in Eq. (13) can be canceled by the term x; (A’;{,Z —
A%/?) provided that

o = £ Re@ = x) @7

Re(x1)

For even-parity modes we have to choose the + sign and for
the odd-parity modes the — sign. To generate the EP, one then
has to tune ¢ analogous to Eq. (24):

le] : 1 (28)
0, 01

Both parameters o and ¢ are small numbers provided that the
modes are nearly degenerate and have high quality factors.
Hence, the boundary deformation is expected to be very weak.
A short calculation shows that the eigenvector at the EPs is
given by Eq. (25). Hence, the sign of the chirality of the EP is
again —sgne.

To illustrate the theory we choose as an example the modes
(m,l)=(12,1) and (p, [)=(6,3)ina cavity with refractive
index n = 3.3 (e.g., GaAs) which is considerably different
from the fine-tuned refractive index (=3.631 75) following the
scheme in Sec. IV. In our new scheme we get from Eqgs. (27)
and (28) the values o = 1.646x10~3 and |¢| = 7.7x1073.
Figure 4 confirms with BEM results that, with these parameter
values, two EPs are indeed located. Figure 5 proves that the
sign of the chirality of the two EPs is opposite, in accordance
with Eq. (25). The modes at the EPs and the modes at ¢ = 0 are
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1.0 0.0 0.5 x/R 1.0

FIG. 5. Numerically computed Poynting vector J of the mode
at the (a) EP~ and (b) EP' in Fig. 4. Long arrows mark the
dominant stream of the Poynting vector in the vicinity of the cavity
boundary (corrugated quarter-circular curve). Shading represents |j |
normalized to be zero at the minimum (white) and unity at the
maximum (gray or yellow).

depicted in Fig. 6. Note also in this example that the criterion
(16) is fulfilled because 1.98x 1072 « 1.8148.

VI. THIRD-ORDER EXCEPTIONAL POINT
FOR SPECIALLY DESIGNED BOUNDARIES

In this section we apply the perturbative scheme to the
case of three involved modes which are nearly degenerate in
the circular cavity. The azimuthal mode numbers of modes 1
to 3 are ordered according to m > p > ¢q. In the same spirit
as in Eq. (11) the complex frequencies of the deformed
cavity can be obtained by means of the perturbation theory
from the eigenvalue equation of an effective non-Hermitian

EP+
1.1 ()

y/R

0.0

-1.1
—-1.1

1.1
y/R

0.0

-1.1
-1.1

-1.1
-1.1

0.0 x/R 1.1 0.0 x/R 1.1

FIG. 6. Intensities |1 |> of modes calculated with the BEM and
marked by the same labels as in Fig. 4; 0 = 1.646x1073. (a) EPT,
(b) mode o with (m,l)= (12, 1), (c) EP™, and (d) mode B with
(p,1)=1(6,3).

0 /2 b &

FIG. 7. Boundary deformation function f(¢) corresponding to
the EP3 configuration (36). Only the interval ¢ € [0, 7] is shown.
The remaining part [—, 0] is given by symmetry.

Hamiltonian
fx 00 A A ALY
A=[0 x» 0|-x|a% A% 4] 9
0 0w/ \afl alf il

The eigenvectors of H correspond to the amplitudes of the
modes. A fine tuning of the refractive index might provide
equal values of Re(x) for two modes in the circular cavity.
However, it is unlikely that all three nearly degenerate modes
can be arranged by a refractive index variation such that
Re(x1) = Re(x,) = Re(x3). Thus, in order to achieve a EP3
the slight differences in Re(x) also need to be compensated
by the boundary deformation. In the following, we therefore
consider in analogy to Eq. (26) the family of cavities described
by
/(@)

R = 2€1 cos[(m — p)p] + 2excos [(p — q)]

+2e3cos [(m — q)¢]
+ 20, cos 2pp) + 20, cos 2q). (30)

Moreover, we assume that all cosine terms have different
periods; i.e., m — p # p —q # 2p # ---. Thus, €, €, €3,
0,, and o, represent five independent parameters which are in
general necessary for tuning a symmetric matrix to a EP3. For
the considered boundary deformation, the Hamiltonian (29)
can be written for the even-parity modes as

—1 € €3
X2
A € o, — — €
H=—x| " LS 2 ) 31)
X3
O"__
7N

€3 €2

For odd parity, o, (0,) needs to be replaced by —o,
(_Gq)~

In the following we consider an example of three quaside-
generate modes in a circular cavity with refractive index
n = 1.5 (e.g., PMMA), as mentioned in Ref. [36]. The un-
perturbed frequencies and mode numbers (azimuthal, radial)
are

x; = 34.31100 — i2.22063x 1076 (46,1),  (32)
X, = 3431674 —i1.98169x 1073 (41,2),  (33)
x3 = 3431172 — i6.40780x 1072 (37,3).  (34)

In contrast with the case of EP2s we cannot derive analytical
formulas for the location of the EP3 in parameter space. Thus,
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Re x
34.31 ~

-3.5
10461

AR,
BB
:'4::’.:.}0,

—4.5

0 -3.5

4
10462 1_25 10 €1

FIG. 8. (a) Real and (b) imaginary part of the dimensionless
frequencies x obtained from the eigenvalues of A [see Eq. (31)]
around the EP3. The (dimensionless) deformation parameters varied
are €; and €. Note that the parameters are scaled with 10*. The color
maps range from blue to red according to the z axes.

we numerically determine a particular deformation resulting in
a EP3 for the even-parity modes from the Hamiltonian (31) as
follows: For a given set of deformation parameters we calculate
the eigenvectors 9; of the Hamiltonian (31) and define the
auxiliary function

g=Y (5" ;|- 1) (35)
i#]

At a EP3 this function has a local minimum with g = 0. By
using a downhill simplex method with a randomly chosen
small initial deformation we can obtain such a local minimum
and thus a EP3. Note that one may needs to re-initialize the
minimum search with a different initial deformation if the
auxiliary function g is finite at the determined local minimum.
As an example among others we obtain the deformation

34.32

Rex

34.31

34.3

0.5

(b) < 17
—0.01 \

Imx

—0.02 |

—0.03

0.5

1.5
4
100, 0.2 101,

2.5-0.8

FIG. 9. (a) Real and (b) imaginary part of the dimensionless
frequencies x obtained from the eigenvalues of A [see Eq. (31)]
around the EP3. The (dimensionless) deformation parameters varied
are o, and o, (scaled with 10%). The color maps range from blue to
red according to the z axes.

parameters of the EP3:

€1,ep = —0.000331 738 548 465, (36a)
e gp = 0.000007 162 344 726, (36b)
e3gp = 0.001 008 753 672 052, (36¢)
op.ep = 0.000 156 738979 431, (36d)
og4.ep = 0.000015 861 604 093. (36e)

The corresponding deformation function is shown in Fig. 7.
The numerically determined normalized eigenvector at the
EP3 is

0.7071
0.0036 4+ 0.4017i |. (37)
—0.0025 + 0.5819i

VEP3 ~
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-1 o \.__7| BEM
10%;, 0 0.0, 3" ‘ :
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FIG. 10. (a), (c) Real part of the frequencies along a parameter
path in €,-¢; plane (dimensionless) which encircles the EP3 three
times with radius (a) p = 2x107* and (c) p = 6x10~*. In panel (b)
and (d), the corresponding rotations of the dimensionless frequencies
x are shown in the complex plane. Results from perturbation theory
(PT, dark or blue curve) are compared with BEM calculations (light or
orange dots). In panels (b) and (d) the frequency at the EP3 is marked
with a plus sign.

In Figs. 8 and 9 the frequencies in the deformed cavity are
shown in €(-€; and o,-0, parameter plane, respectively. At
the configuration (36) all three complex frequencies indeed
coalesce, which marks the EP3. From Cardano’s formulas it
follows that the frequency at the EP3 is given by
x1+x2+x3  xi(0, +0y)

= . 38
XEP3 3 3 (38)

In the vicinity of the EP3 a characteristic cubic root topology
of the frequencies is obtained. Depending on the specific choice
of deformation parameters to be varied, the appearance of
the frequency surfaces might be different, as can be seen
by comparing Figs. 8 and 9. However, the characteristics
of the cubic-root topology can be seen in both figures. As
one continuously changes the deformation parameters along
a closed loop encircling the EP3, the complex frequencies
(and the corresponding modes) interchange simultaneously. In
particular, the EP3 needs to be encircled three times along
a closed loop in parameter space to get closed frequency
trajectories in the complex plane [21]. Such a threefold
encircling in €;-€, parameter space is shown in Fig. 10 for
two different radii p = [(€; — € gp)* + (€2 — €2.5p)*]"/?. For
a relatively small radius p = 2x107#, the real parts of the
frequencies [Fig. 10(a)] follow the expectation from the cubic
root topology in Fig. 8(a). During one encircling in parameter
space all three frequencies perform a simple rotation around
the EP3 in the complex x plane [Fig. 10(b)]. If the EP3 is
encircled three times with a larger radius p = 6x10~* the
loops of Re(x) have more than two intersections [Fig. 10(c)].
Simultaneously, the rotations of the frequency in complex
x plane show additional loops related to EP2s which are

—-1.1
-1.1

—-1.1

0.0 x/R 1.1 -1.1

FIG. 11. Intensity patterns |y|> of the modes at the EP3 of the
Hamiltonian A [configuration (36)]. The prediction of the perturba-
tion theory in panel (a) is compared with the three nearly degenerate
modes obtained by the BEM in panels (b)—(d).

now also encircled in parameter space. Additionally, Fig. 10
demonstrates a very good agreement between the perturbation
theory and numerical BEM calculation in the vicinity of the
EP3. However, very close to the EP3, slight deviations between
perturbation theory and BEM occur because the determined
parameter (36) does not correspond exactly to the EP3 in
BEM calculations. Thus, due to the very high sensitivity of
the frequencies at the EP3, one can distinguish three modes
for the configuration (36) with BEM. The intensity patterns
of these modes, however, look similar to the one predicted by
perturbation theory; see Fig. 11. This visual similarity can be
confirmed numerically by the normalized overlap

2
|-/;avily I/ji*wjd l"|
12,02 2 42
\//;:avity |w’| dr cavity |w]| d’r

of two modes. For all three BEM modes in Figs. 11(b)-11(d)
the overlap to the predicted mode [Fig. 11(a)] is S[¥pr, ¥;] ~
0.96. Additionally, the pairwise overlap of the BEM modes is
S[Yi, ¥j1 ~ 0.9 reflecting the strong pairwise nonorthogonal-
ity of the three modes close to a EP3.

Moreover, it is known (see Refs. [22,41]) that, at an EP3,
the mode becomes self-orthogonal in the sense S[¥*, ;] — 0.
For the eigenvector (37) we find S[v//, ;] ~ 2x 1073. Note
that S[v;, ¥;] is always unity. Despite the BEM not being
exactly at the EP3, notable remnants of the self-orthogonality
can be obtained from the BEM modes [Figs. 11(b)-11(d)] as
S[y, ¥i] ~ 0.2 which is still significantly below one.

Furthermore, it is mentioned that the nodal lines in the
intensity patterns are blurred locally, which is again a signature
of the local chirality of the modes.

Sli, 1 = (39)
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VII. CONCLUSION

In the paper we presented a perturbative approach for
exceptional points in weakly deformed microdisks. We derived
an effective non-Hermitian Hamiltonian which describes the
coupling of optical modes with different angular momentum.
If compared with the resonance-assisted tunneling approach in
Ref. [35], the advantage of the proposed perturbative scheme
is fourfold: (i) explicit analytical formulas [Eqgs. (20) and (24)]
are derived for the critical boundary deformation at which the
EP takes place, (ii) the sign of the chirality of the EP can be
predicted, (iii) our approach can find EPs in weakly deformed
cavities without the need to fine tune the refractive index, and
(iv) the approach can be extended to higher-order EPs.

In this work we demonstrated the feasibility of our theory
not only for second-order EPs but also for third-order EPs
which are hard to find otherwise in deformed microdisk
cavities. In principle, our theory allows us to access even
higher-order EPs in such systems which might be very useful
for sensing applications.
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