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The advanced-wave picture is “... an intuitive treatment of two-photon correlation with the help of the concept
of an effective field acting upon one of the two detectors and formed by parametric conversion of the advanced
wave emitted by the second detector ...” [A. V. Belinskii and D. N. Klyshko, Sov. Phys. JETP 78, 259 (1994)]. This
quote from Belinskii and Klyshko nicely describes the concept of the advanced-wave picture: an intuitive tool for
designing and predicting results from coincidence-based two-photon experiments. Up to now, the advanced-wave
picture has been considered primarily for the case of an ideal plane-wave pump beam and only for design
purposes. Here we study the advanced-wave picture for a structured pump beam and in the context of stimulated
emission provoked by an auxiliary input laser beam. This suggests stimulated parametric down-conversion as a
useful experimental tool for testing the experimental sets designed with the advanced-wave picture. We present
experimental results demonstrating the strategy of designing the experiment with advanced-wave picture and
testing with stimulated emission.

DOI: 10.1103/PhysRevA.98.023850

I. INTRODUCTION

Optical correlations from spontaneous parametric down-
conversion (SPDC) have been largely used to experimentally
investigate fundamental aspects of quantum mechanics and to
implement quantum information protocols. These correlations
can be explored using several optical degrees of freedom, and
are measured at the single-photon level by detecting the down-
converted photon pairs with mode analyzers and coincidence
electronics.

In a two-photon experiment, the coincidence-count distri-
bution C(φ1, φ2) is obtained by projecting photons 1 and 2 onto
the optical modes φ1 and φ2. The coincidence-count distribu-
tion is proportional to the joint probability P (φ1, φ2) for the
detection of the photon pair in these optical modes. Among the
optical degrees of freedom for which down-converted photons
may exhibit correlations, transverse modes are an interesting
subject of study [1], as in this case the two-photon correlations
extend over a wide range of spatial modes {φ1, φ2}.

Even though the structure of the two-photon spatial corre-
lations P (φ1, φ2) may be intricate [2–4], Klyshko developed
a simple method, introduced in 1988, for describing these
correlations when considering a SPDC source excited by
a plane-wave pump photon [5]. Instead of considering the
nonlocal joint detections that take place in a real-life two-
photon experiment, Klyshko’s advanced-wave picture (AWP)
is based on a prepare-and-measure scenario. In this scenario,
the detection event at one of the detectors is replaced with
(or thought of as) an emission event. Then, in place of
detecting a photon (say photon 1) in the spatial mode φ1, in
the AWP one is effectively preparing a photon with transverse
spatial mode φ1. This prepare-and-measure scheme is assigned

with a conditional probability PAWP (φ2|φ1) of detecting the
emitted photon in the spatial mode φ2 after some propagation,
given that it was prepared in spatial mode φ1. Klyshko’s
AWP is constructed in such a way that this single-photon
prepare-and-measure probability equals the two-photon joint
probability for the detection of photon 2 in spatial mode φ2

given that its correlated down-converted partner photon was
detected in spatial mode φ1:PAWP (φ2|φ1) = P (φ1, φ2). Being
based on the preparation and measurement of an advanced
wave, the AWP can be cast in terms of a classical optics
experiment in which the detected intensities of an optical field
are proportional to the SPDC joint probabilities measured at
the single-photon level.

In 1994, Belinskii and Klyshko [6] theoretically analyzed
two-photon image and diffraction effects, where the conditions
for the formation of a two-photon image and diffraction were
predicted using a classical optics setup based on the AWP.
This was an interesting demonstration of the usefulness of
the AWP for designing experiments and predicting results.
Two-photon imaging and diffraction are optical effects ob-
served in the spatial distribution of the joint detection of
the down-converted optical fields, and rely on spatial-mode
correlations between them. These two-photon effects were
experimentally demonstrated a few years later in a variety of
experiments [7–12].

A feature of the AWP is that this advanced wave emit-
ted from detector-1’s location is analogous to the temporal
reversion of the down-converted field 1, implying that it is
emitted towards the SPDC source. Then, “...the advanced wave
is effectively reflected by the wave fronts of the pump wave
inside the crystal, i.e., the thin crystal serves as a mirror for
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FIG. 1. (a) Usual SPDC scenario and (b) the advanced-wave picture (AWP).

the advanced wave...” (Belinskii and Klyshko [6]). Finally, the
reflected advanced wave is propagated from the SPDC source
to detector 2, taking into account all linear optical elements in
place. (See Fig. 1.)

For a plane-wave pump considered by Klyshko [5,6], the
nonlinear crystal is simply replaced with a plane mirror of
infinite transverse size. In this case, the law of reflection on
a specular surface accounts for the perfect transverse wave-
vector correlations between photon pairs created from a pump
photon with well defined wave vector. Pump beam phase
curvatures lead to a curved, transversely infinite mirror, and
have also been considered in the context of AWP [10]. More
recently, an experimental demonstration of the equivalence
between two-photon image and the AWP was carried out using
a camera-based coincidence system [13], and a classical optics
“prepare-and-measure” experiment was used to predict orbital
angular momentum correlations in SPDC [14].

In the majority of SPDC experiments, the pump beam is a
well collimated zero-order Gaussian beam, often approximated
in theory by a plane wave. Although this approximation reveals
itself useful for understanding a huge variety of phenomena, a
number of experiments have been performed that exploit the
spatial structure of the pump beam. These include the control of
two-photon interference [15–20], manipulation of correlations
in orbital angular momentum [21–23], creation of optical
vortex structures [24,25], violation of Bell’s inequalities [26],
increase of spatial entanglement [4,27], and exploration of
higher-order quantum correlations [28,29]. These experiments
fall outside the usual treatment of the AWP. In this paper, we
consider a more general parametric down-conversion (PDC)
experiment in which the pump beam has arbitrary spatial struc-
ture. We show that the two-photon coincidence distribution can
be compared to the result of the propagation of the advanced
wave through an optical element with profile equivalent to the
pump profile. In this treatment, the crystal can be considered
as an optically addressed spatial light modulator, where both
phase and amplitude are controlled by the pump laser beam.

In order to illustrate the concepts above, we use stimu-
lated PDC (StimPDC), a cavity-free parametric amplifier that
has been used to demonstrate image and coherence transfer

[30–32], phase conjugation [33], and orbital angular momen-
tum conservation [34]. Stimulated emission has also been
used for investigating the spectral properties of PDC [35,36].
In StimPDC, the creation of photons on one of the down-
converted fields is stimulated by an auxiliary laser. We show
here that the AWP is also applicable to StimPDC, making it
a helpful experimental tool for aligning and designing SPDC
experiments that explore spatial correlations.

The paper is organized as follows. In Sec. II, we derive
the equation describing the propagation of an optical field
(transverse spatial amplitude) through a set of three linear
optical devices in the paraxial approximation. It provides the
classical model behind the AWP. In Sec. III, we derive the
coincidence counting rate amplitude for SPDC, when signal
and idler photons propagate through linear optical devices.
We show that it is isomorphic to the classical field amplitude
derived in Sec. II, provided that one of the photons is projected
onto a mode having the same angular spectrum as the classical
input field with a conjugated phase. In Sec. IV, we derive the
idler intensity distribution in StimPDC and make a connection
with the AWP classical model and the coincidence measure-
ments, discussed in Secs. II and III, respectively. In Sec. V,
we present three StimPDC experiments correctly described by
the theory presented in Sec. IV. Finally, in Sec. VI, we provide
insights on how the StimPDC and the AWP can be useful to
design coincidence counting experiments.

II. PARAXIAL WAVE PROPAGATION

The propagation of the electric field through a linear optical
system can be described, in a very general way, by the following
input-output relation [37]:

φout (q ) =
∫

dq ′ H (q ′, q )φin(q ′), (1)

where φ(q ) is the field’s angular spectrum, which is the Fourier
transform of the field’s amplitude profile E (ρ ):

φ(q ) = 1

2π

∫
dρ E (ρ )e−iq·ρ, (2)
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FIG. 2. Paraxial propagation through two arbitrary optical sys-
tems (A and B) and an amplitude mask of transfer function t .

q = (kx, ky ) are the transverse wave vector coordinates, and
ρ = (x, y) are its conjugate position coordinates. H (q ′, q )
is the impulse-response function of the optical device in the
transverse wave vector domain, which we henceforth refer to
simply as transfer function. All integrals have limits −∞ and
∞ unless otherwise noted.

Let us consider a few particular cases that are going to be
useful further in this article. The first one is the free paraxial
propagation over a distance z:

Hz(q ′, q ) = δ(q ′ − q ) exp

[
−i

q2

2k
z

]
, (3)

where k = √
q2 + k2

z is the wave number and kz is the z

component of the wave vector k. The above transfer function,
after integration in Eq. (1), simply multiplies the initial angular
spectrum by a phase factor.

The second case is the amplitude-and-phase mask. It is
described in the position space by a function T (ρ) relating the
field E+ immediately after the mask to the field E− immediately
before:

E+(ρ) = T (ρ ) E−(ρ). (4)

In transverse momentum space, the equation above is written
in terms of the function t , the Fourier transform of T :

φ+(q ) =
∫

dq ′ t (q ′ − q ) φ−(q ′), (5)

from which t (q ′ − q ) is the mask’s transfer function.
Finally, we examine an optical system composed of three

subsystems as shown in Fig. 2, where, in between two subsys-
tems of arbitrary transfer functions A and B, we find a mask
as described by Eq. (4). The output angular spectrum of this
optical system is related to its input by

φout (q ) =
∫

dq ′dq ′′dq ′′′B(q ′, q ) t (q ′′ − q ′)

×A(q ′′′, q ′′)φin(q ′′′). (6)

The output amplitude in spatial coordinates is therefore given
by

Eout (ρ) = 1

2π

∫
dq dq ′dq ′′dq ′′′eiq·ρB(q ′, q )t (q ′′ − q ′)

×A(q ′′′, q ′′)φin(q ′′′), (7)

where φin can yet be written in terms of Ein, allowing us to
express the output field in terms of the integral transform of
the input field. The last equation will be of particular help
to build the advanced-wave picture for both spontaneous and
stimulated PDC scenarios. Note that A and B are completely
arbitrary paraxial transfer functions that may comprise free
propagation and/or any spatial modulations possibly intro-
duced by the optical subsystems.

FIG. 3. (a) Spontaneous PDC using a pump laser with spatial
structure. The down-converted photons travel through optical systems
H1 and H2. Photon 1 is projected onto spatial mode φ. (b) In the similar
scheme for stimulated PDC, an auxiliary laser in sent along the signal
direction, stimulating generation of signal photons in the laser mode
and conjugated twin photons in the idler mode.

III. TWO-PHOTON QUANTUM STATE
GENERATED BY SPDC

SPDC is a wave-mixing process involving three fields:
pump, signal, and idler. The pump is usually a laser beam,
while signal and idler are weak fields, due to the low conversion
efficiency of the spontaneous process. In the monochromatic,
paraxial, and thin-crystal approximations, the two-photon state
produced by SPDC is well described by [1,12,18,38]

|ψ〉 = |vac〉 + C

∫
dq1dq2 v(q1 + q2)|1; q1〉|1; q2〉, (8)

where |1; q〉 represents a single-photon state in the mode with
transverse momentum q and v(q ) is the normalized angular
spectrum of the pump beam at the exit plane of the crystal. 1
and 2 are indices relative to signal and idler fields, respectively.

The two-photon detection probability is proportional to the
fourth-order correlation function [39]

P (ρ1, ρ2) ∝ 〈ψ |E†
1(ρ1)E†

2(ρ2)E1(ρ1)E2(ρ2)|ψ〉, (9)

where E(ρ) is the detection operator for a photon detected at
position ρ. Assuming that the pump beam is sufficiently weak
so that the production of multiple photon pairs is negligible,
one can associate a wave function � to the two photon state
so that P (ρ1, ρ2) = |�(ρ1, ρ2)|2, where [40]

�(ρ1, ρ2) = 〈0|E1(ρ1)E2(ρ2)|ψ〉. (10)

Two-photon coincidence imaging has been considered by
a number of authors [12,41,42]. Let us suppose that photons
1 and 2 propagate through optical systems described by the
transfer functions H1 and H2, as illustrated in Fig. 3(a). We
also assume that photon 2 will be detected by a point detector.
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In this case the detection operator is

E2(ρ2) = 1

2π

∫
dq2dq ′

2 eiq ′
2·ρ2H2(q2, q ′

2) a2(q2), (11)

where the annihilation operator a2(q2) annihilates a photon in
the optical mode with transverse momentum component q2.

Consider now that photon 1 is projected onto the spatial
mode φ. There are a number of possible strategies allowing this
kind of projection. One nice example is the projection onto a
Laguerre-Gaussian mode using a single mode optical fiber and
a holographic mask [21]. In all cases, projection onto a spatial
mode φ can be performed using an optical mode selector and a
single mode fiber. The detection operator in this case is given
by E1(ρ1) → E1φ , where

E1φ =
∫

dq1dq ′
1H1(q1, q ′

1)φ∗(q ′
1)a1(q1) (12)

and φ(q ) is the mode’s angular spectrum. Using operators (11)
and (12) in

�φ (ρ2) = 〈0|E1φE2(ρ2)|ψ〉, (13)

the two-photon wave function for a thin crystal becomes

�φ (ρ2) = 1

2π

∫
dq1dq2dq ′

1dq ′
2 v(q1 + q2)

×H1(q1, q ′
1) H2(q2, q ′

2) eiq ′
2·ρ2 φ∗(q ′

1). (14)

The wave function (14) closely resembles the output field
(7). That is to say, the parametric down-conversion within
the present approximations is isomorphic to an input-output
classical optical system in the spirit of the AWP.

We can identify the angular spectrum v(q1 + q2) with the
transfer function v(q ′ − q ′′) of an optical element having an
added reflection in the q2 coordinate. Thus the two photon state
from SPDC in the case where one photon is projected onto the
arbitrary state |φ〉 is equivalent to the optical system shown in
Fig. 1. The spatial structure of the pump beam comes into play
through its angular spectrum v. In this analogy the transmission
object described by t is replaced with a reflective object given
by the pump beam acting as a mirror t (q ′ − q ′′) → v(q ′ − q ′′).

IV. STIMULATED EMISSION

The emission of photons in the PDC process can be
enhanced using a coherent light field to stimulate, say, the
signal field. This is often done by aligning an auxiliary laser
along the same direction as the signal field [see Fig. 3(b)]. This
procedure enhances the creation of signal photons in the mode
of the coherent laser (spatial, polarization, and frequency) by
stimulated emission, concomitantly creating the counterpart
idler photons.

The state produced by the stimulated process, within the
monochromatic, paraxial, and thin-crystal approximations, is
[43]

|ψ〉 = |vs (q )〉|0〉 + C

×
∫

dq1dq2vp(q1 + q2)a†(q1)|vs (q )〉|1; q2〉, (15)

where 1 and 2 are indices for signal and idler, respectively,
vs (q ) is the angular spectrum of the stimulating field at z = 0

(at the crystal), and |vs (q )〉 is the corresponding multimode
coherent state in the continuous mode representation (p. 565
of Ref. [39]).

The idler intensity at a distance z from the crystal and trans-
verse coordinates ρ2 is given by the second-order correlation
function

I (ρ2) = 〈E(−)
2 (ρ2)E(+)

2 (ρ2)〉, (16)

where E(+)
2 (ρ2) is the field propagated through the optical

system of transfer function H2 between the crystal and the
detection planes:

E(+)
2 (ρ2) = 1

2π

∫
dq ′

2dq2H2(q ′
2, q2)a(q2)eiq ′

2·ρ2 . (17)

As the electric field operator applied to vaccum yields zero,
only the second term in Eq. (15) contributes to the intensity.
Thus

E(+)
2 (ρ2)|ψ〉 ∝

∫
dq ′dq1dq2H2(q2, q ′)eiq ′·ρ2

× vp(q1 + q2)a†(q1)|vs (q )〉|0〉 (18)

and, therefore,

I (ρ2) ∝ ∫
dq ′′dq ′

1dq ′
2dq ′dq1dq2H

∗
2 (q ′

2, q ′′)H2(q2, q ′)

× e−i(q ′′−q ′ )·ρ2v∗
p(q ′

1 + q ′
2)vp(q1 + q2)

×〈vs (q )|a(q ′
1)a†(q1)|vs (q )〉. (19)

The commutation relation for the bosonic operators yields
〈vs (q )|a(q ′

1)a†(q1)|vs (q )〉 = δ(q ′
1 − q1) + v∗

s (q1)vs (q ′
1),

splitting the integral of Eq. (19) in two parts:

I (ρ2) = Ispont (ρ2) + Istim(ρ2). (20)

The first part—the one involving δ(q ′
1 − q1)—describes the

spontaneous emission, while the second one—which carries
v∗

s (q1)vs (q ′
1)—represents the stimulated process. This nice

and simple result was obtained in Ref. [31] for free propagation
after the crystal and is generalized here for any given transfer
function H2. In order to prove this statement, we use the fact
that the angular spectrum v is the Fourier transform of the
amplitude profile E . With that, a straightforward calculation
provides the expression for the first term on the right-hand
side of Eq. (20):

Ispont (ρ2) ∝
∫

dρ
∣∣Ep(ρ)

∣∣2

×
∣∣∣∣
∫

dq ′
2dq2 H2(q2, q ′

2)ei(q ′
2·ρ2−q2·ρ )

∣∣∣∣
2

, (21)

which, on the grounds that it does not depend on the profile
of the auxiliary laser, gives the total intensity due to the
spontaneous emission after propagation through the optical
system of transfer function H2.

It is worth noting that, in the case of paraxial free propaga-
tion from crystal to detector [Eq. (3)], the second line in Eq. (21)
reduces to 1. This implies that the detected intensity after free
propagation contains no information on the spatial structure of
the pump beam, since the squared modulus of the pump profile
Ep is integrated over the transverse spatial coordinates.
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The second term on the right-hand side of Eq. (20) can be
written as

Istim(ρ2) ∝
∣∣∣∣
∫

dq ′
2dq1dq2 H2(q2, q ′

2)eiq ′
2·ρ2

× vp(q1 + q2)v∗
s (q1)

∣∣∣∣
2

, (22)

which gives the intensity due to StimPDC. We can see that
it depends on v∗

s (ρ), the angular spectrum of the auxiliary
beam in the crystal plane. The contribution from the stimulated
emission can be made much stronger than that from sponta-
neous emission if the auxiliary laser intensity is high enough.
Typically, a few milliwatts are enough to produce a stimulated
emission 100 times stronger than the spontaneous emission.

To see the relation between StimPDC and the AWP, we
note that the last equation is isomorphic to Eq. (7). Indeed, if
we assume that the angular spectrum of the auxiliary field is
prepared by sending an initial field φ∗(q ′

1) back through an
optical system represented by the transfer function H1, we can
replace

v∗
s (q1) =

∫
dq ′

1H
B
1 (q ′

1, q1)φ∗(q ′
1) (23)

in Eq. (22), where HB
1 is the transfer function of the optical

system H1 in the backwards direction (from the detector to the
crystal). Then, we get

Istim(ρ2) ∝
∣∣∣∣
∫

dq ′
1dq ′

2dq1dq2e
iq ′

2·ρ2φ∗(q ′
1)

×HB
1 (q ′

1, q1)vp(q1 + q2)H2(q2, q ′
2)

∣∣∣∣
2

, (24)

which is identical in form to Eq. (7). We conclude that the
AWP, in this sense, also applies to StimPDC.

The auxiliary laser field v∗
s (q1) can be properly prepared

using a spatial light modulator (SLM), for instance, in order
to help in the design of experiments with twin photons from
SPDC. Moreover, it can be helpful for alignment, since one
can align the setup with the auxiliary laser and the stimulated
idler beam, which is so intense that we can observe it with a
common and inexpensive CCD camera, or even the naked eye,
depending on the wavelength. Once the setup is aligned, one
can just turn off the auxiliary laser and perform coincidence
counting experiments.

In the next section, we present a number of examples of
how this can be used for optical experiments.

V. EXAMPLES AND EXPERIMENTS WITH
STIMULATED EMISSION

We illustrate the usefulness of stimulated parametric down-
conversion in the design of experiments with spontaneous
emission. The experimental setup is sketched in Fig. 4. A diode
laser oscillating at 405 nm pumps a BBO nonlinear crystal.
We work in a noncollinear phase-matching configuration with
very small angle between signal and idler, 1◦, and use 10
nm bandwidth interference filters centered at 780 nm (signal)
and 840 nm (idler). Another diode laser (auxiliary laser) at
780 nm is aligned with the signal direction and stimulates the
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FIG. 4. General setup used for our StimPDC experiments.

emission in both signal and idler. Pump and auxiliary lasers
can be spatially modulated on demand, which is represented
on the picture by reflection on an SLM.

The intensity of the emission in the idler field is strongly
enhanced in comparison to the case of only spontaneous
emission, generating a beam with macroscopic intensity whose
transverse profile is detected by a CCD camera, along with a
relatively small background coming from spontaneous emis-
sion. In practice, we can monitor the stimulated emission
profile in real time. The auxiliary laser transverse profile is
also monitored with a CCD camera.

A. Phase conjugation effects

The physical phenomenon behind the AWP is phase con-
jugation. For time-dependent waves, phase conjugation is
equivalent to temporal reversion. Therefore, the advanced wave
(as in the AWP) is exactly the time reversal of the signal
beam. In stimulated down-conversion, the phase conjugation
is evident in Eq. (22). It is the conjugate of the auxiliary beam’s
angular spectrum that, together with the pump, determines
the properties of the idler beam. For instance, if the pump
beam has a flat transverse field distribution, the idler beam
will propagate forward as if it were the reflection of the
advanced wave (signal propagating backwards). Indeed, with
a flat pump profile, the angular spectrum is peaked around
zero, vp(q1 + q2) = δ(q1 + q2); plus, considering a transfer
function Hz representing free propagation over a distance z,
Eq. (22) gives

Istim(ρ2) ∝
∣∣∣∣
∫

dq ′
2dq2Hz(q2, q ′

2)v∗
s (−q2)eiq ′

2·ρ2

∣∣∣∣
2

, (25)

where the negative sign in v∗
s (−q2) indicates the mirror

reflection and the integration over q ′
2 performs the Fourier

transform from q space to ρ space.
Experiment. In Ref. [33], the authors observed effects

of phase conjugation by analyzing the symmetry of images
transferred from the pump and auxiliary beams to the idler.
Here, we illustrate the phase conjugation effects by observing
the focusing of the idler beam as we make the auxiliary
beam diverge. The scheme is sketched in Fig. 5. The pump
is collimated, so that its wave front and amplitude distribution
are practically flat. The auxiliary laser is sent to the SLM,
where a divergent lens of variable focal length is implemented,
and its profile is monitored with a CCD camera. We start
with very long focal length, so that the auxiliary beam stays
collimated. In this case, the idler beam has its largest spot size.
As we force the auxiliary laser to diverge (by bringing the
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FIG. 5. Experimental scheme for phase conjugation (flat pump
wave front).

focal length from −∞ toward zero), its spot size in the camera
increases. Consequently, the idler spot starts decreasing. That
is to say, because the idler beam reproduces the auxiliary’s
advanced wave reflected by a flat mirror, its spot size varies in
the opposite way as compared to the auxiliary. If the auxiliary
field is converging, the idler is diverging, and vice versa. We
have observed this behavior and the results are shown in Fig. 6.

B. Phase-modulated pump: Fractional Fourier transform

The fractional Fourier transform (FRFT) has been studied
in the context of coincidence imaging by several authors
[44–50]. In these experiments, the down-converted photons
pass through optical systems that are used to implement the
FRFT. Here we show that the FRFT can be implemented in
the AWP by controlling the pump beam alone. The FRFT
is a generalization of the usual Fourier transform and it is
parametrized by the angle α. Its kernel is given by

Fα (q, q ′) ∝ exp

{
i

2

[
cot α(q2 + q ′ 2) − 2

q ′ · q
sin α

]}
, (26)

which transforms a function �(q ) into a function �(q ′). Here
q and q ′ are dimensionless variables, which can be represented
by different coordinate axes in a bosonic phase space. For α =
π/2, one recovers the usual Fourier transform:

Fπ
2
(q, q ′) ∝ exp(−i q ′ · q ), (27)

FIG. 6. Experimental results for phase conjugation. (a)–(d) In-
creasing spot size of the auxiliary beam registered by the CCD camera
as we make it diverge. (e)–(h) Corresponding decreasing idler spot
size. At the background, one can see a portion of the spontaneous
emission cone.

where q and q ′ are canonically conjugate. For α = π , the FRFT
kernel corresponds to

Fπ (q, q ′) ∝ δ(q + q ′), (28)

where q and q ′ live in the same space, which can be understood
in the context of optics as an imaging system.

Let us now return to the wave function (14) and consider
that the pump beam is a Gaussian beam with angular spectrum
given, up to a constant phase factor, by

vp(q ) = fp(q ) exp

(
−i

Z

2K
q2

)
, (29)

where K = 2π/λp is the pump beam wave number, fp is
the Gaussian envelope defined at the waist position, and Z =
ZC − Z0 with ZC and Z0 being, respectively, the positions
of the nonlinear crystal and the pump beam waist along the
propagation axis. For the implementation of the FRFT, we
consider the special case where signal and idler photons are
frequency degenerate with wave number k = 2π/λ = K/2,
and propagate freely over the same distance z between the
crystal and the corresponding detection planes. Using the free
propagation transfer functions for signal and idler given in
Eq. (3), we write the two-photon wave function at the detection
planes as

�(q1, q2) = fp(q1 + q2)

× exp

{
−i

[
Z(q1 + q2)2

2K
+ z

(
q2

1 + q2
2

)
2k

]}
.

(30)

The propagated two-photon wave function (30) bears close
similarity with the FRFT kernel given in Eq. (26). The proper
identification between them requires the definition of dimen-
sionless variables q̄1 = sq1 and q̄2 = sq2, with “s” being a
constant with dimension of length. We further identify the
angle α such that

Z

Ks2
= 1

sin α
,

(
z

k
+ Z

K

)
1

s2
= − cot α. (31)

Using the definitions (31), the propagated two-photon wave
function (30) in terms of the dimensionless variables q̄1 and
q̄2 can be written as a function of the quadratic phase term
associated with the FRFT kernel given in Eq. (26):

�(q̄1, q̄2) = fp

(
q̄1 + q̄2

s

)
Fα (q̄1, q̄2). (32)

Similar to what was discussed in Sec. III, we consider the
mode of photon 2, �φ (q2), produced by the projection of
photon 1 onto the spatial mode φ(q1):

�φ (q̄2) =
∫

d q̄1�(q̄1, q̄2)φ∗(q̄1/s). (33)

We will also assume that the pump beam envelope function fp

is much broader than the mode function φ, so that fp becomes
essentially a constant factor in the integrand given in Eq. (33).
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We finally write the mode function of photon 2 as

�φ (q̄2) ∝
∫

d q̄1φ
∗(q̄1/s)Fα (q̄1, q̄2) ∝ Fα{φ∗(q̄1/s)},

(34)

where Fα{·} denotes the FRFT of order α. We then conclude
that the mode function describing photon 2 is given by the
FRFT of the mode φ∗(q ) in which the photon 1 is projected.
Similarly, the detection amplitude for photon 2 [such as in
Eq. (14)] can be written as a FRFT in position representation
by making use of ψ∗(ρ1), the Fourier transform φ∗(q ):

�φ (ρ̄2) ∝
∫

d q̄2�φ (q̄2)ei q̄2·ρ̄2 ∝ Fα{ψ∗(sρ̄1)}, (35)

where we also define dimensionless variables in position
representation: ρ̄i = ρi/s (i = 1, 2).

In order to gain intuition on the order α of the FRFT as a
function of the experimental parameters, we solve Eqs. (31) to
get

cos α = −
(

2
z

Z
+ 1

)
, (36)

which provides α as a function of the longitudinal position
of the detection planes (z) and the pump beam waist (Z) in
relation to the nonlinear crystal. Note that Eq. (36) imposes a
constraint on the ratio z/Z for the implementation of lensless
FRFT. First of all, we note that Z = ZC − Z0 < 0, i.e., the
pump beam must be convergent at the nonlinear crystal, so
that its waist is located after it. This is in full agreement with
an advanced-wave picture of this FRFT implementation: the
phase curvature of the pump must act as a concave mirror for
the advanced wave φ∗(q ) “emitted” from detector 1’s location.
A careful inspection of Eq. (36) provides the prescription on
the location of the pump beam waist within the range Z0 ≥
ZC + z for a particular choice of α. For instance, working
with Z = −z gives α = 0, while Z = −2z gives α = π/2 (the
standard Fourier transform). In the more general case, proper
control of the phase curvature of the pump beam allows for
lensless implementation of the FRFT, which has applications
in imaging and signal processing [51]. We note that a lensless
implementation of the FRFT was performed using partially
coherent light and coincidence detection in Ref. [48], though
phase curvature of the beam was not relevant in that case.

A number of previous results and possible applications can
be obtained as special cases of Eqs. (35) and (36). For example,
the imaging experiment performed by Pittman et al. [10] is
obtained from Eq. (35) by choosing α = π . Recalling that
φ∗(q ) represents a certain transverse mode preparation of the
AWP light source, its Fourier transform is actually the image of
some aperture function (which implements the mode filtering)
placed in front of the detector. We note that a similar effect was
used to optimize the pair collection efficiency in SPDC [52].

The AWP equivalence between SPDC [Eq. (14)] and Stim-
PDC [Eq. (22)] suggests that we have, for StimPDC,

Istim(ρ2) ∝ |�φ (sρ2)|2, (37)

where �φ is given by Eq. (35) and φ∗ is prepared with the
stimulating laser according to Eq. (23).

Experiment. We now illustrate the effect of phase modula-
tion of the pump transverse profile in stimulated emission by

FIG. 7. Experimental scheme for fractional Fourier transform.
The curved pump wave front acts as a lens, which performs a FRFT
on the auxilary beam’s advanced wave.

performing the optical FRFT of the auxiliary field, observed
in the idler profile. Consider that the angular spectrum φ(q ) of
the field

E (ρ) ∝
{

1 if d−δ
2 < |x| < d+δ

2 ,

0 elsewhere,
(38)

which characterizes the image of a double slit, centered at
x = 0, with slit width δ and separation d. For this kind of AWP
source and performing the FRFT, from Eqs. (37), (38), and (2)
we expect to see transverse distributions varying between the
usual Young double slit interference pattern when the FRFT
parameter α = π/2 and the image of the double slit when α =
0. The FRFT parameter α is varied by changing the curvature
of the pump beam wave front. We have done this with a variable
focal-length lens implemented by an SLM (Fig. 7).

The function φ is realized by sending the auxiliary laser
through a double slit, which is imaged to the detection plane
by a lens located between the double slit and the crystal. The
results are shown in Fig. 8, which compares, for different values
of α implemented, the observed intensity of the idler beam with
the simulated FRFT of the imaged auxiliary laser. Thus our
results show that the curvature of the pump field can be used to
implement the optical FRFT of the transverse spatial amplitude
of the auxiliary laser. Since the FRFT has found use in filtering
and signal processing, our results could be interesting for these
fields.

FIG. 8. Experimental results for the fractional Fourier transform.
(a)–(e) Calculated FRFT of a Gaussian profile partially blocked by a
double slit for several values of α (0, 0.20π , 0.25π , 0.30π , and 0.35π ,
respectively), using Eqs. (37), (38), and (2). (f)–(j) Idler intensity
profiles showing the corresponding experimental implementations of
FRFT.
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C. Amplitude-modulated pump

It is pedagogical to analyze the cases where the structure of
the pump beam is transferred to the coincidence counting rate
in the SPDC case, or to the idler intensity in the StimPDC case.
Let us consider the situation where the pump beam propagates
through some diffraction aperture, which is imaged onto a
plane situated at distance z after the crystal. Let us assume
that the distances from the detection planes and the crystal are
also z. It was shown in Ref. [12] that the coincidence counting
rate is given by

C(ρ1 = 0, ρ2) ∝ |Ep(ρ2/2, z)|2, (39)

where Ep is the pump beam field profile at a distance z from
the crystal and ρ1 is fixed to zero. From the AWP perspective,
we have the signal detector acting as point source located at
a distance z from the crystal and ρ1 = 0. In this ideal case,
we ignore the effects due to the finite size of the detector
aperture. It emits an advanced wave which, after reflection in
a structured mirror, acquires the angular spectrum of the pump
and propagates over a distance z to form the image given by Ep.
The only difference is that, due to the distinct wavelength, the
coincidence image is two times larger than the actual pump
profile, as can be seen from the factor 1/2 in the argument
of Ep.

The equivalent scheme for stimulated down-conversion
is obtained by replacing the signal point detector with the
auxiliary laser focused on a plane at a distance z from the
crystal. In the plane of the crystal, the auxiliary laser will
have the same angular spectrum as the advanced wave coming
from a point source, neglecting the effects due to the finite
size of the laser in the focal plane. Approximating the angular
spectrum of the auxiliary laser in the crystal by a plane wave,
with vs (q ) = δ(q ), Eq. (22) becomes

Istim(ρ2) ∝
∣∣∣∣
∫

dq2 vp(q2) exp

[
i

(
q2 · ρ2 − q2

2

2k2
z

)]∣∣∣∣
2

= |Ep(ρ2, z)|2. (40)

Comparing Eqs. (39) and (40), we can see that in both cases the
angular spectrum of the pump beam is transferred and, after
propagation, the same image as the pump is measured in the
idler side. The only difference is the scaling factor of 2 that
appears only in the argument of Ep in Eq. (39).

Experiment. We present here a slightly different case, where
an obstacle (a thin horizontal and/or a vertical wire) is placed
in front of the pump and imaged onto the crystal plane with a
4f imaging system. In this way, when the pump reaches the
crystal, its amplitude shows the exact shape of the obstacle and
we have a purely amplitude-modulated pump.

The auxiliary beam is collimated and sent to the crystal.
The idler’s intensity then results from the advanced wave
propagating back from the detector to the crystal, “reflecting”
in the amplitude-modulated pump and propagating towards the
detection plane. In our specific experiment, the detection plane
is about 30 cm behind the crystal, meaning that the advanced
wave goes through some diffraction prior to detection.

Figure 9 illustrates the experimental setup and Fig. 10
shows the result of the stimulated beam intensity, which
displays approximately the same shape of the obstacle in

FIG. 9. Experimental scheme for the amplitude-modulated pump,
where the pump amplitude profile is transferred to the idler, given a
flat auxiliary beam profile.

front of the pump. The verification of Eq. (40) is therefore
done by observation of qualitative agreement between the
measurements of |Ep(ρ2, z)|2 and Istim(ρ2).

VI. USING STIMPDC TO DESIGN SPDC EXPERIMENTS

An issue related to the design and realization of experi-
ments involving pairs of photons and transverse spatial effects
concerns the measurement of the coincidence patterns. The
first approach at hand is to scan the photon detectors through
the detection planes using small pinholes or optical fibers and
reconstruct the conditional spatial structure. This task can be
very time consuming, and becomes prohibitive if one needs to
follow some iterative procedure to align or optimize parameters
of the setup. The second possibility is to use intensified CCD
cameras that allow the direct measurement of the whole two-
photon coincidence [53,54] pattern. However, even though this
is more efficient than scanning, it also requires some time due
to the weak flux of photons in the spontaneous parametric
down-conversion in addition to other technical limitations of
these devices. We propose and demonstrate here an alternative
approach using the AWP applied to stimulated emission for
testing and aligning such experimental setups.

Let us use the results discussed in Sec. V to exemplify
the use of StimPDC to design SPDC experiments. We have
performed the experiment where an opaque object was used
to modulate the amplitude of the pump laser in the crystal.
This was done in such a way that the image of the object was
formed in a plane situated at a distance z from the crystal. The

FIG. 10. Experimental results for amplitude-modulated pump.
The pump intensity profile at the crystal plane is shown when we
place a vertical wire (a), a horizontal wire (b), or two crossed wires
(c). From (d) to (f), we see the corresponding idler intensity profiles
which reproduce the pump amplitude modulation.
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auxiliary stimulating laser was just focused in plane, also at
a distance z from the crystal. As a result, the intensity profile
of the stimulated idler beam at a distance z from the crystal
had the same shape as the pump laser at a distance z from the
crystal.

Now, the SPDC version is easily obtained by turning off
the auxiliary laser and detecting the signal beam in a way that
its advanced wave reproduced the auxiliary laser propagation
backwards the crystal. The auxiliary laser was just focused
onto a plane. Therefore, the corresponding detection scheme
for the signal beam is to use a small pinhole in front of the
detector situated at a distance z from the crystal. As a result,
the coincidence transverse profile obtained scanning the idler
detector also at a plane situated at a distance z from the crystal
will reproduce the pump beam intensity profile at the plane
situated at a distance z from the crystal. This is exactly what the
measurements in Fig. 10 illustrate for the StimPDC intensity.

VII. CONCLUSION

Klyshko’s advanced-wave picture is an extremely useful
tool for understanding and designing two-photon coincidence
experiments. Here we studied the advanced-wave picture
considering a spatially structured pump beam in the context
of both spontaneous and stimulated PDC. We show that, when
the pump beam angular spectrum is properly prepared, it works
in analogy to a spatial light modulator, rather than as a simple
mirror as described in the original version of the advanced-
wave picture. This allows for a number of interesting appli-

cations in quantum imaging and the preparation of spatially
entangled photons. Though the AWP has found widespread
use in analyzing two-photon coincidence experiments (SPDC),
here it has been applied to StimPDC. Linking the advanced-
wave picture, typically used in analyzing correlations in SPDC,
to StimPDC, which can be observed using a simple CCD
camera or even the naked eye, suggests that StimPDC can
be used to help design, build, and align SPDC experiments.
We discussed how the fractional Fourier transform can be
performed in a quantum imaging scenario using the phase
curvature of the pump laser as the lens and presented an ex-
perimental implementation using StimPDC. We also show how
the advanced-wave picture applied to both the spontaneous and
stimulated cases describes the transfer of the angular spectrum
from the pump to the down-converted fields. We believe that
this study can be helpful in the manipulation of the spatial
correlations of twin photons from parametric down-conversion
in several applications, as well as in design and alignment of
coincidence experiments.
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