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Quasilinear approach to ray tracing in weakly turbulent, randomly fluctuating media
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Ray propagation in weakly turbulent media is described by means of a quasilinear (QL) approach in which the
dispersion relation and the ray equations are expanded up to, and including, second-order terms in the medium and
ray fluctuations, leading to equations for the ensemble-averaged ray and its root-mean-square (rms) spreading. An
important feature of the QL formalism is that the average ray does not coincide with the zero-order, unperturbed
ray but may exhibit a drift with respect to the latter that is governed by the mean squared fluctuations. The
theory is complete in that equations can be set for all quantities necessary to compute the ray trajectory and
the rms spreading along its path, yet they obey an infinite downward recurrence in which equations involving
lower-order derivatives of the medium fluctuations are recursively generated by the subsequent higher-order
derivative, and which must thus be truncated for practical purposes. Using as examples the propagation of rays in
homogeneous media with fluctuations arising from the presence of either a single random mode or a multimode
isotropic turbulent spectrum, the QL formalism is validated against Monte Carlo (MC) calculations and, whenever
possible, its numerical implementation is verified by comparison with analytical predictions. Choosing 4% both
for the level of fluctuations and for the maximum ratio between the wavelengths of the propagating ray and of the
turbulent modes, so as to remain within the validity of the second-order expansion in the random perturbations
and of the eikonal approximation, the overall agreement between QL and MC results is fairly good, particularly
for quantities such as the distance traveled by the average ray, its perpendicular rms spread, and the averages of
the wave-vector components.
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I. INTRODUCTION

The propagation of electromagnetic and sound waves in tur-
bulent media, where environmental quantities (such as the den-
sity) fluctuate randomly, has attracted considerable interest for
more than half a century (at least since attempts to understand
scintillation and the twinkling of stars) and has always counted
on the geometrical optics (or acoustics) approximation, also
known as ray tracing, as one of its most helpful and dependable
workhorses [1–14]. Indeed, the use of geometrical ray (or
eikonal) theory in random media has spanned a wide variety
of fields and applications, ranging from the general theory
of light, sound, or radio-wave propagation in the atmosphere
or in the ocean [1–5,10–13] to more practical problems such
as interpreting acoustical travel times and amplitudes in the
framework of harmonic sound transmission, noise control, and
sonic detection schemes and how they may be affected by
sound dispersion in the ocean or in the atmosphere [15], of
seismic analysis and ocean or solid-earth tomography [16–18],
or of ultrasonic techniques for nondestructive defect evaluation
in solids or telemetry of immersed objects in liquids [19];
understanding pulsar or GPS scintillation as radio signals
propagate across thin phase-changing layers (or screens) in the
interstellar medium or in the ionosphere [13,20,21]; comparing
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the intensity distributions of rays and waves in the semiclassical
limit when studying the formation of so-called rogue (or freak)
waves [22,23]; and describing the scattering of radio-frequency
or millimeter waves by density or magnetic fluctuations as they
propagate in a plasma [24–28]. In most of these works, when a
numerical treatment is performed, the effect of the fluctuating
field (say, the density, velocity, or index of refraction) is
simulated by randomly sampling some probability distribution
that is supposed to mimic the properties of the turbulent
medium in which propagation is taking place [basically, by
employing Monte Carlo (MC) or similar techniques] [15–28].

As is well known, and if the outcome of the calculation is not
to be plagued by noise, any approach relying on the numerical
mimicking of a fluctuating medium (or of its consequences on
wave propagation) demands the realization of very large sets
of data. Hence, an alternative, so-called statistical approach
has been proposed to trace rays in random media by writing
the fluctuating field (in this case, the density) as the sum of
a nonfluctuating, unperturbed background plus a randomly
varying component with a known spectrum, the ray equations
then being properly averaged over the fluctuations to yield
equations describing both the propagation of an ensemble-
averaged ray and its root-mean-square (rms) angular spreading
[26]. The purpose of this article is to present a different,
although similar approach based on the Hamiltonian form of
the ray equations [29–31], making it eventually better suited
to treat more complex dispersion relations (other than simple
optical or laser dispersion [26]) and geometries (as with ray
tracing in tokamaks [24,25,27,28]). So, in Sec. II the general
formalism is developed and discussed, in Sec. III test cases
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and benchmarks are presented, and in Sec. IV results are
summarized and conclusions drawn. Also, and in order not to
burden the text, some of the lengthier equations (but which are
not part of the core formalism) are reported in the appendixes.
As somewhat suggested by the titles of the two founding
textbooks in the field [1,2], which are mirrored in the title
of this paper, one uses the terms turbulent and random almost
indistinctly (with the former clearly implying the latter), but
keeping in mind that there is always a spectrum associated with
turbulence (hence the care not to qualify as turbulent the case
in Sec. III B of a single random mode, saving that qualifier
for the case in Sec. III C of an isotropic spectrum of random
modes).

II. GENERAL QUASILINEAR FORMALISM FOR RAY
TRACING IN RANDOM MEDIA

A. Dispersion relation and ray equations as power series
in the fluctuations

The starting point, for waves with frequency ω propagating
in a given medium, is to write the local dispersion relation in
the form

D(ω, r, k) ≡ ω − ω(r, k) = 0, (1)

where r ≡ (r1, r2, r3) and k ≡ (k1, k2, k3) are the canonically
conjugate coordinate and wave vectors, respectively, so the ray
equations [29–31]

dri

dt
= −∂D(ω, r, k)/∂ki

∂D(ω, r, k)/∂ω
and

dki

dt
= ∂D(ω, r, k)/∂ri

∂D(ω, r, k)/∂ω

(2)

take the explicitly Hamiltonian form

dri

dt
= ∂ω(r, k)

∂ki

and
dki

dt
= −∂ω(r, k)

∂ri

, (3)

with t some timelike integration variable along the ray. As-
suming that one of the ways ω(r, k) depends on r is via
some medium property, say, its density ne(r), and the latter

can be split into an ensemble average 〈ne(r)〉 plus a randomly
fluctuating term δne(r), whence

ne(r) = 〈ne(r)〉 + δne(r), (4)

with |δne(r)| � 〈ne(r)〉 and 〈δne(r)〉 = 0 by construction, one
may write

ω(r, k) � ω0(r, k) + ω1(r, k)δne(r)

+ ω2(r, k)δne(r)δne(r), (5)

where

ωm(r, k) ≡ 1

m!

∂mω(r, k)

∂nm
e

∣∣∣∣
〈ne (r)〉

. (6)

The ray equations (3) then become

dri

dt
� ∂ω0(r, k)

∂ki

+ ∂ω1(r, k)

∂ki

δne(r)

+ ∂ω2(r, k)

∂ki

δne(r)δne(r) (7)

and

dki

dt
� − ∂ω0(r, k)

∂ri

− ∂ω1(r, k)

∂ri

δne(r)

− ω1(r, k)
∂δne(r)

∂ri

− ∂ω2(r, k)

∂ri

δne(r)δne(r)

− ω2(r, k)
∂δne(r)δne(r)

∂ri

. (8)

Parenthetically, the subscript e in ne has no special meaning,
having been imported from plasma physics (where it is used
to identify the electron density) and being used here simply to
distinguish density from index of refraction.

The next step is to also split a ray into ensemble-averaged
plus fluctuating terms,

r ≡ 〈r〉 + δr and k ≡ 〈k〉 + δk, (9)

plug the latter into (7) and (8), and expand up to, and including,
second-order terms in the fluctuating quantities. Therefore,

dri

dt
� ∂ω0(〈r〉, 〈k〉)

∂ki

+ ∂2ω0(〈r〉, 〈k〉)

∂ki∂rj

δrj + ∂2ω0(〈r〉, 〈k〉)

∂ki∂kj

δkj + 1

2

∂3ω0(〈r〉, 〈k〉)

∂ki∂rj ∂rl

δrj δrl + 1

2

∂3ω0(〈r〉, 〈k〉)

∂ki∂kj ∂kl

δkj δkl

+ ∂3ω0(〈r〉, 〈k〉)

∂ki∂rj ∂kl

δrj δkl + ∂ω1(〈r〉, 〈k〉)

∂ki

δne(〈r〉) + ∂2ω1(〈r〉, 〈k〉)

∂ki∂rj

δrj δne(〈r〉) + ∂2ω1(〈r〉, 〈k〉)

∂ki∂kj

δkj δne(〈r〉)

+ ∂ω1(〈r〉, 〈k〉)

∂ki

∂δne(〈r〉)

∂rj

δrj + ∂ω2(〈r〉, 〈k〉)

∂ki

δne(〈r〉)δne(〈r〉) (10)

and

dki

dt
� − ∂ω0(〈r〉, 〈k〉)

∂ri

− ∂2ω0(〈r〉, 〈k〉)

∂ri∂rj

δrj − ∂2ω0(〈r〉, 〈k〉)

∂ri∂kj

δkj − 1

2

∂3ω0(〈r〉, 〈k〉)

∂ri∂rj ∂rl

δrj δrl − 1

2

∂3ω0(〈r〉, 〈k〉)

∂ri∂kj ∂kl

δkj δkl

− ∂3ω0(〈r〉, 〈k〉)

∂ri∂rj ∂kl

δrj δkl − ∂ω1(〈r〉, 〈k〉)

∂ri

δne(〈r〉) − ∂2ω1(〈r〉, 〈k〉)

∂ri∂rj

δrj δne(〈r〉) − ∂2ω1(〈r〉, 〈k〉)

∂ri∂kj

δkj δne(〈r〉)

− ∂ω1(〈r〉, 〈k〉)

∂ri

∂δne(〈r〉)

∂rj

δrj − ω1(〈r〉, 〈k〉)
∂δne(〈r〉)

∂ri

− ∂ω1(〈r〉, 〈k〉)

∂rj

δrj

∂δne(〈r〉)

∂ri

− ∂ω1(〈r〉, 〈k〉)

∂kj

δkj

∂δne(〈r〉)

∂ri

− ω1(〈r〉, 〈k〉)
∂2δne(〈r〉)

∂ri∂rj

δrj − ∂ω2(〈r〉, 〈k〉)

∂ri

δne(〈r〉)δne(〈r〉) − 2ω2(〈r〉, 〈k〉)δne(〈r〉)
∂δne(〈r〉)

∂ri

, (11)
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where summation over repeated indices has been assumed and
it has been made explicit that all functions are calculated taking
the ray quantities at their average values.

In the presence of turbulence, the fluctuation δne(r) in the
density of the medium should, in principle, depend on the
time t , which would thus imply that the dispersion relation
D(ω, r, k) should also be a function of t . However, assuming
that the transit time of the ray across the medium is much less
than the characteristic period, or time scale, of the fluctuations,
which amounts to considering that the turbulent medium is

frozen while a ray in the ensemble is traced [12,15,19,26,27],
one is allowed to drop any explicit time dependency in the ray
equations.

B. The ensemble-averaged ray and fluctuations about it

Keeping in mind that 〈δr〉 = 〈δk〉 = 〈δne(r)〉 =
〈∂δne(r)/∂ri〉 = 0 by construction, one can now ensemble
average (10) and (11) to obtain the equations for the average
ray, which results in

d〈ri〉
dt

� ∂ω0(〈r〉, 〈k〉)

∂ki

+ 1

2

∂3ω0(〈r〉, 〈k〉)

∂ki∂rj ∂rl

〈δrj δrl〉 + 1

2

∂3ω0(〈r〉, 〈k〉)

∂ki∂kj ∂kl

〈δkj δkl〉 + ∂3ω0(〈r〉, 〈k〉)

∂ki∂rj ∂kl

〈δrj δkl〉

+ ∂2ω1(〈r〉, 〈k〉)

∂ki∂rj

〈δrj δne(〈r〉)〉 + ∂2ω1(〈r〉, 〈k〉)

∂ki∂kj

〈δkj δne(〈r〉)〉 + ∂ω1(〈r〉, 〈k〉)

∂ki

〈
δrj

∂δne(〈r〉)

∂rj

〉

+ ∂ω2(〈r〉, 〈k〉)

∂ki

〈δne(〈r〉)δne(〈r〉)〉 (12)

and
d〈ki〉
dt

� − ∂ω0(〈r〉, 〈k〉)

∂ri

− 1

2

∂3ω0(〈r〉, 〈k〉)

∂ri∂rj ∂rl

〈δrj δrl〉 − 1

2

∂3ω0(〈r〉, 〈k〉)

∂ri∂kj ∂kl

〈δkj δkl〉 − ∂3ω0(〈r〉, 〈k〉)

∂ri∂rj ∂kl

〈δrj δkl〉

− ∂2ω1(〈r〉, 〈k〉)

∂ri∂rj

〈δrj δne(〈r〉)〉 − ∂2ω1(〈r〉, 〈k〉)

∂ri∂kj

〈δkj δne(〈r〉)〉 − ∂ω1(〈r〉, 〈k〉)

∂ri

〈
δrj

∂δne(〈r〉)

∂rj

〉

− ∂ω1(〈r〉, 〈k〉)

∂rj

〈
δrj

∂δne(〈r〉)

∂ri

〉
− ∂ω1(〈r〉, 〈k〉)

∂kj

〈
δkj

∂δne(〈r〉)

∂ri

〉
− ω1(〈r〉, 〈k〉)

〈
δrj

∂2δne(〈r〉)

∂rj ∂ri

〉

− ∂ω2(〈r〉, 〈k〉)

∂ri

〈δne(〈r〉)δne(〈r〉)〉 − 2ω2(〈r〉, 〈k〉)

〈
δne(〈r〉)

∂δne(〈r〉)

∂ri

〉
. (13)

To be noted is that the average ray is not the same as the
ray one would have if there were no fluctuations, which would
be simply given by the first term in each of equations (12)
and (13). Crucial to this result was the retention in expansions
(5), (7), (8), (10), and (11) of terms that are of second order
in the fluctuations, in what may be viewed as a quasilinear
(QL) approach, similar to the one used in the treatment of
waves in a weakly turbulent plasma [31,32]. More precisely,
the slow deviation of the average ray from its unperturbed
trajectory is induced by the ensemble averages of the squared
fluctuations in the linearized quantities (4) and (9). Putting it
differently, these terms in the squares of the fluctuations are the
lowest-order nontrivial terms that survive after the averaging
operation is carried out. A drift of the average ray with respect
to the unperturbed, zero-fluctuation ray has also been found
in previous statistical treatments of ray tracing in media with
random density fluctuations [26].

The evolution along the ray of its fluctuating components
can be retrieved, according to (9), by taking the difference
between (10) and (12), and between (11) and (13). This gives,
to lowest order,

dδri

dt
� ∂2ω0(〈r〉, 〈k〉)

∂ki∂rj

δrj + ∂2ω0(〈r〉, 〈k〉)

∂ki∂kj

δkj

+ ∂ω1(〈r〉, 〈k〉)

∂ki

δne(〈r〉) (14)

and

dδki

dt
� − ∂2ω0(〈r〉, 〈k〉)

∂ri∂rj

δrj − ∂2ω0(〈r〉, 〈k〉)

∂ri∂kj

δkj

− ∂ω1(〈r〉, 〈k〉)

∂ri

δne(〈r〉) − ω1(〈r〉, 〈k〉)
∂δne(〈r〉)

∂ri

,

(15)

which amounts to neglecting the difference between the actual
squares of the fluctuations and their ensemble averages. Here,
it is noteworthy that, seen as stochastic differential equations,
(10) and (11), as well as the equivalent set (12)–(15), possess
the characteristic structure found in Itô’s stochastic calculus:
the sum of drift-induced, deterministic terms with so-called
martingale terms (proportional to the fluctuations and aver-
aging out to 0) plus terms identified with Itô’s correction
(proportional to the covariances of the fluctuating quantities)
[33].

It is also instructive to see that, using (9) to rewrite (5)
according to

ω(r, k) � 〈ω(〈r〉, 〈k〉)〉 + δω(〈r〉, 〈k〉), (16)
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with the ensemble-averaged and fluctuating components of the dispersion relation given, respectively, by

〈ω(〈r〉, 〈k〉)〉 � ω0(〈r〉, 〈k〉) + 1

2

∂2ω0(〈r〉, 〈k〉)

∂ri∂rj

〈δriδrj 〉 + 1

2

∂2ω0(〈r〉, 〈k〉)

∂ki∂kj

〈δkiδkj 〉 + ∂2ω0(〈r〉, 〈k〉)

∂ri∂kj

〈δriδkj 〉

+ ∂ω1(〈r〉, 〈k〉)

∂ri

〈δriδne(〈r〉)〉 + ∂ω1(〈r〉, 〈k〉)

∂ki

〈δkiδne(〈r〉)〉 + ω1(〈r〉, 〈k〉)

〈
δrj

∂δne(〈r〉)

∂rj

〉

+ ω2(〈r〉, 〈k〉)〈δne(〈r〉)δne(〈r〉)〉 (17)

and

δω(〈r〉, 〈k〉) � ∂ω0(〈r〉, 〈k〉)

∂ri

δri + ∂ω0(〈r〉, 〈k〉)

∂ki

δki

+ ω1(〈r〉, 〈k〉)δne(〈r〉), (18)

(12)–(15) can be recast in the rather appealing form

d〈ri〉
dt

= ∂〈ω(〈r〉, 〈k〉)〉
∂〈ki〉 and

d〈ki〉
dt

= −∂〈ω(〈r〉, 〈k〉)〉
∂〈ri〉

(19)

and
dδri

dt
= ∂δω(〈r〉, 〈k〉)

∂〈ki〉 and
dδki

dt
= −∂δω(〈r〉, 〈k〉)

∂〈ri〉 .

(20)

C. Mean-square spreading about the ensemble-averaged ray

To integrate (12) and (13) for the average ray, one must
know all the quantities appearing on their right-hand sides
(RHSs), so to start with one has to derive equations for the
evolution of averages of the types 〈δriδrj 〉, 〈δkiδkj 〉, and
〈δriδkj 〉. Accordingly, with δu and δv designating one of δri

or δki , and dδu/dt and dδv/dt governed by (14) or (15),
combining

d〈δuδv〉
dt

=
〈
δu

dδv

dt

〉
+

〈
δv

dδu

dt

〉
(21)

with (14) and (15) yields

d〈δriδrj 〉
dt

� ∂2ω0(〈r〉, 〈k〉)

∂kj ∂rl

〈δrlδri〉 + ∂2ω0(〈r〉, 〈k〉)

∂kj ∂kl

〈δklδri〉 + ∂2ω0(〈r〉, 〈k〉)

∂ki∂rl

〈δrlδrj 〉 + ∂2ω0(〈r〉, 〈k〉)

∂ki∂kl

〈δklδrj 〉

+ ∂ω1(〈r〉, 〈k〉)

∂kj

〈δriδne(〈r〉)〉 + ∂ω1(〈r〉, 〈k〉)

∂ki

〈δrj δne(〈r〉)〉, (22)

d〈δkiδkj 〉
dt

� − ∂2ω0(〈r〉, 〈k〉)

∂rj ∂rl

〈δrlδki〉 − ∂2ω0(〈r〉, 〈k〉)

∂rj ∂kl

〈δklδki〉 − ∂2ω0(〈r〉, 〈k〉)

∂ri∂rl

〈δrlδkj 〉 − ∂2ω0(〈r〉, 〈k〉)

∂ri∂kl

〈δklδkj 〉

− ∂ω1(〈r〉, 〈k〉)

∂rj

〈δkiδne(〈r〉)〉 − ∂ω1(〈r〉, 〈k〉)

∂ri

〈δkj δne(〈r〉)〉 − ω1(〈r〉, 〈k〉)

〈
δki

∂δne(〈r〉)

∂rj

〉

− ω1(〈r〉, 〈k〉)

〈
δkj

∂δne(〈r〉)

∂ri

〉
, (23)

and

d〈δriδkj 〉
dt

� − ∂2ω0(〈r〉, 〈k〉)

∂rj ∂rl

〈δrlδri〉 − ∂2ω0(〈r〉, 〈k〉)

∂rj ∂kl

〈δklδri〉 + ∂2ω0(〈r〉, 〈k〉)

∂ki∂rl

〈δrlδkj 〉 + ∂2ω0(〈r〉, 〈k〉)

∂ki∂kl

〈δklδkj 〉

− ∂ω1(〈r〉, 〈k〉)

∂rj

〈δriδne(〈r〉)〉 + ∂ω1(〈r〉, 〈k〉)

∂ki

〈δkj δne(〈r〉)〉 − ω1(〈r〉, 〈k〉)

〈
δri

∂δne(〈r〉)

∂rj

〉
. (24)

Besides being necessary for integrating (12) and (13), (22)–
(24) are useful also because they provide the rms spreads in
the ray coordinate and wave vectors. Indeed, one can represent
the rms spread about the average ray in a fluctuating medium
by the vector σ r = (σr1 , σr2 , σr3 ), with σri

≡ √〈δriδri〉. In the
case of ray propagation in a plane, for instance, putting r1 = x

and r2 = y while r3 = 0, the rms spreadingσ⊥ taking place per-
pendicularly to the average ray can be calculated by projecting
σ r in the direction (−d〈y〉/dt, d〈x〉/dt, 0) perpendicular to

the group velocity (d〈x〉/dt, d〈y〉/dt, 0), whence

σ⊥ = σx |d〈y〉/dt | + σy |d〈x〉/dt |√
(d〈x〉/dt )2 + (d〈y〉/dt )2

. (25)

Note that the four possible combinations between±σx and±σy

lead to two possible projections in the direction perpendicular
to the group velocity, the choice for σ⊥ in (25) correspond-
ing to that which is largest. In vector form, and putting
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σ⊥ ≡ (σ⊥x, σ⊥y, 0) with

σ⊥x = −σ⊥d〈y〉/dt√
(d〈x〉/dt )2 + (d〈y〉/dt )2

and

σ⊥y = σ⊥d〈x〉/dt√
(d〈x〉/dt )2 + (d〈y〉/dt )2

, (26)

one can then say that the ray path lies within an envelope
〈r〉 ± σ⊥.

D. Ensemble averages involving fluctuations of ray quantities
and derivatives of medium fluctuations

Whereas ensemble averages such as 〈δne(〈r〉)δne(〈r〉)〉
and 〈δne(〈r〉)∂δne(〈r〉)/∂ri〉 can be directly computed from
the fluctuation model and are evaluated at the average co-
ordinate 〈r〉, which is traced along the ray according to
(12), quadratic means such as 〈δriδne(〈r〉)〉, 〈δkiδne(〈r〉)〉,
〈δri∂δne(〈r〉)/∂rj 〉, and 〈δki∂δne(〈r〉)/∂rj 〉 have to be traced

simultaneously with the other ray quantities, which means that
(12), (13), and (22)–(24) do not yet form a closed system.
Thus, if δu stands for one of δri or δki , and δf (〈r〉) represents
δne(〈r〉) or any of its derivatives, then

d〈δuδf (〈r〉)〉
dt

=
〈
δu

dδf (〈r〉)

dt

〉
+

〈
δf (〈r〉)

dδu

dt

〉
, (27)

where
dδf (〈r〉)

dt
= ∂δf (〈r〉)

∂t
+ ∂δf (〈r〉)

∂ri

d〈ri〉
dt

, (28)

dδu/dt is given by (14) or (15), and d〈ri〉/dt by (12).
Within the already discussed assumption of frozen turbu-
lence during the transit time of a ray across the medium
[12,15,19,26,27], the first term on the RHS of (28) can be
neglected, so (27) and (28) give

d〈δuδf (〈r〉)〉
dt

�
〈
δu

∂δf (〈r〉)

∂ri

〉
d〈ri〉
dt

+
〈
δf (〈r〉)

dδu

dt

〉
. (29)

Hence, putting together (14), or (15), and (29),

d〈δriδne(〈r〉)〉
dt

�
〈
δri

∂δne(〈r〉)

∂rj

〉
d〈rj 〉
dt

+ ∂2ω0(〈r〉, 〈k〉)

∂ki∂rj

〈δrj δne(〈r〉)〉 + ∂2ω0(〈r〉, 〈k〉)

∂ki∂kj

〈δkj δne(〈r〉)〉

+ ∂ω1(〈r〉, 〈k〉)

∂ki

〈δne(〈r〉)δne(〈r〉)〉, (30)

d〈δkiδne(〈r〉)〉
dt

�
〈
δki

∂δne(〈r〉)

∂rj

〉
d〈rj 〉
dt

− ∂2ω0(〈r〉, 〈k〉)

∂ri∂rj

〈δrj δne(〈r〉)〉 − ∂2ω0(〈r〉, 〈k〉)

∂ri∂kj

〈δkj δne(〈r〉)〉

− ∂ω1(〈r〉, 〈k〉)

∂ri

〈δne(〈r〉)δne(〈r〉)〉 − ω1(〈r〉, 〈k〉)

〈
δne(〈r〉)

∂δne(〈r〉)

∂ri

〉
, (31)

d

dt

〈
δri

∂δne(〈r〉)

∂rj

〉
�

〈
δri

∂2δne(〈r〉)

∂rj ∂rl

〉
d〈rl〉
dt

+ ∂2ω0(〈r〉, 〈k〉)

∂ki∂rl

〈
δrl

∂δne(〈r〉)

∂rj

〉
+ ∂2ω0(〈r〉, 〈k〉)

∂ki∂kl

〈
δkl

∂δne(〈r〉)

∂rj

〉

+ ∂ω1(〈r〉, 〈k〉)

∂ki

〈
δne(〈r〉)

∂δne(〈r〉)

∂rj

〉
, (32)

and

d

dt

〈
δki

∂δne(〈r〉)

∂rj

〉
�

〈
δki

∂2δne(〈r〉)

∂rj ∂rl

〉
d〈rl〉
dt

− ∂2ω0(〈r〉, 〈k〉)

∂ri∂rl

〈
δrl

∂δne(〈r〉)

∂rj

〉
− ∂2ω0(〈r〉, 〈k〉)

∂ri∂kl

〈
δkl

∂δne(〈r〉)

∂rj

〉

− ∂ω1(〈r〉, 〈k〉)

∂ri

〈
δne(〈r〉)

∂δne(〈r〉)

∂rj

〉
− ω1(〈r〉, 〈k〉)

〈
∂δne(〈r〉)

∂ri

∂δne(〈r〉)

∂rj

〉
. (33)

Despite one’s effort, the system (12), (13), and (22)–(24)
is not yet closed by means of (30)–(33) because of the new
quadratic means entering the first terms on their RHSs, which
contain the second derivatives of the medium fluctuations and
also have to be traced with the average ray described by (12)
and (13). One can again use (14), (15), and (29) to track the
evolution of such terms but the new equations will contain, in
turn, the third derivatives of δne(〈r〉), and so forth. In fact,
the problem only becomes closed by a downward infinite
recurrence, in which the equation allowing one to trace a
quadratic mean with a lower-order derivative is recursively
generated by the quadratic mean with the next-higher-order

derivative, namely,

d

dt

〈
δu

∂mδne(〈r〉)

∂ri1∂ri2 . . . ∂rim

〉

�
〈
δu

∂m+1δne(〈r〉)

∂ri1∂ri2 . . . ∂rim∂rim+1

〉
d〈rim+1〉

dt

+
〈

∂mδne(〈r〉)

∂ri1∂ri2 . . . ∂rim

dδu

dt

〉
. (34)

For this QL approach to be implemented, the recurrence has
to be truncated somewhere, for instance, if the derivatives of
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the medium fluctuations higher than some given order m −
1 become arbitrarily small. One is thus left with 6 ordinary
differential equations (ODEs) for the average ray in (12) and
(13), 21 ODEs for the mean-square spreadings in (22)–(24), 6
ODEs for (30) and (31), 18 ODEs for (32) and (33), and 3(m +
1)(m + 2) ODEs per each additional set (34) in a higher-order
derivative m of δne(〈r〉) [with (m + 1)(m + 2)/2 the number
of partitions of m into 3 parts [34]]. In what follows, if the
downward recursion relation (34) is truncated by neglecting
the first term on its RHS, the one with the m + 1 derivative of
δne(〈r〉), it is said that the QL formalism has been implemented
up to order m (or truncated at order m + 1).

III. RAY TRACING IN HOMOGENEOUS RANDOM
MEDIA: A TEST CASE

A. QL ray tracing in homogeneous random media

A model often utilized to describe the propagation of optical
or radio-wave rays in the atmosphere, or of acoustical rays in
the ocean, or even of seismic rays, and which is particularly
suited for verification and validation of the QL approach [35],
is that of a constant index of refraction n0 (for the unperturbed
medium) on which a random fluctuation is superposed,

n(r) ≡ n0

(
1 + δne(r)

〈ne〉
)

, (35)

where the fluctuations in the medium are here assumed to come
from the density field but may also come from other fields such
as the temperature, humidity, elastic modulus, or velocity [1–
4,6–13,15–17,19]. The dispersion relation ω(r, k) = ck/n(r),
with c the speed of light in vacuum or the speed of sound in
the unperturbed medium, and k2 ≡ k2

1 + k2
2 + k2

3 , becomes

ω(r, k) � ck

n0

[
1 − δne(r)

〈ne〉 + δne(r)δne(r)

〈ne〉2

]
, (36)

yielding, for (6),

ω0(k) = ck

n0
and ωm(k) = (−1)m

ω0(k)

〈ne〉m (37)

and, for the derivatives entering (12), (13), (22)–(24), and (30)–
(33),

∂mω0(k)

∂kn
i ∂k

p

j ∂k
m−n−p

l

= c

n0

∂mk

∂kn
i ∂k

p

j ∂k
m−n−p

l

, (38)

∂k

∂ki

= ki

k
,

∂2k

∂ki∂kj

= δij k
2 − kikj

k3
, and

∂3k

∂ki∂kj ∂kl

= 3kikj kl

k5
− δjlki + δilkj + δij kl

k3
, (39)

where δij is the Kronecker delta. Hence, with the help of (37)–
(39), the QL ray equations (12), (13), (22)–(24), and (30)–(33)
take the form (A1)–(A9) given in Appendix A.

B. QL ray tracing in homogeneous random media
with single-mode fluctuations

The simplest example to consider, and with which to start
the verification and validation of the QL approach presented

here for ray tracing in random fluctuating media, is that of a
single mode propagating with a given wave number q along a
given direction, say r1, and with an amplitude δne0,

δne(r) ≡ δne(r1) ≡ δne0 cos(qr1 + φ), (40)

where φ stands for a random phase. In this case,

∂δne(r)

∂ri

= −δ1iqδne0 sin(qr1 + φ) and

∂2δne(r)

∂ri∂rj

= −δ1iδ1j q
2δne(r), (41)

so the recurrence (30)–(34) is naturally closed (with no need
to be truncated), and still

〈δne(r)δne(r)〉 = (δne0)2

2
,

〈
δne(r)

∂δne(r)

∂ri

〉
= 0, and

〈
∂δne(r)

∂ri

∂δne(r)

∂rj

〉
= δ1iδ1j q

2 (δne0)2

2
. (42)

For ray tracing on the plane defined by r1 and r2, with
r3 = 0, changing variables according to τ = (ck0/2πn0)t ,
x[y] = (k0/2π )r1[2], and κx[y] = k1[2]/k0 (so time and space
are normalized to the unperturbed wave period and wavelength,
respectively, and wave numbers, including q, to the initial
wave number k0), and setting 〈ne〉 = 1 (which corresponds to
having δne0 given as, say, a percentage), (A1)–(A9) become,
on account of (41) and (42), the set (B1)–(B9) in Appendix B.

Three cases have been considered, which correspond to
three distinct initializations of the wave-vector components,
namely, κx0 = 1 and κy0 = 0, κx0 = 0 and κy0 = 1, and κx0 =
κy0 = 1/

√
2 (henceforth identified as the parallel, perpendic-

ular, and oblique cases, respectively). In addition, rays are
started at x0 = y0 = 0, while their fluctuating components
initially vanish, meaning that δx0 = δy0 = δκx0 = δκy0 = 0,
implying in this manner that all quadratic means containing
any of these quantities are also set to 0 initially. Hence, some
results can already be predicted by simple inspection of the
equations; for instance, from (B2) and (B4) it follows that

〈κy〉 = κy0 and 〈δκyδκy〉 = 0, (43)

which was to be expected, as y is an ignorable variable in this
example, and indicates that there is no rms spreading in wave
number along the direction perpendicular to the wave vector
of the turbulent mode. In the parallel case (when κy0 = 0), one
has

〈y〉 = 〈δyδy〉 = 0 (44)

since, from (B1), (B4), (B7), (B9), and (43), one sees
that d〈y〉/dt is proportional to 〈δκxδκy〉 or 〈δκyδne(〈x〉)〉,
d〈δκxδκy〉/dt and d〈δκyδne(〈x〉)〉/dt to 〈δκy∂δne(〈x〉)/∂x〉,
and d〈δκy∂δne(〈x〉)/∂x〉/dt to 〈δκyδne(〈x〉)〉, meaning that
all these average values vanish along the ray trajectory if
they initially do so, while from (B3), (B5), and (43) one
concludes that 〈δyδy〉 vanishes simultaneously with 〈δκyδκy〉.
In particular, recalling (25), (44) implies that there is no rms
spreading about the average ray in the parallel case. As for the
perpendicular case (when κx0 = 0), (B1), (B2), (B4), and (B7)
yield

〈x〉 = 〈κx〉 = 0, (45)
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FIG. 1. Average ray trajectories 〈y〉 vs 〈x〉 and their perpendicular
rms spreadings σ⊥ from the QL formalism (red lines) vs an MC
calculation with N = 100 rays (black lines) for the parallel, oblique,
and perpendicular cases, superimposed on a single-mode random
background with δne0 = 4% and q = 0.04. QL results (red lines) are
presented in the form 〈r〉 ± σ⊥.

because the terms in d〈x〉/dt are proportional to 〈κx〉,
〈δκxδκy〉, or 〈δκxδne(〈x〉)〉, whereas those in d〈κx〉/dt and
d〈δκxδκy〉/dt are proportional to 〈κx〉, 〈δκy∂δne(〈x〉)/∂x〉,
or 〈δxδne(〈x〉)〉, with d〈δxδne(〈x〉)〉/dt , d〈δκxδne(〈x〉)〉/dt ,
and d〈δκy∂δne(〈x〉)/∂x〉/dt being proportional, in turn, to
d〈x〉/dt , 〈kx〉, or 〈δκxδne(〈x〉)〉, thus entailing a loop that keeps
all these quantities equal to 0 once they are initially set to this
value. The results in (44) and (45) can be checked in Figs. 1
and 2 for q = 0.04 (so the turbulence wavelength is much
greater than 2π/k0, as required by the eikonal approximation)
and δne0 = 4% (within the range of values reported in works
on ray tracing in plasmas with density fluctuations [24–28]),
where they are gauged (for purposes of validation) against the
outcome of an MC calculation with N = 100 rays, a different
φ in (40) being randomly chosen (from a uniform distribution
between 0 and 2π ) for each ray. The overall agreement is good,
with the largest deviations occurring for the perpendicular case;
it is noteworthy that, in general, the rms spread σ⊥ from the
QL formalism provides strikingly good envelopes for the MC
rays. Needless to say, the smaller δne0 or q, the better the
agreement between the QL approach developed here and the
MC calculation.

Furthermore, use of (43) and (45) in (B3)–(B5), (B8), and
(B9) yields

d〈δxδx〉
dτ

� 2〈δxδκx〉
κy0

, (46)

d〈δκxδκx〉
dτ

� 2κy0

〈
δκx

∂δne(〈x〉)

∂x

〉
, (47)

d〈δxδκx〉
dτ

� 〈δκxδκx〉
κy0

+ κy0

〈
δx

∂δne(〈x〉)

∂x

〉
, (48)

d

dτ

〈
δx

∂δne(〈x〉)

∂x

〉
� 1

κy0

〈
δκx

∂δne(〈x〉)

∂x

〉
, (49)

FIG. 2. QL formalism (red, lighter lines) vs an MC calculation
with N = 100 rays (blue, darker lines) for the parallel (solid lines),
oblique (dot-dashed lines), and perpendicular (dashed lines) cases and
for a single random mode with δne0 = 4% and q = 0.04: perpendicu-
lar rms spread σ⊥, average wave number 〈κx〉 in the direction parallel
to the wave vector of the mode, and respective rms spread

√〈δκxδκx〉
as functions of the time τ .

and

d

dτ

〈
δκx

∂δne(〈x〉)

∂x

〉
� κy0

q2(δne0)2

2
, (50)

whence, integrating (46)–(50) backwards and recalling (25),

σ⊥(τ ) =
√

〈δxδx〉(τ ) � qδne0τ
2

2
√

2
(51)
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FIG. 3. QL formalism, numerical (red line) vs analytical (dashed
black line), vs MC calculations with N = 20 (yellow line), N = 40
(blue line), N = 60 (orange line), N = 80 (cyan line), N = 100
(black line), N = 200 (brown line), and N = 400 (magenta line)
rays for the perpendicular case and for a single random mode with
δne0 = 4% andq = 0.04: perpendicular rms spreadσ⊥ and rms spread√〈δκxδκx〉 of the wave number in the direction parallel to the wave
vector of the mode as functions of the time τ . The QL red and dashed
black lines are coincident.

and

√
〈δκxδκx〉(τ ) � qδne0τ√

2
(52)

for the perpendicular case. Equations (51) and (52) can be
used for verification of the numerical implementation of the
QL formalism, as demonstrated in Fig. 3, where the outcomes
of several MC calculations for various N ’s are also plotted,
showing that the MC convergence in the number of rays is
fast and N = 100 is an appropriate choice. Regarding MC
convergence and statistical noise, and for completeness, it is
shown in Fig. 2 (although only barely visible because of the
compressed scale) that the MC calculated 〈κx〉 for the per-
pendicular case is not strictly 0, as it should be. This difficulty,
that MC calculations have to converge to a quantity that strictly
vanishes, is illustrated in Fig. 4, where several MC results are
plotted for different numbers of rays used; it is apparent that
neither 〈x〉 nor 〈κx〉 for the perpendicular case has already
fully converged to 0 for N = 400 and, further, that different
realizations for the same N = 100 yield distinct outcomes.
An additional test that can be conducted with the single-mode

FIG. 4. QL formalism (red line) vs MC calculations with N =
20 (yellow line), N = 40 (blue line), N = 60 (orange line), N = 80
(cyan line), N = 100 (solid, dashed, dotted, and dot-dashed black
lines, corresponding to different MC realizations), N = 200 (brown
line), and N = 400 (magenta line) rays for the perpendicular case
and for a single random mode with δne0 = 4% and q = 0.04: average
distance 〈x〉 traveled along the direction parallel to the wave vector
of the mode and respective average wave-vector component 〈κx〉 as
functions of the time τ .

example has to do with the rate of convergence of the QL
approach as one goes higher in the order at which the recursion
relation (34) is truncated. To do so, instead of closing (A8) and
(A9) making use of (41), thus entailing (B8) and (B9), the
latter have been replaced, going through (34), (40), (A8), and
(A9), with (B10)–(B12) in Appendix B. Equations (B1)–(B7)
and (B10)–(B12) have thus been implemented, for the oblique
case, going up through various values of m (corresponding to
truncating the QL formalism at successive orders m + 1); the
results are shown in Fig. 5, which can be compared with the
outcome of the nontruncated QL calculation given in Fig. 2. It
is clear that the QL approach converges to the MC benchmark
as one truncates at higher and higher m + 1, its having been
verified that the more oscillatory the modeled quantity is
(which, in the single-mode case under analysis, means closer
to the parallel case), the harder the convergence. Although
in this particular case of a single mode the convergence is
rather slow (from τ ≈ 100 onwards, one needs roughly to go
up �m ≈ 4 in the order at which the QL formalism is truncated
to see good convergence every �τ ≈ 50), it is shown in the
forthcoming example that convergence becomes much quicker
when a realistic spectrum of many modes is utilized.

Attention has already been called to the fact that the QL
average ray is different from the unperturbed ray one would get
if tracing in the absence of fluctuations, which, in the present
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FIG. 5. QL formalism implemented up to orders m = 0 (solid
green line), m = 1 (solid gray line), m = 2 (solid cyan line), m = 3
(solid magenta line), m = 4 (solid orange line), m = 5 (solid black
line), m = 6 (solid yellow line), m = 7 (solid brown line), m = 8
(solid red line), m = 9 (dotted green line), m = 10 (dotted gray line),
m = 11 (dotted cyan line), m = 12 (dotted magenta line), m = 13
(dotted orange line), m = 14 (dotted black line), m = 15 (dotted
yellow line), m = 16 (dotted brown line), and m = 17 (dotted red
line) vs an MC calculation with N = 100 rays (solid blue line) for
the oblique case and for a single random mode with δne0 = 4% and
q = 0.04: perpendicular rms spread σ⊥ as a function of the time τ .
Curves that terminate abruptly while still within the range of the plot
do so because one of the quantities σx or σy , which appear in (25),
becomes purely imaginary.

single-mode example, is easy to check by simple inspection of
(B1) and (B2). Indeed, neglecting in the latter all terms in the
squares of the fluctuations, immediate integration yields, for
the unperturbed ray,

x[y](τ ) = κx0[y0]τ and κx[y](τ ) = κx0[y0], (53)

which is clearly different from the average ray 〈x[y]〉(τ ) and
〈κx[y]〉(τ ), as can be verified in Fig. 6, where the fluctuation
level has been increased to δne0 = 7% (so as to make the
distinction more pronounced).

C. QL ray tracing in homogeneous random media
with isotropic spectra of fluctuations

Although the single-mode case was useful for assessing and
testing some features of the QL approach, namely, concerning
the verification and validation of the model, it does not
correspond to a full spectrum of turbulent modes. So, instead of
the single mode (40), an isotropic turbulence spectrum is now
considered, which corresponds to a flat distribution in wave
number, with a prescribed cutoff qmax:

δne(r) ≡ δne(x, y)

≡ δne0√
NqNθ

Nq∑
r=1

Nθ∑
s=1

cos(qr cos θsx + qr sin θsy + φrs ),

(54)

where q1 = 0, qNq
= qmax, θ1 = 0, θNθ

= 2π , and the φrs are
random phases (distributed uniformly between 0 and 2π ).

FIG. 6. Difference between the QL average ray and the unper-
turbed ray for the parallel (solid line), oblique (dot-dashed line), and
perpendicular (dashed line) cases and for a single random mode with
δne0 = 7% and q = 0.04: differences in the coordinates and in the
wave-vector component in the direction parallel to the wave vector
of the mode, respectively, 〈x〉 − κx0τ , 〈y〉 − κy0τ , and 〈κx〉 − κx0, as
functions of the time τ .

Its having been checked that there are no visible differences
in results when going from m = 2 to m = 3, the infinite
recurrence (34) has been truncated at m + 1 = 4, meaning that
the quadratic-mean quantities〈

∂nδne(〈x〉)

∂xl∂yn−l

∂mδne(〈x〉)

∂xp∂ym−p )

〉

= in+m (−1)n + (−1)m

2

1

Nq

Nq∑
r=1

qn+m
r

1

Nθ

×
Nθ∑
s=1

(cos θs )l+p(sin θs )n+m−l−p (δne0)2

2
, (55)
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x

y

0

FIG. 7. Average ray trajectories 〈y〉 vs 〈x〉 and their perpendicular
rms spreadings σ⊥ from the QL formalism (red lines) vs an MC
calculation with N = 100 rays (black lines) for the oblique and
perpendicular cases, superimposed on an Nq × Nθ = 100 × 100
multimode isotropic random background with δne0 = 4% and qmax =
0.04. QL results (red lines) are presented in the form 〈r〉 ± σ⊥.

which are obtained directly from the spectrum (54), are needed
for n = 0, 1, l = 0, n, m = 0, 1, 2, 3, and p = 0, 1, . . . , m.
To great computational advantage, and for Nθ 
 1 (Nθ � 10
being already more than enough), the sum over the angles can
be replaced with an integral according to

1

Nθ

Nθ∑
s=1

(cos θs )l+p(sin θs )n+m−l−p

� 1

2π

∫ 2π

0
(cos θ )l+p(sin θ )n+m−l−pdθ, (56)

the integral (56) surviving only if both l + p and n + m are
even; more precisely [36],

1

2π

∫ 2π

0
(cos θ )l+p(sin θ )n+m−l−pdθ

= [1 + (−1)l+p][1 + (−1)n+m]

2n+m+2

× (l + p)!(n + m − l − p)!(
l+p

2

)
!
(

n+m−l−p

2

)
!
(

n+m
2

)
!
. (57)

So, the QL formalism has been applied to the fluctu-
ation spectrum (54), by putting together (34), (A1)–(A9),
and (55)–(57), with Nq = 100, Nθ = 100, qmax = 0.04, and
δne0 = 4%, and the results have been compared with an MC
calculation with N = 100 rays. The ray trajectories, with their
perpendicular rms spreadings, are plotted in Fig. 7, where,
once more, one can confirm how well the QL calculated σ⊥
follows the unfolding of the MC ray pencils, with no apparent
distinction between the oblique and the perpendicular cases (as
expected for an isotropic turbulent background). The relevant
ensemble-averaged ray quantities are given in Figs. 8 and
9, for several launching angles θ0 ≡ tan−1(κy0/κx0) (always
with κ2

x0 + κ2
y0 = 1), where one can verify that the system

x y

x

y

FIG. 8. QL formalism (solid lines) vs an MC calculation with
N = 100 rays (dashed lines) for θ0 = 0◦ (green lines), θ0 = 15◦

(gray lines), θ0 = 25◦ (cyan lines), θ0 = 35◦ (magenta lines), θ0 = 45◦

(black lines), θ0 = 55◦ (orange lines), θ0 = 65◦ (yellow lines), θ0 =
75◦ (brown lines), and θ0 = 90◦ (red lines) and for an Nq × Nθ =
100 × 100 multimode isotropic turbulent spectrum with δne0 = 4%
and qmax = 0.04: rms traveled distance

√〈x2〉 + 〈y2〉 and ensemble-
averaged wave-vector components 〈κx〉 and 〈κy〉 as functions of the
time τ . The launching angles θ0 increase monotonically downwards
(upwards) in the middle (bottom) frame.

indeed behaves as essentially isotropic and has a symmetry
around θ = 45◦ upon exchange of x with y. Actually, this
system has four axes of symmetry with respect to reflection,
which are θ = 0◦, θ = 45◦, θ = 90◦, and θ = 135◦, and which
correspond, respectively, to exchanging y with −y, x with y,
x with −x, and x with −y. One can also check that the QL
and MC results are almost coincident for the most important
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x x

y y

FIG. 9. QL formalism (solid lines) vs an MC calculation with
N = 100 rays (dashed lines) for θ0 = 0◦ (green lines), θ0 = 15◦

(gray lines), θ0 = 25◦ (cyan lines), θ0 = 35◦ (magenta lines), θ0 = 45◦

(black lines), θ0 = 55◦ (orange lines), θ0 = 65◦ (yellow lines), θ0 =
75◦ (brown lines), and θ0 = 90◦ (red lines) and for an Nq × Nθ =
100 × 100 multimode isotropic turbulent spectrum with δne0 = 4%
and qmax = 0.04: perpendicular rms spread σ⊥ and rms spreads√〈δκxδκx〉 and

√〈δκyδκy〉 in the wave-vector components as func-
tions of the time τ .

quantities characterizing the rays, such as the average traveled
distance, the spatial rms perpendicular spreading, and the
average wave-vector components. An interesting feature to
note is that, somewhere in the QL calculation, σ 2

x ≡ 〈δxδx〉 or
σ 2

y ≡ 〈δyδy〉 can take unphysical negative values, turning σ⊥
in (25) into a complex number, which can be detected by slight
discontinuities in some of the solid curves in Fig. 9 (namely,
for θ0 = 65◦ and θ0 = 75◦). This problem can nonetheless be
alleviated and effectively circumvented since, as illustrated
in Fig. 10 for launching angles in the upper half of the first

FIG. 10. QL formalism for θ0 = 45◦ (green line), θ0 = 50◦ (gray
line), θ0 = 55◦ (cyan line), θ0 = 60◦ (magenta line), θ0 = 65◦ (black
line), θ0 = 70◦ (orange line), θ0 = 75◦ (yellow line), θ0 = 80◦ (brown
line), θ0 = 85◦ (blue line), and θ0 = 90◦ (red line) and for an
Nq × Nθ = 100 × 100 multimode isotropic turbulent spectrum with
δne0 = 4% and qmax = 0.04: rms spread |σy | in the y direction, ratio
|σy |/|σx | between the rms spreads in the y and x directions, and
ratio |σy ||dx/dτ |/|σx ||dy/dτ | between the two terms contributing
to the perpendicular rms spread σ⊥ as functions of the time τ . Cusps
visible when σy goes through 0 identify curves for which σ 2

y becomes
negative.

quadrant, when σ 2
y becomes negative the contribution to σ⊥ of

the term that becomes imaginary is negligible (roughly 12%
at most), so it can simply be discarded without practically
affecting the final outcome of (25). This behavior is the
combined result of the smallness of |σy |, compared with |σx |,
when the anomalous imaginary values of σy set in and of
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the fact that, when sweeping different values of θ0 in this
half-quadrant, |dx/dτ | approaches 0 as θ0 approaches π/2.
Similar explanations apply, mutatis mutandi, to the behaviors
observed in the other half-quadrants, taking into account the
reflection symmetries around the four axes already mentioned.

IV. DISCUSSION AND CONCLUSIONS

In this paper, a new QL formalism has been developed
to describe the propagation of optical or acoustic (or other)
rays in random media that relies on consistently expanding the
dispersion relation and the ray equations up to (and including)
second-order terms in the fluctuations, while simultaneously
splitting the ray into average plus fluctuating terms and subse-
quently carrying out an ensemble-average operation that yields
equations governing the average ray and the rms spreading
about it. The QL designation is imported from the kinetic
theory of waves in weakly turbulent plasmas [31,32] and means
that one keeps second-order terms in the perturbations, thus
implying that there is a slow drift of the average ray with
respect to its unperturbed trajectory that is induced by the
ensemble averages of the squared fluctuations. This approach
comes as an efficient alternative to MC calculations and is
not without similarity to previously proposed methods for
so-called statistical ray tracing [26], although it appears to
be much easier to implement in the case of more complex
geometries or dispersion relations (as happens when tracing
rays in tokamaks [24,25,27,28]), since it makes use of the
Hamiltonian framework [29–31]. The method presented here
assumes that the dispersion relation can be solved explicitly for
the frequency variable, but if that is not possible analytically (as
is generally the case in fusion-grade plasmas [24,25,28,31]),
there is apparently no difficulty in going back from Hamilton’s
equations to the equations having in the denominator the
frequency derivative of the dispersion relation and proceeding
straightforwardly with a similar (albeit lengthier) expansion
in the fluctuating quantities. The only conundrum of the QL
formalism is the existence of a downward recursion relation
by means of which the evolution of quadratic means involving
a given-order derivative of medium fluctuations depends on
the derivatives immediately one order higher, so that such a
recurrence needs to be truncated when applying the method
to actual problems. It has been shown, for the case of a single
random mode (in which the recursion relation becomes exactly
closed), that results do converge to the correct outcome when
going up in the order at which such a recurrence is truncated
and, in addition, it has been verified, for the realistic case of
a multimode turbulent spectrum, that practical convergence
becomes effective already at the lowest orders (as early as

when neglecting the contribution of fourth- and higher-order
derivatives of the medium fluctuations).

The QL approach has been benchmarked against MC
calculations for rays propagating in homogeneous media on
which single-mode or isotropic multimode turbulent spectra
are superposed, which has enabled some exercises of validation
and verification, respectively, of the model and of its numerical
implementation [35]. Overall, the QL and MC results compare
pretty well, the former being particularly robust regarding
the ensemble average of ray trajectories and the rms width
resulting from spreading of the ray pencil in the direction
perpendicular to the average ray, being also very good in
reproducing the ensemble averages of the wave-vector com-
ponents. Deviations between the outcomes of QL and MC
calculations can be more pronounced in the rms spreads of
wave-vector components, but these are usually not the most
sought quantities in ray tracing (although they need to be traced
simultaneously with the other ray quantities for completeness
of the whole QL system of equations), and they correspond to
rather small normalized values. The tests of the QL formalism
have ben carried out using, for the amplitude of the medium
fluctuations, a value commensurate to those reported in related
works for the levels of density fluctuations in plasmas [24–28]
and deemed to be still within the validity of the perturbative
expansion up to second order. As for the wave numbers of
the turbulent modes, their maximum value has been chosen
so that the eikonal approximation remains effective, its being
clear that the agreement between QL and MC worsens if the
level of fluctuations or the maximum wave number in the
turbulent spectrum are increased. The QL method that has
been presented is obviously not limited to density fluctuations
and can be straightforwardly extended and applied to ray
tracing in any random media when the impact of fluctuations
on ray propagation enters the dispersion relation (or index of
refraction) via any physical quantity that can be split into an
average plus a fluctuating term.
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APPENDIX A: QL RAY EQUATIONS IN HOMOGENEOUS RANDOM MEDIA

The QL set of ray equations derived under the conditions in Sec. III A reads

n0

c

d〈ri〉
dt

� 〈ki〉
(〈kj 〉〈kj 〉)

1
2

+ 3〈ki〉〈kj 〉〈kl〉〈δkj δkl〉
2(〈km〉〈km〉)

5
2

− 〈ki〉〈δkj δkj 〉 + 2〈kj 〉〈δkj δki〉
2(〈kl〉〈kl〉)

3
2

− 〈δkiδne(〈r〉)〉
(〈kj 〉〈kj 〉)

1
2 〈ne〉

+ 〈ki〉〈kj 〉〈δkj δne(〈r〉)〉
(〈kl〉〈kl〉)

3
2 〈ne〉

− 〈ki〉
(〈kj 〉〈kj 〉)

1
2 〈ne〉

〈
δrj

∂δne(〈r〉)

∂rj

〉
+ 〈ki〉〈δne(〈r〉)δne(〈r〉)〉

(〈kj 〉〈kj 〉)
1
2 〈ne〉2

, (A1)
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n0

c

d〈ki〉
dt

� 〈kj 〉
(〈kl〉〈kl〉)

1
2 〈ne〉

〈
δkj

∂δne(〈r〉)

∂ri

〉
+ (〈kl〉〈kl〉)

1
2

〈ne〉
〈
δrj

∂2δne(〈r〉)

∂rj ∂ri

〉
− 2(〈kl〉〈kl〉)

1
2

〈ne〉2

〈
δne(〈r〉)

∂δne(〈r〉)

∂ri

〉
, (A2)

n0

c

d〈δriδrj 〉
dt

� 〈δriδkj 〉 + 〈δrj δki〉
(〈kl〉〈kl〉)

1
2

− 〈ki〉〈kl〉〈δklδrj 〉 + 〈kj 〉〈kl〉〈δklδri〉
(〈km〉〈km〉)

3
2

− 〈ki〉〈δrj δne(〈r〉)〉 + 〈kj 〉〈δriδne(〈r〉)〉
(〈kl〉〈kl〉)

1
2 〈ne〉

, (A3)

n0

c

d〈δkiδkj 〉
dt

� (〈kl〉〈kl〉)
1
2

〈ne〉
[〈

δki

∂δne(〈r〉)

∂rj

〉
+

〈
δkj

∂δne(〈r〉)

∂ri

〉]
, (A4)

n0

c

d〈δriδkj 〉
dt

� 〈δkiδkj 〉
(〈kl〉〈kl〉)

1
2

− 〈ki〉〈kl〉〈δklδkj 〉
(〈km〉〈km〉)

3
2

− 〈ki〉〈δkj δne(〈r〉)〉
(〈kl〉〈kl〉)

1
2 〈ne〉

+ (〈kl〉〈kl〉)
1
2

〈ne〉
〈
δri

∂δne(〈r〉)

∂rj

〉
, (A5)

n0

c

d〈δriδne(〈r〉)〉
dt

�
〈
δri

∂δne(〈r〉)

∂rj

〉
n0

c

d〈rj 〉
dt

+ 〈δkiδne(〈r〉)〉
(〈kl〉〈kl〉)

1
2

− 〈ki〉〈kj 〉〈δkj δne(〈r〉)〉
(〈kl〉〈kl〉)

3
2

− 〈ki〉〈δne(〈r〉)δne(〈r〉)〉
(〈kj 〉〈kj 〉)

1
2 〈ne〉

, (A6)

n0

c

d〈δkiδne(〈r〉)〉
dt

�
〈
δki

∂δne(〈r〉)

∂rj

〉
n0

c

d〈rj 〉
dt

+ (〈kj 〉〈kj 〉)
1
2

〈ne〉
〈
δne(〈r〉)

∂δne(〈r〉)

∂ri

〉
, (A7)

n0

c

d

dt

〈
δri

∂δne(〈r〉)

∂rj

〉
�

〈
δri

∂2δne(〈r〉)

∂rj ∂rl

〉
n0

c

d〈rl〉
dt

+ 1

(〈kl〉〈kl〉)
1
2

〈
δki

∂δne(〈r〉)

∂rj

〉
− 〈ki〉〈kl〉

(〈km〉〈km〉)
3
2

〈
δkl

∂δne(〈r〉)

∂rj

〉

− 〈ki〉
(〈kl〉〈kl〉)

1
2 〈δne〉

〈
δne(〈r〉)

∂δne(〈r〉)

∂rj

〉
, (A8)

and

n0

c

d

dt

〈
δki

∂δne(〈r〉)

∂rj

〉
�

〈
δki

∂2δne(〈r〉)

∂rj ∂rl

〉
n0

c

d〈rl〉
dt

+ (〈kl〉〈kl〉)
1
2

〈ne〉
〈
∂δne(〈r〉)

∂ri

∂δne(〈r〉)

∂rj

〉
. (A9)

APPENDIX B: QL RAY EQUATIONS IN HOMOGENEOUS RANDOM MEDIA WITH SINGLE-MODE FLUCTUATIONS

Under the conditions in Sec. III B, the QL system of ray equations becomes

d〈x[y]〉
dτ

� 〈κx[y]〉
(〈κx〉2 + 〈κy〉2)

1
2

[
1 + (δne0)2

2

]
+ 3〈κx[y]〉(〈κx〉2〈δκxδκx〉 + 〈κy〉2〈δκyδκy〉 + 2〈κx〉〈κy〉〈δκxδκy〉)

2(〈κx〉2 + 〈κy〉2)
5
2

− 〈κx[y]〉(〈δκxδκx〉 + 〈δκyδκy〉) + 2(〈κx〉〈δκxδκx[y]〉 + 〈κy〉〈δκyδκx[y]〉)

2(〈κx〉2 + 〈κy〉2)
3
2

− 〈δκx[y]δne(〈x〉)〉
(〈κx〉2 + 〈κy〉2)

1
2

+ 〈κx[y]〉[〈κx〉〈δκxδne(〈x〉)〉 + 〈κy〉〈δκyδne(〈x〉)〉]
(〈κx〉2 + 〈κy〉2)

3
2

− 〈κx[y]〉
(〈κx〉2 + 〈κy〉2)

1
2

〈
δx

∂δne(〈x〉)

∂x

〉
, (B1)

d〈κx〉
dτ

� 1

(〈κx〉2 + 〈κy〉2)
1
2

[
〈κx〉

〈
δκx

∂δne(〈x〉)

∂x

〉
+ 〈κy〉

〈
δκy

∂δne(〈x〉)

∂x

〉]
− q2(〈κx〉2 + 〈κy〉2)

1
2 〈δxδne(〈x〉)〉 and

d〈κy〉
dτ

� 0, (B2)

d〈δx[y]δx[y]〉
dτ

� 2〈δx[y]δκx[y]〉
(〈κx〉2 + 〈κy〉2)

1
2

− 2(〈κx〉〈κx[y]〉〈δx[y]δκx〉 + 〈κy〉〈κx[y]〉〈δx[y]δκy〉)

(〈κx〉2 + 〈κy〉2)
3
2

− 2〈κx[y]〉〈δx[y]δne(〈x〉)〉
(〈κx〉2 + 〈κy〉2)

1
2

and

d〈δxδy〉
dτ

� 〈δxδκy〉 + 〈δyδκx〉
(〈κx〉2 + 〈κy〉2)

1
2

− 〈κx〉2〈δyδκx〉 + 〈κy〉2〈δxδκy〉 + 〈κx〉〈κy〉(〈δxδκx〉 + 〈δyδκy〉)

(〈κx〉2 + 〈κy〉2)
3
2

− 〈κx〉〈δyδne(〈x〉)〉 + 〈κy〉〈δxδne(〈x〉)〉
(〈κx〉2 + 〈κy〉2)

1
2

, (B3)

d〈δκxδκx〉
dτ

� 2(〈κx〉2 + 〈κy〉2)
1
2

〈
δκx

∂δne(〈x〉)

∂x

〉
,

d〈δκxδκy〉
dτ

� (〈κx〉2 + 〈κy〉2)
1
2

〈
δκy

∂δne(〈x〉)

∂x

〉
, and

d〈δκyδκy〉
dτ

� 0, (B4)
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d〈δx[y]δκx〉
dτ

� 〈δκx[y]δκx〉
(〈κx〉2 + 〈κy〉2)

1
2

− 〈κx[y]〉(〈κx〉〈δκxδκx〉 + 〈κy〉〈δκxδκy〉)

(〈κx〉2 + 〈κy〉2)
3
2

− 〈κx[y]〉〈δκxδne(〈x〉)〉
(〈κx〉2 + 〈κy〉2)

1
2

+ (〈κx〉2 + 〈κy〉2)
1
2

〈
δx[y]

∂δne(〈x〉)

∂x

〉
and

d〈δx[y]δκy〉
dτ

� 〈δκx[y]δκy〉
(〈κx〉2 + 〈κy〉2)

1
2

− 〈κx[y]〉(〈κx〉〈δκxδκy〉 + 〈κy〉〈δκyδκy〉)

(〈κx〉2 + 〈κy〉2)
3
2

− 〈κx[y]〉〈δκyδne(〈x〉)〉
(〈κx〉2 + 〈κy〉2)

1
2

, (B5)

d〈δx[y]δne(〈x〉)〉
dτ

�
〈
δx[y]

∂δne(〈x〉)

∂x

〉
d〈x〉
dτ

+ 〈δκx[y]δne(〈x〉)〉
(〈κx〉2 + 〈κy〉2)

1
2

− 〈κx[y]〉
[〈κx〉〈δκxδne(〈x〉)〉 + 〈κy〉

〈
δκyδne(〈x〉)

〉]
(〈κx〉2 + 〈κy〉2)

3
2

− (δne0)2

2

〈κx[y]〉
(〈κx〉2 + 〈κy〉2)

1
2

, (B6)

d〈δκx[y]δne(〈x〉)〉
dτ

�
〈
δκx[y]

∂δne(〈x〉)

∂x

〉
d〈x〉
dτ

, (B7)

d

dτ

〈
δx[y]

∂δne(〈x〉)

∂x

〉
� − q2〈δx[y]δne(〈x〉)〉d〈x〉

dτ
+ 1

(〈κx〉2 + 〈κy〉2)
1
2

〈
δκx[y]

∂δne(〈x〉)

∂x

〉

− 〈κx[y]〉
(〈κx〉2 + 〈κy〉2)

3
2

[
〈κx〉

〈
δκx

∂δne(〈x〉)

∂x

〉
+ 〈κy〉

〈
δκy

∂δne(〈x〉)

∂x

〉]
, (B8)

and

d

dτ

〈
δκx

∂δne(〈x〉)

∂x

〉
� −q2〈δκxδne(〈x〉)〉d〈x〉

dτ
+ q2 (δne0)2

2
(〈κx〉2 + 〈κy〉2)

1
2 and

d

dτ

〈
δκy

∂δne(〈x〉)

∂x

〉
� −q2〈δκyδne(〈x〉)〉d〈x〉

dτ
, (B9)

where x and y can be exchanged consistently in every x[y] throughout the same expression.
If the recurrence (34) is truncated numerically, instead of being closed via (41), (B8) and (B9) are replaced with

d

dτ

〈
δx[y]

∂mδne(〈x〉)

∂xm

〉
�

〈
δx[y]

∂m+1δne(〈x〉)

∂xm+1

〉
d〈x〉
dτ

+ 1

(〈κx〉2 + 〈κy〉2)
1
2

〈
δκx[y]

∂δne(〈x〉)

∂x

〉

− 〈κx[y]〉
(〈κx〉2 + 〈κy〉2)

3
2

[
〈κx〉

〈
δκx

∂δne(〈x〉)

∂x

〉
+ 〈κy〉

〈
δκy

∂δne(〈x〉)

∂x

〉]

− 〈κx[y]〉
(〈κx〉2 + 〈κy〉2)

1
2

〈
δne(〈x〉)

∂mδne(〈x〉)

∂xm

〉
(B10)

and

d

dτ

〈
δκx[y]

∂mδne(〈x〉)

∂xm

〉
�

〈
δκx[y]

∂m+1δne(〈x〉)

∂xm+1

〉
d〈x〉
dτ

+ (〈κx〉2 + 〈κy〉2)
1
2

〈
∂δne(〈x〉)

∂x

∂mδne(〈x〉)

∂xm

〉
, (B11)

with 〈
∂nδne(〈x〉)

∂xn

∂mδne(〈x〉)

∂xm

〉
= in+m (−1)n + (−1)m

2
qn+m (δne0)2

2
(B12)

for n = 0, 1 and i the imaginary unit.
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