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Diffraction-ray optics of laser-pulse filamentation
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We present a qualitative description of the laser-pulse filamentation phenomenon based on light field
representation as a self-consistent ensemble of specific localized wave structures known as the diffraction-ray
(light) tubes. These light tubes are energetically independent from each other and, at the same time, they are in
close field interaction through the phase front of the light wave. The trajectories of light tube centroids represent
the evolutionary line of the Poynting vector transverse component. Light tubes do not intersect in space although
they can be nested, and the tubes do not exchange light energy with each other. Spatial shape and area of light tubes
can vary during pulse propagation, reflecting the influence of different physical processes manifesting themselves
upon radiation propagation in a medium. This diffraction-ray approach applies the attributes of the amplitude and
phase analysis to the problem of laser radiation self-action and sheds light on the onset and termination conditions
of laser-pulse filamentation.
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I. INTRODUCTION

The propagation of high-power ultrashort laser pulses in
transparent media is realized predominantly in the nonlinear
regime and is characterized by a large-scale spatiotemporal
phase and amplitude modulations of the light field. In optical
media with a strong cubic nonlinearity (Kerr-type nonlin-
earity), a high-intensity light pulse undergoes self-focusing
which results in sharp compression of pulse spatial dimensions
and avalanche intensity increase. Pulse transverse collapse is
arrested by the multiphoton absorption and plasma generation
in a medium at high field intensities (>1013 W/cm2), as
well as by the processes associated with the higher-order
optical nonlinearities (HOKE). Such multifactorial interplay
of different physical factors results in the formation of pulse
nonlinear focus after which a narrow high-intensity light
filament or group of filaments is formed in the propagation
direction [1]. The angular divergence of this filament is less
than the diffraction-limited divergence of the entire beam in a
linear medium.

In experiments on the filamentation of femtosecond radia-
tion, the trace of filaments is registered as luminous channels
in the visible region, which are formed in the course of
free-electron recombination with neutrals and ions. In air and
other transparent media (water, glass), the peak intensity in
the filament can reach tens of TW/cm2, while mean filament
dimensions vary by hundreds of micrometers depending on
the type of propagation medium and laser wavelength [1].
High intensity in the filaments causes medium ionization and
initiates plasma production with a characteristic free-electron
density of about 1015−1018 cm−3 [2], which in particular
forces medium luminescence. There are many scientific works
devoted to various aspects of laser-pulse self-focusing and
filamentation in air. The current state of the problem of laser-
pulse filamentation is presented, e.g., in several comprehensive
reviews [1,3,4].
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With the advent of high-power femtosecond lasers in
research practice, the phenomenon of laser filamentation has
acquired great importance for various areas of nonlinear optics
and laser physics. These include laser technology aspects, e.g.,
femtosecond nanostructuring and micromachining of various
media, generation of ultra-broad-band (supercontinual) optical
radiation [5–7], as well as atmospheric-optical applications
related to terrestrial electricity, remote environmental laser
diagnostics, and directional long-range transmission of high-
power laser radiation [8–11].

Theoretical studies of high-power femtosecond pulse fila-
mentation in various physical media with a wide variation of
laser radiation parameters and geometrical setups have been the
subject of many scientific papers, estimated to date to be in the
thousands. For physical interpretation of pulse filamentation
and building a qualitative picture of this phenomenon, several
theoretical models were proposed in the literature, all based
on numerical simulations and available experimental data.
The most popular physical models are (a) the treatment of a
filament as a self-induced refractive waveguide in a medium
[12,13], (b) the filament as a sequence of moving nonlinear
(dynamic) foci [14,15], and (c) the model of a spatial optical
quasisoliton [16], which dynamically replenishes its energy
from the surrounding “energy reservoir” of the peripheral beam
areas [7,17]. Each physical model initially was based on a
certain set of experimental information, and therefore describes
only specific aspects of the filamentation process.

As a rule, the physics of filamentation is studied by analyz-
ing the amplitude characteristics of the measured quantities,
e.g., optical field intensity, energy density (fluence), electri-
cal conductivity of the filamented core, spectral density of
laser plasma luminescence, and acoustic pressure. Therefore,
all above-mentioned filamentation models as inputs use the
physical parameters expressed also in the form of amplitude
or energy values. At the same time, the phase of an optical
wave is as informative as its amplitude because it also contains
the imprints of all linear and nonlinear processes that occur
with the radiation as it propagates in the medium. Also, it is
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the local slope of the phase front that determines the direction
of power and energy fluxes within the light wave [18].

A striking example of combined amplitude-phase treatment
of laser radiation self-action is the technique of optical ray trac-
ing which constructs ray patterns for a laser beam propagating
in a nonlinear medium [18–22]. These ray pictures represent a
family of geometric or diffraction-geometric (diffraction) rays
[23] the trajectories of which obey evolutionary laws governed
by the fundamental pulse propagation equation [24]. Every
diffraction ray (DR) represents an integral trajectory coinciding
with the streamline of the Poynting vector. A finite number of
closely spaced diffraction rays form a localized light structure,
known as a light (diffractive-ray) tube (DRT) [25,26].

Unlike an infinitely thin ray, a light tube is characterized by
a finite cross section and carries a certain amount of radiation
power (energy). The fundamental property of a DRT is the
constancy of the energy flowing through any of its cross
sections, if there are no sources and sinks of energy in the
medium. The main reason for using the DRT methodology is
that the spatial evolution of light wave amplitude in a medium
can be represented as a picture of DRTs each carrying a certain
portion of light energy. In photometry, such a formal replace-
ment is a powerful tool in analyzing the spatial distribution of
illumination in a complex scene configuration [26]. In optics
of femtosecond pulses, a similar analysis was successfully
applied in studying the regularities of filamentation in
unimodal beams with different profiles [21,22,27], and also
the evolution of radiation at the postfilamentation stage of pulse
propagation [28].

Worth noting, the ray-tracing methodology for the visu-
alization of the electromagnetic vectorial field inherits the
Bohmian formulation of quantum mechanics [29] as applied
to the photons [30,31]. Analogous ray-based treatment can be
found in different scientific areas, e.g., in quantum chemistry
for molecular magnetic currents [32] or even for sound wave
energy streamline rendering [33].

In this paper, we further develop the theoretical concept of
the light field as an ordered collection of spatially localized
wave structures that are energetically independent from each
other and simultaneously located in close interaction through
the wave phase front (diffraction). As a visualizing tool of
these light structures and interpretation of the information
contained in the optical phase, the mathematical formalism
of the diffraction-ray tubes is proposed. Although the light ray
representation of laser-pulse filamentation was known earlier
[21–28], here we give a comprehensive mathematical justi-
fication for this technique. The classical definition of a light
tube derived for the stationary field is extended to the case of
nonstationary light field propagation in a nonlinear dissipative
medium with chromatic dispersion (of the second order). As
an example, we construct DRT patterns for analyzing the
dynamics of nonlinear propagation of high-power ultrashort
laser pulses in the self-focusing and filamentation regimes in
air. In particular, the proposed diffraction-ray tube formalism
allows us to precisely localize and trace the evolution of the
specific spatial region of the laser pulse, called in the literature
the “energy reservoir” [17], which provides light energy for
filament existence. With DRT tracing it becomes possible
to reveal the actual role of this energy reservoir in filament
formation. Also, DRT pictures help in evaluating the energy

refueling effect on the plasma-free postfilament propagation
of a light pulse.

We emphasize that the diffraction rays and the light tubes
are to a greater extent other optical tools for light propagation
visualization, which extends the traditional wave “amplitude”
analysis by the streamline picture of energy fluxes inside a
propagating light pulse.

The paper is organized as follows. In Sec. II we provide
for the complete mathematical formalism of the diffraction-ray
optics in the laser-pulse filamentation problem. Here, we derive
the evolutional equations for spatial and temporal diffraction
rays and reveal the conservation laws in the light tubes. In
Sec. III, several examples of diffraction-ray pictures of a clas-
sical Gaussian laser-pulse filamentation in air are presented.
For this purpose, we directly solve the wave propagation
equation [Eq. (1)] by the use-proven spectral method [1–3],
obtain the complex-valued optical field, and then use it for the
calculations of the wave phase and/or amplitude profiles on the
propagation range. Having this information we use it for the
derivation of the diffraction-ray trajectories. The diffraction-
ray concept is extended to the light tube formalism in Sec. IV.
The light tubes demarcate light energy fluxes within the beam
so that each of them can be treated as a separate sub-beam
with its own transverse dimensions and angular divergence.
We introduce the averaged (effective) diffraction rays which
represent the whole light tube as a single dimensionless
trajectory, and in Sec. V we demonstrate how this methodology
can be applied in studying the laser radiation filamentation
dynamics especially on the postfilamentation evolutional stage.

II. DIFFRACTION-RAY MATHEMATICAL FORMALISM
OF LASER-PULSE NONLINEAR PROPAGATION

As the basis for derivation of the diffraction-ray optics
equations we take the paraxial wave equation for the complex
amplitude of the electric field E(r⊥, z ; t ) expressed in the
coordinate system moving with pulse group velocity:

∂E(r⊥, z ; t )

∂z
= i

2k0
∇2

⊥E − i
k′′
ω

2

∂2E

∂t2

+ 1

2
ik0

εN (r⊥, z ; t )

ε0
E − 1

2
αN (r⊥, z; t )E.

(1)

Here, k0 = n0ω0/c is the wave number, n0 stands for the
linear refractive index, ω0 is the pulse central frequency,
and k′′

ω is the second-order pulse group velocity dispersion
(GVD). The nonlinear additive εN to linear medium dielectric
permittivity ε0 and the nonlinear absorption coefficient αN

account for potentially time-dependent cubic optical nonlin-
earity n2(t ) (self-focusing), higher-order Kerr nonlinearities
nj , j > 2(HOKE), multiphoton light absorption, and plasma
nonlinearity; the latter causes wave refraction and light ab-
sorption by the free-electron gas. The expressions for these
quantities are as follows:

εN = 2n0

J∑
j=2

nj (t )|E|2(j−1) − σω0τc

k0
ρe, (2a)

αN = σρe + WI�Ei

|E|2 (ρnt − ρe ) (2b)
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with σ , τc, and �Ei denoting the inverse Bremsstrahlung cross
section, electron mean collision time, and ionization potential,
respectively. WI is the photoionization rate of the medium with
the density of neutral atoms (molecules) ρnt .

In the following, we use the amplitude-phase representa-
tion of the complex field by introducing the real amplitude
A(r⊥, z; t ) and real-valued phase ϕ(r⊥, z; t ): E = Aeiϕ . After
substituting this ansatz into Eq. (1) and collecting the real and
imaginary parts we obtain two equations for the amplitude and
phase of the wave:

∂A

∂z
= − 1

2k0
[A∇2

⊥ϕ + 2(∇⊥ϕ) · (∇⊥A)]

+ k′′
ω

[
∂ϕ

∂t

∂A

∂t
+ 1

2
A

∂2ϕ

∂t2

]
− αN

2
A, (3a)

2

k0

∂ϕ

∂z
+ 1

k2
0

(∇⊥ϕ)2 − k′′
ω

k0

(
∂ϕ

∂t

)2

= εN

ε0
+ ∇2

⊥A

k2
0A

− k′′
ω

k0A

∂2A

∂t2
. (3b)

A. Diffraction rays

Let us turn to the equation for the wave phase, Eq. (3b), and
for convenience introduce several notations on the right-hand
side of this equation. Thus, εd = ε0∇2

⊥A/(k2
0A) is treated as the

field diffractive component of medium dielectric permittivity,
while εdis = −ε0(∂2A/∂t2)k′′

ω/(k0A) represents the dispersive-
refractive part. Actually, the right-hand side of Eq. (3b) has the
physical meaning of some effective dielectric permittivity of
the medium, εef = ε0 + εN + εd + εdis, which accounts for,
in addition to material dielectric permittivity ε0, the field
components originating from the nonlinearity of the medium
εN , diffraction εd , and GVD εdis of the wave packet.

Next, we apply the transverse gradient operation (∇⊥) to
the left and right sides of Eq. (3b) and introduce a vector s⊥ =
1/k0(∇⊥ϕ) that represents the energy density flux through the
lateral surface of a unit medium volume. This vector is directly
related to the normalized transverse component of the Poynting
vector S⊥ [18]: s⊥ = S⊥/A2. As a result, for this vector one
obtains the following equation:

∂s⊥
∂z

+ (s⊥ · ∇⊥)s⊥ −
[
k′′
ω

∂ϕ

∂t

]
∂s⊥
∂t

= 1

2
∇⊥ε̄ef , (4)

where ε̄ef = εef/ε0 − 1.
Now, we apply the method of characteristics to Eq. (4) and

rewrite it through the system of the Lagrange-Charpit ordinary
differential equations [34] relative to the s⊥ vector:

dz

dz′ = 1,
dRd

dz′ = s⊥,
dτdis

dz′ = −k′′
ω

∂ϕ

∂t
,

ds⊥
dz′ = 1

2
∇⊥ε̄ef .

(5)

By introducing the variables Rd , z, and τdis we come to the char-
acteristic equations for the spatial and temporal coordinates of
the DR:

dRd

dz
= s⊥ = 1

k0
∇⊥ϕ(Rd , z; τdis ), (6a)

dτdis

dz
= −k′′

ω

∂ϕ(Rd , z; τdis )

∂t
. (6b)

The DR’s trajectory in space and time is determined by the
optical wave phase profile ϕ(r⊥, z; t ) through the solution of
the system, Eqs. (6a) and (6b), and indicates the direction of
optical power flux (the vector s⊥) along the pulse propagation
distance. In general, the local slope of a DR at each point
is calculated at different time instants τdis, which change
in accordance with the frequency sweep (pulse self-phase
modulation) caused by the pulse GVD process.

Using Eq. (5) one can also write the DR equation in terms
of the effective medium permeability ε̄ef :

d2Rd

dz2
= 1

2
∇⊥ε̄ef (Rd , z; τdis ). (6c)

This is the central equation of the diffraction-ray optics
because it establishes a link with the classical geometrical-ray
tracing in a medium with some material permittivity εef .
Equation (6c) indicates that a DR acquires negative angular
divergence and bends toward the optical axis when the effective
permittivity gradient is negative,∇⊥εef < 0, and vice versa if
∇⊥εef > 0. Consequently, the regions of the medium with
negative effective permittivity gradient can be considered as
the focusing zones for corresponding DRs, and the regions
where ∇⊥εef > 0 can be treated as the defocusing zones.

Thus, the diffraction beams behave like classical geometri-
cally optic rays, i.e., are the subject of Snell’s law of refraction
in the presence of a dielectric constant gradient in the medium.
The difference between geometrical and diffraction rays is
that DRs not only are associated with the material quantity ε0

but also effectively take into account the diffraction, medium
nonlinearity, and chromatic dispersion.

Let us recall the equation for the wave phase, Eq. (3b), and
now differentiate both its parts with respect to time. Using the
systems of ray characteristics analogous to Eq. (5) we obtain
the evolution equation of the so-called temporal diffraction
ray τdis:

dτdis

dz
= −k′′

ω

∂ϕ

∂t
(Rd , z; τdis ). (7)

The equation of motion for this temporal ray is as follows:

d2τdis

dz2
= −k′′

ω

k0

2

∂ε̄ef

∂t
. (8)

In a medium without GVD, k′′
ω = 0, temporal DRs represent the

rectilinear trajectories in (t, z) coordinates that run parallel to
the pulse time axis. If the medium has a chromatic dispersion,
the temporal rays become inclined toward the time axis by
an angle given by Eq. (7) even at linear pulse propagation.
Depending on the sign of the dispersion coefficient k′′

ω, the
optical pulse blurs (k′′

ω > 0) or focuses in space (k′′
ω < 0).

B. Conservation laws and diffraction-ray tubes

Let us turn to the equation for optical field amplitude,
Eq. (3a). After multiplying both sides by the factor (2A) we
obtain the equation for the wave intensity, I = A2:

∂I

∂z
= − 1

k0
[I∇2

⊥ϕ + (∇⊥ϕ) · (∇⊥I )]

+ k′′
ω

(
∂ϕ

∂t

∂I

∂t
+ I

∂2ϕ

∂t2

)
− αNI. (9)
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It is clearly seen that on the right-hand side of this equation in
square brackets stays the divergence of the transverse Poynting
vector S⊥. Thus, we come to the equation for the intensity of an
optical wave in a nonlinear absorbing and dispersive medium:

∂I

∂z
+ div(S⊥) = ∂St

∂t
− αNI, (10)

where St = k′′
ωI

∂ϕ

∂t
. This equation indicates that at every point

of the optical path (r⊥, z) and at every time instant t the
sources of the changes of wave intensity are not only medium
absorption and energy cross flows to the neighboring spatial
regions but also energy exchange between different pulse time
slices.

By time integrating Eq. (10) over infinite limits and noting
that

∫ ∞
−∞ (∂St/∂t )dt = 0, we obtain the conservation law for

light wave fluence F (r⊥, z) = ∫
Idt :

∂F

∂z
+ div(SF ) = −〈αN 〉tF. (11)

Here the integral parameters are introduced that have the
physical meanings of the transverse energy flux vector
SF = ∫

S⊥dt and time-averaged volume absorption, 〈αN 〉t =
(F )−1

∫
αNIdt .

The optical radiation power, P(z; t ) = ∫
S
Idr⊥, is of con-

siderable interest in the theory of self-focusing because it deter-
mines the whole dynamics of pulse filamentation. Avoiding the
loss of generality, we obtain the equation for optical power P

flowing through some chosen cross-sectional area S in a laser
beam assuming cylindrical symmetry of the problem. Consider
two important cases: (a) when this area is the cross section of
a cylindrical volume with some constant radius rc deposited
along the laser beam axis, S = πr2

c , and (b) when S is a cross
section of a DRT, i.e., a cylindrical volume bounded by one
of the diffraction rays with a variable in z radial coordinate
Rd (r⊥, z; t ). In the latter case, the area S also has a variable
value since the boundary of the DRT varies in space-time.

We use Eq. (10) and integrate it along a circular area with
constant radius rc. After that we come to the relation

∂Pc

∂z
+ 2π

∫ rc

0
div(S⊥)rdr = 2π

∫ rc

0

∂St

∂t
rdr − 〈αN 〉SPc.

(12)

Here, Pc = 2π
∫ rc

0 Irdr ≡ ∫ rc

0 Idr⊥ is the power contained in
the cylindrical area, and 〈αN 〉S = (2π/Pc )

∫ rc

0 αNIrdr denotes
the absorption coefficient averaged over the cross section S.
Applying the divergence theorem to Eq. (12) we obtain the
equation for optical power evolution within the cylindrical
volume of a constant cross section:

∂Pc

∂z
= −2πrcS⊥(rc ) + ∂

∂t

[∫ rc

0
Stdr⊥

]
− 〈αN 〉SPc. (13)

Now consider the diffraction-ray tube. Because its radius varies
along z the differentiation in the first term on the left-hand side
of Eq. (10) should be carried out along the integration limit
also (Leibniz formula). Taking into account Eq. (6a) for an

arbitrary cross section of the DRT, we have

∂

∂z

[∫ Rd (z)

0
I (z)rdr

]
=

(
dRd

dz

)
RdI (Rd ) +

∫ Rd (z)

0

∂I

∂z
rdr

= S⊥Rd + ∂P

∂z
. (14)

Substituting this relation into the integrated Eq. (10), we obtain
the conservation law for the power Pd in a DRT:

∂Pd

∂z
=

∫ Rd (z,t )

0

∂

∂t
Stdr⊥ − 〈αN 〉SPd, (15)

where the absorption coefficient averaging is performed over
the DRT section.

As seen, in contrast to a cylinder of constant cross section,
Eq. (15) does not contain any light energy fluxes through
the lateral ray tube surface (no term with S⊥). In other
words, neighboring DRTs do not exchange energy and the
change in tube power can only occur due to ohmic losses and
redistribution of energy within the laser pulse. This means
that at several time instants the losses of DRT power due
to absorption can be replenished by the energy influx from
the preceding temporal layers of the pulse. In this scenario,
the dynamic balance between the focusing and defocusing
nonlinearities in the light tube can be restored (or set), thereby
supporting (or initiating) the filamentation.

It is straightforward to demonstrate that both Eqs. (13) and
(15) after integration with respect to time lead to the same form
of the conservation law for total energy Q of the light wave in
any selected cross section of the medium S:

∂Q

∂z
= −

∫
S

∫
(αNI )dr⊥dt. (16)

Recalling the evolutional equation for optical fluence,
Eq. (11), we notice that the parameter SF actually represents
the wave phase gradient averaged over the pulse envelope
weighted by optical intensity I : SF = ∫

Idt · ∫
I (∇⊥ϕ)dt =

F · 〈∇⊥ϕ〉t . This allows introducing the additional family of
DRs in pulse propagation analysis, the time-averaged diffrac-
tion rays, which represent energy fluxes within the laser beam,
rather than within the pulse as the “instantaneous” DRs Rd do.

Indeed, if we introduce the averaged vectorial coordinate
RdF = (1/F )

∫
Rd (t )Idt then similarly to Eq. (6c) we can

write the equation for the averaged (per pulse) diffraction ray:

d2RdF

dz2
= 1

2
〈∇⊥ε̄ef〉t , (17)

where 〈∇⊥ε̄ef〉t = 1
ε0F

∫ ∇⊥(εN + εd + εdis )Idt . Thus, the
averaged DRs are related not to the intensity of the optical
wave but to its energy (fluence) and visualize the direction of
the energy flow represented as a change in the coordinate RdF

of such “energy” diffraction ray.

III. EXAMPLES OF DIFFRACTION-RAY PICTURES IN
LASER-PULSE FILAMENTATION

In this section we consider several examples of DR tracing
that visualize the classical case of Gaussian femtosecond
pulse filamentation in air. Worth noting, the diffraction-ray
equations Eqs. (6)–(9) provide the complete description of
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FIG. 1. (a) Peak pulse intensity, (b) density of laser plasma, and
(c) beam radius upon laser-pulse filamentation in air.

laser-pulse filamentation analogously to the governing paraxial
wave propagation Eq. (1). This means that the diffraction-
ray formalism is also quantitative, and in principle the ray
equations could be solved numerically. However, the numerical
solution to the ray equations seems to be more complicated than
the well-documented practices of the numerical simulations
of Eq. (1). Therefore, to draw ray pictures we numerically
solve the original pulse propagation equation Eq. (1) for
the electric-field envelope E(r⊥, z ; t ) by the spectral Fourier
method [1] and obtain spatiotemporal optical phase profile
ϕ(r⊥, z; t ) at every grid point on the propagation path. Then,
the calculated nonlinear phase front is used to produce the
phase spatial gradient and time derivative profiles. Finally,
the DR coordinates Rd and τdis are advanced through the
numerical solution to the ray equations Eqs. (6a) and (6b)
applying fourth-order Runge-Kutta method.

In the calculations we accept the following parameters of
the laser pulse: carrier wavelength λ0 = 800 nm, beam radius
(at e−1 intensity maximum) R0 = 0.5 mm, pulse duration
tp = 100 fs, and peak power P0 = 6 Pcr, where Pcr is the
critical self-focusing power (in air, we take Pcr = 3.2 GW
[1]). Corresponding results of numerical simulations of pulse
filamentation are depicted in Figs. 1(a)–1(c). Here we present
the variations along the optical path of pulse peak intensity

FIG. 2. Trajectories of “instantaneous” DRs Rd for different pulse
time slices: (a) τ = −1, (b) 0, and (c) +1.

Im, peak free-electron density ρem in air, and beam radius
Rb defined according to the fluence profile F (r⊥). As follows
from these dependences, the propagation of such radiation in
air causes its filamentation accompanied by a sharp intensity
increase, reduction in pulse size, and formation of a moderate
dense plasma region (ρem > 1014 cm−3) along the beam axis.

Now consider the diffraction-ray representation of laser-
pulse filamentation. On the series of graphs in Figs. 2(a)–2(c)
are plotted DR trajectories for different pulse time instants
τ = t/tp starting from the front (τ = −1) and ending with the
back (τ = +1) pulse edges. In these figures, each diffraction
ray is a connected line in (r, z) coordinates, the tangent to
which at every point coincides with the direction of normalized
transverse Poynting vector s⊥, and the normal is the local slope
of the wave front.

It follows from the diffraction-ray trajectories that the paths
of the DRs for different time instants are also different. The
diffraction rays on the pulse leading edge [Fig. 2(a)] are
practically unaffected by plasma refraction and demonstrate
a classical picture of pulse self-focusing with the formation of
single nonlinear focus at the distance z = 1.03 m. After that,
axial DRs enter the spatial region of the gradual increase in
their radial coordinate.

The back pulse edge [Fig. 2(c)], on the other hand, suffers
mostly from the defocusing in the self-induced plasma created
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FIG. 3. (a) Pulse fluence profile F (r, z). (b) Time-averaged DR trajectories RdF (r, z). (c) Space-time intensity distribution I (t, z). (d)
Temporal DR traces τdis(t, z).

by the previous time slices of the pulse. This leads to a more
distant nonlinear focus at z = 2.2 m for this time instance.
After the nonlinear focus, the corresponding DRs begin to
diverge steadily.

Central pulse time layers [Fig. 2(b)] initially contain the
major part of radiation power and therefore the first nonlinear
focus of this time slice is formed earlier than on the forward
edge of the pulse, at z = 0.54 m. Some of the peripheral DRs
immediately leave the focal region, whereas the paraxial rays
demonstrate two more events of nonlinear (re)focusing, the
latter of which is observed at z = 2 m. From this point the
paraxial DRs propagate along the optical axis practically with
no divergence.

Worth noting, for the central time layers of the pulse the
formation of the so-called diffraction waveguide [27] is well
traced on the path section from z = 0.5 to 2.2 m. Within this
virtual waveguiding channel, the diffraction rays propagate
similar to usual geometrical rays in the refractive index-
graded waveguide [35]. The condition of medium waveguiding
is fulfilled for nonpositive values of the effective dielectric
permittivity gradient ∇⊥ε̄ef in Eq. (6c). The average diameter
of this waveguiding structure is about 300 μm, which is close to
the effective size of the spatial region from which the filament
consumes light energy according to the concept of the energy
reservoir (280 μm as reported in Ref. [36]). In more detail, the
energy reservoir in the terminology of DRTs will be considered
below.

In Figs. 3(a)–3(d), the “amplitude” and “phase” portraits
of the filamentation are presented for comparison. Here, the

trajectories of the time-averaged RdF and temporal diffraction
rays τdis are plotted together with the spatial profiles of the pulse
fluence and axial intensity. Temporal DR traces are calculated
on the beam axis for different moments of local pulse time.
Pulse parameters correspond to Fig. 1.

As noted above, a number of closely spaced DRs constitute
a diffraction-ray (light) tube, which unlike a single diffraction
ray has spatial dimensions and carries a certain amount of
pulse power. Ray tubes do not intersect and there is no energy
exchange between them. In the approximation of cylindrical
symmetry when a single filament is organized on the beam
axis, every DR defines its own light tube, the centroid of which
coincides with the optical axis, and the boundaries of the tube
are determined by the chosen ray trajectory. This leads to a
diffraction-ray representation of the propagating laser beam as
the evolution of a family of light tubes enclosed into each other.

In contrast to the trajectories of the “instantaneous” diffrac-
tion rays in Figs. 2(a)–2(c), the averaged DR traces in Fig. 3(b)
demonstrate laser-pulse evolution in a self-induced stationary
spatial profile of the effective permittivity gradient 〈∇⊥εef〉t .
In terms of diffraction-ray optics, laser radiation self-action is
expressed as irregular changes in the cross section of averaged
DRTs, when some of them are compressed due to self-focusing,
while others in contrast increase their sizes and maintain a
global divergence of the laser beam.

Diffraction-ray convergence towards the beam axis during
pulse self-focusing [first 45 cm of the optical path in Figs. 3(a)
and 3(b)] leads to the increase of light tubes numbe and
consequently the light energy stored in this region. This, in
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FIG. 4. Effective air permittivity distribution during laser-pulse
filamentation.

turn, causes pulse intensity increase, active plasma formation
in the medium, and filament formation. In the region where the
filamentation exists (z ∼ 3 m), only slight changes of paraxial
DRT area are visible, which indicates the spatial stability of
the filament.

As follows from our calculations, the plasma region formed
on the beam axis has an average radius of Rp ∼ 30−40 μm,
and right in this area all losses of the pulse energy occur. For this
reason, light tubes with initial radius Rd � Rp exhibit the most
large-scaled (in percentage) energy losses. In Fig. 3(b) this can
be seen as a sharp decrease in the cross section of the first
three on-axis DRTs enclosing the filament. Light tubes which
are broader (larger boundary radial coordinate) initially carry
more radiation energy, and therefore the effect of nonlinear
losses due to plasma formation is less noticeable here. As a
result, as can be seen in Fig. 3(b), wide tubes with Rd 	 Rp

undergo only insignificant compression at the self-focusing
stage and practically do not lose energy upon filamentation.

The trajectories of temporal DRs τdis(t, z), which show the
power flow direction between the different time layers of the
laser pulse, are directly connected to the chromatic dispersion
of the propagation medium. In the near-IR spectral range, air
GVD k′′

ω is 0.21 fs2/cm [1] and therefore the characteristic
dispersion length Lds = t2

p/k′′
ω of a 100-fs pulse considerably

exceeds the self-focusing distance. Thus, the temporal diffrac-
tion rays shown in Fig. 3(d) run practically parallel to each other
up to the nonlinear focus at z = 0.5. In this region, plasma
production and accompanying this process high nonlinear
absorption begin to develop actively. This causes temporal
pulse splitting on several shorter subpulses, which are visible
on the I (t, z) profile in Fig. 3(c). Simultaneously, this increases
the impact of pulse GVD that pushes apart the temporarily short
subpulses and broadens the laser pulse as a whole. Temporal
DRs at this filamentation stage lose mutual parallelism and
some of them demonstrate convergence, thus indicating the
emergence of local temporal foci and pulse splitting.

Using the definition of the effective medium permittivity
εef it is instructive to establish a direct analogy between the
propagation of a beam in a real refractive waveguide and in a
virtual self-induced “diffraction” waveguide. Figure 4 shows
this entity in the form of time-averaged relative permittivity
variation from the initial value along the propagation path:
�εef = (k0R0)2〈ε̄ef〉t . The laser-pulse parameters correspond
to Fig. 1. Recall that the effective permittivity εef differs
from the material permittivity ε0, which depends only on the

physical structure of the medium, by the presence of field
contribution accounting for the wave amplitude and phase
gradients during pulse propagation.

As can be seen from this figure, the parameter �εef can take
positive and negative values during beam propagation, which
forms a mountainlike landscape in the effective permittivity
profile with characteristic “mountain ridges,” “valleys,” and
“canyons.” According to Eq. (6c), the diffraction rays obey
the ordinary geometric-ray optics and tend to bend toward
larger values of the refractive index. Consequently, meeting
an optically dense mountain ridge, a diffraction ray may be
captured by these folds and follow its profile until the ray meets
an area with higher εef values. When a diffraction ray falls
within a canyon, where �εef < 0, then it tends to leave this
region. If the canyon is not too deep, the ray succeeds in this
trend and continues to move toward the positive permittivity
gradient (∇⊥εef ). Otherwise, the canyon walls do not allow the
diffraction ray to escape.

Thus, for example, a diffraction ray emitted from the initial
plane z = 0 with a radial coordinate at the beam boundary
Rd (z = 0) = R0 follows the effective permittivity profile. First
it bends toward the axis and then turns in the opposite direction
to the beam periphery entering the mountain ridges of the
�εef (r, z) surface. These ridges are formed as a result of suc-
cessive nonlinear refocusings of the pulse in the filamentation
region. In this area, the radiation intensity sharply increases,
which abruptly increases the plasma generation and leads to the
decrease or even the change in sign of the nonlinear component
εN in the expression for εef .

A diffraction ray released closer to the beam axis (with a
smaller radial coordinate) is initially already at the top of the
�εef -surface mountain, where smooth changes in the dielectric
constant are characteristic. The trajectory of the paraxial ray
will be close to rectilinear with slight oscillations during the
passage through the folds of �εef values. One can say that such
ray enters the diffraction waveguide and is kept by optically
dense “diffraction walls” at a certain range.

The peripheral diffraction rays (Rd > 1.5R0) from the very
beginning are in the area of negative �εef values, and thus they
immediately diverge from the beam axis (they are defocused).
At z ≈ 2.3 m, the paraxial maximum of �εef disappears and
shifts to the beam periphery, which indicates the termination
of pulse axial self-channeling and the destabilization of its
filamentation.

IV. AVERAGED DESCRIPTION OF THE
DIFFRACTION-RAY TUBES

The main advantage of the DRT conception of laser radia-
tion propagation is that the light tubes demarcate and separate
light energy fluxes within the beam. Since these energy flows
are isolated from each other (DRTs do not intersect), each
of them can be treated as a separate sub-beam with its own
transverse dimensions and angular divergence. Within each
sub-beam, the energy conservation law is satisfied. Therefore,
as in the case of conventional beams [37,38], averaged (effec-
tive) characteristics can be used to describe the evolution of
DRTs also.

For definiteness consider the problem of pulse propagation
when the conditions of cylindrical symmetry are satisfied. We
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associate every DRT with an effective diffraction ray 〈Red〉
(ER), the squared coordinate of which represents the time-
averaged second-order moment of light intensity I within the
DRT cross section:

〈
R2

ed

〉 = (Q)−1
∫ ∞

−∞

∫∫
Rd (z;t )

[|r⊥|2I (r⊥, z; t )]dr⊥dt (18)

where dr⊥ = rdrdθ is the unit area, θ is the polar angle,
and Q = ∫ ∞

−∞
∫∫

Rd
Idr⊥dt is light energy stored in a DRT

that obeys the conservation law Eq. (16). We emphasize that
an ER by definition does not coincide with DRT boundaries
determined by the corresponding DRs, but rather indicates
the dimensions of the spatial region where the energy of the
optical field is predominantly concentrated. For Rd → ∞, the

effective ray 〈Red〉 =
√

〈R2
ed〉 of a light tube corresponds to

the classical definition of the round-mean-square radius of the
entire beam.

For the derivation of the evolutionary equation for 〈R2
ed〉 we

differentiate Eq. (18) with respect to z and take into account
the identity

d

dz

(〈
R2

ed

〉
Q

) =
∫ ∞

−∞

∫∫
Rd

d

dz
(r2

⊥I )dr⊥dt

+
∫ ∞

−∞

[
R2

dI (Rd )
dRd

dz

]
dt. (19)

The integrand in the first term on the right-hand side of this
expression can be expanded with the use of Eqs. (6a) and (8):

d

dz
(r2

⊥I ) = r2
⊥

(
−div(I s⊥) + ∂St

∂t
− αNI

)
. (20)

Applying the divergence theorem and energy conservation law,
Eq. (12), we obtain

d
〈
R2

ed

〉
dz

= 2

k0
〈|∇⊥ϕ|r⊥〉 − [〈αNr2

⊥〉 − 〈αN 〉〈R2
ed

〉]
, (21)

where some averaged on time and light tube cross-section
parameters are introduced: (a) the mean phase gradient

〈|∇⊥ϕ|r⊥〉 = (Q)−1
∫ ∞

−∞

∫∫
Rd

((∇⊥ϕ · r⊥) I )dr⊥dt (22a)

(b) the mean absorption length

〈αNr2
⊥〉 = (Q)−1

∫ ∞

−∞

∫∫
Rd

(αNr2
⊥I )dr⊥dt (22b)

and (c) the mean absorption coefficient

〈αN 〉 = (Q)−1
∫ ∞

−∞

∫∫
Rd

( αNI )dr⊥dt. (22c)

Comparing Eq. (21) with Eq. (6c) we see that in contrast to the
ordinary diffraction ray the equation for the effective ray takes
into account the energy absorption in a light tube.

Notice that if we use the non-normalized ray parameter
(〈R2

ed〉Q) then the governing ray equation will have a more

conventional form:

d
(〈
R2

ed

〉
Q

)
dz

= Q

[
2

k0
〈|∇⊥ϕ|r⊥〉 − 〈αNr2

⊥〉
]
. (23)

It is worth deriving the equation for an ER expressed in
terms of the effective permittivity εef as in the case of a
conventional diffraction ray [see Eq. (6c)]. To this end, we
first derive the equation for the transverse Poynting vector
component S⊥ = s⊥I and formally write the derivative of this
vector along the evolutional coordinate z:

∂ (s⊥I )

∂z
= I

∂s⊥
∂z

+ s⊥
∂I

∂z
= −s⊥Idiv(s⊥) + k′′

ω

∂ϕ

∂t

∂ (s⊥I )

∂t

+ 1

2
I · ∇⊥ε̃ef − s⊥div(s⊥I ) + s⊥

∂St

∂t
− s⊥IαN .

(24)

Applying the vectorial identity, s⊥div(s⊥I ) + (s⊥I )div(s⊥) =
∇⊥[(s⊥I ) · s⊥], one obtains the desired equation:

∂S⊥
∂z

+ 1

k0
∇⊥[S⊥(∇⊥ϕ)] − ∂

∂t

(
k′′
ω

∂ϕ

∂t
S⊥

)

= I

2
∇⊥ε̄ef − αNS⊥. (25)

Then, we scalar multiply Eq. (25) by the coordinate vector
r⊥ and do the temporal and spatial averaging as defined in
Eq. (18). As a result, after simple but rather cumbersome
mathematics, we get

d〈s⊥ · r⊥〉
dz

= 1

2
〈∇⊥ε̄ef · r⊥〉 − [〈αN s⊥ · r⊥〉 − 〈αN 〉〈s⊥ · r⊥〉]. (26)

Here, (a) the mean phase gradient

〈s⊥ · r⊥〉 = (Q)−1
∫ ∞

−∞

∫∫
Rd

((s⊥ · r⊥)I )dr⊥dt (26a)

(b) the mean effective permittivity gradient

〈∇⊥ε̄ef · r⊥〉 = (Q)−1
∫ ∞

−∞

∫∫
Rd

((∇⊥ε̄ef · r⊥)I )dr⊥dt

(26b)

And (c) the mean absorption along phase gradient

〈αN s⊥ · r⊥〉 = (Q)−1
∫ ∞

−∞

∫∫
Rd

( αN (s⊥ · r⊥)I )dr⊥dt.

(26c)

Finally, we take the derivative of Eq. (21) with respect to z,
and after substitution of Eq. (26) follows the equation for the
squared effective ray of a light tube:

d2
〈
R2

ed

〉
dz2

= 〈∇⊥ε̄ef · r⊥〉 − 2[〈αN s⊥ · r⊥〉 − 〈αN 〉〈s⊥ · r⊥〉]

− d

dz

[〈
αNr2

⊥
〉 − 〈αN 〉〈R2

ed

〉]
. (27)

Obviously, if αN �= αN (r⊥; t ), e.g., as in a homogeneous linear
medium, Eq. (27) formally is identical to the averaged DR
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FIG. 5. DRTs (solid lines) and ERs (dash-dotted line) for Gaus-
sian pulse filamentation with (a) η = 3 and (b) 6.

equation:

d2
〈
R2

ed

〉
dz2

= 〈∇⊥ε̄ef · r⊥〉. (28)

In Figs. 5(a) and 5(b), the boundaries of the diffraction-ray
tubes and the trajectory of the effective rays of the tubes
are plotted for the case of filamentation in air of a Gaussian
beam (R0 = 2 mm, tp = 100 fs) with different reduced power
η = P0/Pc. Here, as a tonal image, the normalized fluence
profile F (r, z)/F0 is shown also. DRTs are plotted at the bottom
of each figure, and ERs are at the top.

It is clear that due to the initial unimodality of transverse
intensity distribution the effective ray of each light tube
is located closer to the axis than the corresponding tube
boundary. Effective rays completely reproduce all stages of
pulse filamentation in terms of energy fluxes dynamics. One
can distinguish (a) beam transverse collapsing during its self-
focusing, (b) self-channeling of light energy along the axis
within the filamentation region, and (c) diffraction broadening
of the beam dimensions at the postfilamentation stage.

V. PRACTICAL APPLICATIONS OF DIFFRACTION-RAY
OPTICS IN THE FILAMENTATION DYNAMICS

In this section we show how the methodology of diffraction
rays and light tubes can be applied in studying laser radia-
tion filamentation dynamics. First we consider the simplified
case of steady-state radiation propagation in a nonabsorbing
medium with purely Kerr-type nonlinearity (without a plasma
and GVD): εN = 2n0n2A

2 ≡ εK , where I ≡ A2 is adopted.
In this situation the normalized effective medium permittivity
includes only nonlinear and diffraction terms:

ε̃ef = 2n0n2A
2

ε0
+ ∇2

⊥A

k2
0A

. (29)

As above, we assume cylindrical symmetry of the problem
with ∇⊥f (r ) ≡ er

r
∂
∂r

(rf ).

A. Self-channeling conditions of laser radiation

First, we take the Gaussian beam and suppose it retains its
profile during the propagation:

A(r, z) = A0(z) exp[−r2/2R2(z)], (30)

where A0 and R are peak amplitude and beam radius, respec-
tively. This approximation is true for quasilinear propagation
of a low-power laser radiation (εK  εd ), or, e.g., for the initial
stages of self-focusing of radiation with supercritical power,
when the self-induced aberrations of the intensity profile are
insignificant still.

After substituting Eqs. (29) and (30) into Eq. (26b) we
obtain the expression for the mean effective permittivity
gradient:

〈|∇⊥ε̄ef |r⊥〉 ∝ {√
2
[
1 − e−R̄2

d

(
1 + R̄2

d

)]
− ηn0

[
1 − e−2R̄2

d

(
1 + 2R̄2

d

)]}
. (31)

Here, R̄d = Rd/R, η = 1
2 (n2A

2
0R

2k2
0 ) ≡ P0/Pcr denotes the

reduced laser power, P0 = A2
0πR2 is initial power, and Pcr =

2π/(k2
0n2) stands for critical self-focusing power.

The situation when the right-hand side in Eq. (31) is less
than or equal to zero is of special interest because this indicates
the tendency of radiation channeling in a selected light tube
along the propagation path. In this case, the light beam as a
whole can stably diverge or converge with respect to the axis,
i.e., the effective radius of the entire beam can have a nonzero
derivative with respect to z. However, the angular divergence
of a given light tube, γd ∼ d〈Red〉/dz, will not increase (as,
e.g., during beam diffraction in a linear medium).

Thus, the channeling condition for an ER and, consequently,
for the light field in the corresponding DRT is the negative
value of the expression in square brackets on the right-hand
side of Eq. (31). For two limiting asymptotics, of the paraxial
ray (Rd  R) and the whole beam (Rd → ∞), we obtain
the threshold values η∗ of relative laser power: η∗ = √

2/4
and η∗ = √

2, respectively (for n0 = 1). In other words, to
trigger the light self-channeling near the beam axis, the initial
beam power should be greater than approximately one-third
the critical power; in order to suppress beam diffraction as a
whole (in terms of the effective radius) about 1.5 times the
critical power is required. Notice that the threshold values
obtained above refer to the self-channeling of light tubes
(virtual sub-beams) and may differ from the threshold power
for a stationary aberration-free self-focusing of a Gaussian
beam, which is η∗ = 1 as reported in Ref. [39]. The factor√

2 for the self-channeling threshold of the most outer DR
appears as a result of Gaussian profile averaging in the integral
relation, Eq. (26b).

Now, consider another important light beam transverse
profile in the form of the Bessel-Gaussian (BG) function:

A(r, z) = A0(z)J0(r/RB ) exp(−r2/R2), (32)

where RB is the central lobe radius and J0(r ) is the zeroth-order
cylindrical Bessel function. A similar beam profile is charac-
teristic for the late stages of laser-pulse filamentation, when
the so-called plasma-free propagation of the beam is realized
and a high-intensity weakly divergent (postfilamentation) light
channel is formed along the axis [40].
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FIG. 6. (a) Transverse intensity profile of Bessel-Gaussian and
Gaussian beams. (b) Threshold power for light tube self-channeling
as a function of tube radius.

Figure 6(a) shows the intensity distribution of two BG
beams with the parameters RB = R0/2, R = 3R0, and R =
9R0 (R0 = 1 is the radius of a reference Gaussian beam), while
in Fig. 6(b) the threshold power of self-channeling of beams
is depicted as a function of the light tube radius Rd . These
dependences are obtained through the numerical integration of
the expression for 〈∇⊥ε̄ef · r⊥〉 [Eq. (26b)] after substituting
into it the amplitude profile, Eq. (32).

As follows from the presented dependences, the self-
channeling threshold for the central part of the BG beam is
substantially lower than for the Gaussian profile. At the same
time, with an increase in the contrast of the lateral intensity
maxima, the threshold values η∗ decrease. For a near pure
Bessel profile (R = 9R0), the center of the beam propagates
in diffraction-free mode at η∗ > 0.3. This indicates that in the
case of a BG beam the self-channeling of its central part can
be performed at a substantially subcritical power.

The main reason for this behavior is the presence of the
ring system in a BG beam encircling the central lobe. As shown
[27], each ring represents a specific light diffraction waveguide,
which is self-organized around the beam axis during its
(non)linear propagation. Within the diffraction waveguide, the
radiation propagates with a reduced (relative to diffraction-
limited value) angular divergence as evidenced by the lower

FIG. 7. (а) Effective rays of light tubes during pulse filamentation
with η = 6. (b) Normalized tube energy (z = 11 m).

values of the diffractive permittivity component εd calculated
for the BG beam (not shown).

B. Postfilamentation light channel

The rather simplified analysis presented above for the con-
ditions of postfilamentation light channeling is confirmed by
the numerical calculations of the complete set of propagation
equations, Eqs. (1) and (2). Consider Fig. 7(a), which shows
the light tube family corresponding to the filamentation of
pulsed radiation with the parameters R0 = 1 mm, tp = 100 fs,
and η = 6. Under these conditions, the filamentation region
starts approximately at z = 2 m and occupies about 4.5 m.
Laser beam radius Rb determined from fluence profile F (r ) is
depicted by the dot-dashed line.

It can be seen that in the filamentation area a waveguiding
channel is formed near the optical axis where the light tubes
(effective rays) on average retain their sizes. This specific
structure contains the filament and the accompanying plasma
column. The average size of this structure varies in the range
from 100 to 200 μm. After the termination of filamentation
at z ≈ 6.6 m, at the stage of plasma-free propagation the laser
beam increases its size and the central (most intense) part forms
a postfilamentation channel with a reduced angular divergence.

From the viewpoint of diffraction-ray optics, on the post-
filamentation evolutional stage all light tubes demonstrate a
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stable spatial expansion that reflects light beam divergence. In
this spatial region it is possible to select at least one light tube,
which encompasses the postfilamentation light channel (PFC)
and has close linear dimensions and angular divergence with
this central beam part. This light tube is shown in Fig. 7(a)
with a bold line and serves as the energy reservoir for the PFC
maintaining its existence as a localized light structure.

If we trace the boundaries of this specific tube back to the
filamentation region, we notice that it also serves as an energy
reservoir for the filament. This energy replenishing or refueling
tube covers the intense part of the beam, and its transverse
dimension in the filamentation region varies slightly around the
level of 200 μm. This value corresponds well to the average
size of the bright luminous points experimentally observed
inside the filamented laser beam [41,42].

In Fig. 7(b) the relative energy fraction Q/Q0 in light tubes
that remains to the end of propagation is shown as a function of
initial tube power Pd . As seen, some of the paraxial tubes with
the power Pd � Pcr almost completely lose their energy in the
course of pulse filamentation. This energy is consumed on the
replenishment of pulse losses during multiphoton absorption
and plasma production in the filament. In contrast, light tubes
with Pd > Pcr exhibit a linear increase in energy content with
size, resembling the dependenceQ0(Pd ). This indicates a sharp
decrease in nonlinear losses in the peripheral areas of the beam.
Recall that in the case of cylindrical symmetry light tubes are
nested in each other.

As for the PFC, like the filament it is maintained by a
specific energy structure, a refueling light tube. According to
our calculations [see Fig. 7(a)], the peak power in the initial
section of this refueling tube is about twice the critical power
for self-focusing. At the end of the propagation range, the PFC
power drops to a subcritical value so this light structure can no
longer be confined due to Kerr self-focusing only [43].

VI. CONCLUSIONS

In conclusion, we present detailed theoretical formulations
of nonstationary diffraction-ray optics as applied to high-power
ultrashort laser-pulse propagation in a nonlinear dissipative
medium. Within the framework of this concept, the light energy
(power) propagates along specific light structures, the light
tubes. The trajectories of these light tubes at each point of the
optical path follow the streamlines of the transverse Poynting
vector component. The boundaries of the light tubes do not
intersect in space, and the tubes themselves do not exchange
light energy. At the same time, their shape and cross-sectional
area can vary during pulse propagation representing all physi-
cal processes occurring with the radiation in the medium.

In terms of diffraction-ray optics we come to a physical
picture of high-power laser-pulse filamentation, when the
filament, as an energy sink, consumes light energy not from
the entire beam but only from its specific part, which is a light
tube too and carries initial power more than the critical power
for pulse self-focusing. In fact, it is this light tube that serves
as the energy reservoir of the filament. The role of the rest of
the light beam (periphery) in the filamentation is the confining
of this refueling (replenishing) light tube within the filament
boundaries by organizing a virtual diffraction waveguide. Pulse
filamentation terminates as soon as the energy in the refueling
tube is exhausted. As can be seen, this concept of filamentation
combines the characteristic features of two widely known
filamentation models, namely, the dynamic spatial replenish-
ment of filament energy from the beam periphery [17] and
self-induced waveguide channeling [12].
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