PHYSICAL REVIEW A 98, 023841 (2018)

Level attraction in a microwave optomechanical circuit
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Level repulsion—the opening of a gap between two degenerate modes due to coupling—is ubiquitous anywhere
from solid-state theory to quantum chemistry. In contrast, if one mode has negative energy, the mode frequencies
attract instead. They converge and develop imaginary components, leading to an instability; an exceptional point
marks the transition. This only occurs if the dissipation rates of the two modes are comparable. Here we expose a
theoretical framework for the general phenomenon and realize it experimentally through engineered dissipation
in a multimode superconducting microwave optomechanical circuit. Level attraction is observed for a mechanical
oscillator and a superconducting microwave cavity, while an auxiliary cavity is used for sideband cooling. Two
exceptional points are demonstrated that could be exploited for their topological properties.
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I. INTRODUCTION

Level repulsion of two coupled modes with an energy
crossing has applications ranging from solid-state theory [1] to
quantum chemistry [2]. While deceptively simple, it underpins
more exotic phenomena. With the introduction of dissipation
or gain, an exceptional point [3] appears that is topologically
nontrivial [4-6]. The special case of two modes with equal
dissipation and gain rates is an example of parity-time sym-
metry [7,8]. The spontaneous breaking of that symmetry is
marked by the exceptional point. In recent years, exceptional
points gathered significant interest and they were demonstrated
in a variety of systems including active microwave circuits
[9-11], lasers [12,13], and optical microresonators [14—16].
In particular, the topological transfer of energy between states
by circling an exceptional point has been demonstrated with a
microwave cavity [4], a microwave waveguide [17], as well as
an optomechanical system [18,19].

Strikingly, if one mode has negative energy, the energy
levels of two interacting modes do not repel, but attract
instead [20-22]. The Hamiltonian leads to hybridized modes of
complex eigenfrequencies, one of which is unstable. As in level
repulsion, an exceptional point marks the transition between
the regimes of real and complex frequencies. In the process, the
real components of the frequencies become identical in a way
that is reminiscent of the synchronization of driven oscillators
[23].

Negative-energy modes (equivalent to harmonic oscillators
with negative mass) have been studied in schemes to evade
quantum measurement backaction [24-26]. Such a scheme was
recently demonstrated with an atomic spin ensemble, prepared
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in its maximal-energy spin state in a magnetic field [27]. Spin
flips decrease the energy and correspond to excitations of a
harmonic oscillator with a negative mass. Alternatively, the
negative-energy mode can be effectively realized in a frame
rotating faster than the mode itself [28,29].

In cavity optomechanics [30], a blue-detuned pump tone
induces time-dependent interactions between the electromag-
netic mode and the mechanical oscillator. In a frame rotating
at the pump frequency, the Hamiltonian is time independent,
and the electromagnetic mode appears to have negative energy.
While level repulsion was demonstrated in the strong coupling
regime of cavity optomechanics [31-33], level attraction has
so far not been observed.

Here we construct a general theoretical framework for level
attraction and demonstrate the phenomenon in a microwave
optomechanical circuit using engineered dissipation. In Sec. I,
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FIG. 1. Level repulsion and attraction. Two modes, whose bare
frequencies depend on a parameter X, have a level crossing (dotted
lines). A coherent coupling will in general lift the degeneracy. (a) In
the more usual case, level repulsion, the coupling opens a gap between
the frequencies of the hybridized eigenmodes & (blue solid lines)
and the eigenfrequencies bend away from each other. (b) In contrast,
if one of the modes has negative energy, level attraction occurs.
The real components of the eigenfrequencies @ (blue solid lines)
bend toward each other and converge. They meet at two exceptional
points, where the curves have kinks. A gap opens in the imaginary
components of the frequencies (orange dashed lines). The mode with a
negative imaginary component to the frequency is unstable and grows
exponentially.
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we show how a coherent coupling between modes of positive
and negative energy gives rise to level attraction. The role of
dissipation is discussed and explains the difficulty in observing
level attraction in such systems, as the dissipation rates of
the two modes must be similar. An intuitive way to classify
different types of exceptional points in two-mode system is
developed that allows us to clearly distinguish the cases of
level repulsion and attraction. In Sec. III, both level attraction
and repulsion are demonstrated experimentally in the same
microwave optomechanical circuit, where the mechanical dis-
sipation rate can be engineered to match that of the microwave
cavity.

II. THEORETICAL MODEL OF LEVEL ATTRACTION

We start with a general theoretical model of a positive-
energy mode coherently coupled to a negative-energy one. The
two modes, of annihilation operators @ and b and coherently
coupled with strength g, are described by the Hamiltonian

H = —ho(Mata + hoy (WD + Rgab + atbh), (1)

where the two positive frequencies w; and w, vary with respect
to an external parameter A. The linear coupling chosen here
is quite general: if we assume the modes close in frequency,
the other linear terms a'h and ab! can be neglected in the
rotating wave approximation (valid only if the frequencies w; »
dominate over the dissipation rates for an open system). The
coupling rate g is chosen to be real, because any complex phase
can be absorbed in a redefinition of @ or b.

In the Heisenberg picture, this leads to the equations of

motion
d(a (w1 —g\[a
)= -, 2
i) =05 o)) g

where we drop the explicit A dependence. We note that the
uncoupled bare modes evolve as a(t) = e/“'a(0) and bi(r) =
€' b1 (0) with a positive phase. The hybridized eigenmodes
of the system are found by diagonalizing the matrix in Eq. (2),
and have eigenfrequencies

wi + wy a)l—a)zz
1 = 5 i( > )—gz. 3)

The negative sign in front of g2 is the only difference with the
eigenfrequencies for the case of level repulsion (when a has
positive energy) but it dramatically impacts the physics.

In Fig. 1, level attraction is compared to level repulsion,
with two striking features. First, instead of avoiding each
other, the eigenfrequencies pull toward one another. Second,
when they meet at 4g% = (w; — w»)?, the frequencies acquire
positive and negative imaginary parts, causing exponential
decay and growth. The hybridized mode with a negative
imaginary component grows exponentially and is therefore
unstable. In Appendix A, level repulsion and attraction are
compared more systematically.

The transition between the regimes of real and complex
eigenfrequencies is marked by exceptional points, which can
be understood by studying the matrix of Eq. (2). Decomposed
in terms of Pauli matrices and omitting the term proportional
to the identity, it can be expressed as %(wl — wy)0; —ig0y.

In contrast with level repulsion for which the interaction term
would be go,, here the Hermitian Pauli matrix is multiplied by
an imaginary coefficient. If the first term has a larger amplitude,
the eigenfrequencies are real, while they are complex if the
second term dominates. When the two Pauli matrices have
coefficients of the same amplitude, the matrix is proportional
to o, — ioy. At this point, the two eigenvectors coalesce and
a single eigenvector with a single eigenvalue subsists: it is
an exceptional point [3]. More generally for all two-mode
systems, any point for which the dynamics is determined
by a matrix proportional to o, +iog, with o # B8, is an
exceptional point. In Appendix B, we use this decomposition to
construct an intuitive classification of the various realizations
of exceptional points.

Level attraction arises whenever the coupling term consists
of a Pauli matrix with an imaginary coefficient. In fact, coupled
oscillators of positive and negative energy are only one way
to achieve this. An alternative relies on a coupling between
two modes that cannot be derived from a Hamiltonian,
such as the dissipative interaction through one or multiple
intermediary modes [34]. The mode hybridization observed
between positive-energy oscillators with dissipative [18,35]
and nonconservative [36] interactions can be interpreted as
level attraction.

While level attraction of two linearly coupled modes dis-
plays intriguing similarities with the synchronization of driven
oscillators, important differences exist. As in synchronization,
the real components of the frequencies “lock” over a frequency
range that increases with the coupling rate g, and form the
equivalent of an Arnold tongue [23]. The physical process
differs, however. In synchronization, one starts with two
oscillators that are driven nonlinearly to their limit cycles, then

FIG. 2. Effect of dissipation on level attraction. Two modes, a
and b, cross in frequency (mode & having negative energy), with
respective dissipation rates ¥ and I'. The real component of the
frequency is the solid blue line and the imaginary component the
dashed orange line. (a) While a finite average dissipation rate simply
translates the imaginary components of the frequency, a difference
in the two rates (k # I') affects qualitatively level attraction. The
kinks and the exceptional points disappear and the picture is overall
smoothed out. (b) When the dissipation rates differ significantly, no
trace of level attraction is visible anymore. In both cases, one of the
hybridized mode becomes unstable if the imaginary component of its
frequency turns negative.
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a coupling is introduced that locks their frequencies and their
phases [37]. In level attraction by contrast, the frequencies
of the two modes attract through linear dynamics until they
become identical. The state of the two hybridized modes
remain independent and their phases can be set arbitrarily.

To understand why level attraction is in practice less
common than level repulsion, the role of dissipation should
be studied. We open the system and include in our treatment
the energy dissipation rates «k and I' respectively for the
modes @ and b. They can be introduced as positive imaginary
components of the bare frequencies in the equations of motion.
The results of Egs. (2) and (3) can be extended by replacing w;
with w; + i% and w, with w, + ig. In Fig. 2, we compare
the resulting eigenfrequencies. If the dissipation rates are
equal (k = I'), the level structure of Fig. 1(b) is reproduced
with the imaginary components translated to a finite average.
However, in the case of even slightly mismatched dissipation
rates k 2 ' [Fig. 2(a)], the exceptional points and the kinks
in the frequencies disappear. For increasingly dissimilar rates
k > I [Fig. 2(b)], the level-attraction picture progressively
disappears until the modes seem to cross without interacting.
Therefore, only in a system where dissipation rates can be tuned
to closely match each other is level attraction observable.

III. DEMONSTRATION IN A MICROWAVE
OPTOMECHANICAL CIRCUIT

Cavity optomechanics provides an ideal setting to study
level attraction and compare it to level repulsion. We now take
a to represent an electromagnetic mode and b a mechanical
oscillator, coupled through the optomechanical interaction
figoata(b + b'), where gy is the vacuum optomechanical
coupling [30]. With a blue-detuned pump tone applied to the
system, the three-wave-mixing coupling is linearized and the
Hamiltonian reduces to the form of Eq. (1)

H = —hAd'a + hQmb'b + hg(ab + a'bh, “4)

where A is the detuning of the pump tone, €2;,, the mechanical
mode frequency, and g = go./n. the linear coupling enhanced
by the mean cavity photon number 7. due to the pump tone.
As above, we neglect counter-rotating terms and assume the
detuning A to be close to Q,. Critically, the Hamiltonian is
expressed in a frame rotating at the pump frequency in order
to be time independent. Hence, for a blue detuning A > 0, the
cavity mode effectively has a negative energy, since the photons
have a negative relative frequency with respect to the pump. In
this context, the well-known parametric instability of optome-
chanics [30] can be interpreted as resulting from the physics
of level attraction. The instability stems from the negative
imaginary component that develops in the eigenfrequencies
of the equations of motion, above the critical coupling gcir =
\/ﬁ /2. For level attraction to be observable, the magnitudes of
k and I" should be close. For the usual experimental parameters,
however, the electromagnetic decay rate « is much larger than
the mechanical rate I', and no attraction can in practice be
observed for the mechanical and electromagnetic modes.

In our experiment, the effective mechanical energy decay
rate [ei is artificially increased to match « using sideband
cooling with an auxiliary mode. We use a superconduct-
ing electromechanical circuit [32] containing two microwave

T 7/ T T w

We We + A Waux — Qm Waux

FIG. 3. Engineering dissipation in a multimode optomechanical
circuit. To observe level attraction, the dissipation rate I" of the
mechanical mode 5 must be increased to match Kk, the much larger
dissipation rate of the primary electromagnetic mode a. To that end,
an auxiliary mode d,, is used for sideband cooling. (a) Schematic
of the microwave optomechanical circuit, coupled inductively to a
microwave feedline and measured in reflection. The two hybridized
modes of the circuit, @ and d,,x, interact with the motion of the top
membrane of a shared capacitor, acting as the mechanical oscillator
b (in green). (b) Photograph of the circuit and scanning-electron
micrograph of the vacuum-gap capacitor. (c) Diagram of the three
interacting modes. (d) Frequency domain representation of the level-
attraction experiment. A microwave pump tone (vertical red line), red
detuned by the mechanical frequency 2., with respect to the auxiliary
mode resonance w,, (grey peak) is used for sideband cooling. Level
attraction of the modes & and b is achieved by sweeping the detuning
A of a pump tone (vertical blue line) near the blue sideband of the
primary mode resonance w, (blue peak). For level repulsion, the pump
tone is instead swept near the red sideband.

modes interacting with the vibrational mode of a vacuum-gap
capacitor [represented schematically in Fig. 3(a) and shown in
Fig. 3(b)]. The design, which was demonstrated in previous
work [38], uses two hybridized electromagnetic modes of the
circuit to ensure that one has a much larger external coupling
rate to the microwave feedline than the other. The more
dissipative auxiliary mode d,,x is used to perform sideband
cooling of the mechanical oscillator with a red-detuned pump
tone. This damps the oscillator and increases its effective
dissipation rate to 'y & k. Meanwhile, the less dissipative
primary mode a undergoes level attraction with the damped
mechanical oscillator.

In the experiment, the device is placed inside a dilution
refrigerator and cooled to the base temperature, below 50 mK,
at which the circuit is superconducting and its internal Q
factor is enhanced. The two microwave modes a and d,,x have
respective resonance frequencies w, &~ 2w x4.11 GHz and
Waux ~ 27 x5.22 GHz, and dissipationrates k &~ 2w x 110kHz
and xx ~ 2 x 1.8 MHz. They interact with the fundamental
vibrational mode of the top plate of the vacuum-gap capacitor,
which has a frequency 2, &~ 27 x6.3 MHz. By placing a pump
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FIG. 4. Experimental demonstration of level repulsion and attraction in a microwave optomechanical circuit. Amplitude response of the
system as the detuning A of the pump tone is varied, when the effective dissipation rate of the mechanical mode b matches that of the microwave
mode a. In the laboratory frame, A determines the effective frequency of the mechanical oscillator, which is swept across the microwave
resonance. (a) When the pump tone is swept in frequency across the red sideband of the microwave mode, the two resonances bend away
from each other. (b) If the pump tone is swept across the blue sideband instead, the resonances pull toward each other and converge near two
exceptional points. Data are omitted for clarity where the system becomes unstable, and one hybridized mode grows exponentially until the
conditions of validity of Eq. (4) are no longer fulfilled (parametric instability).

tone that is red detuned by Q2,,, from the auxiliary mode reso-
nance [see Fig. 3(d)], the mechanical oscillator is damped. The
mechanical dissipation rate I", originally below 277 x 100 Hz, is
tuned to an effective dissipation rate ey ~ k &~ 2w x110kHz.

Level repulsion and attraction of the primary microwave
mode and the damped mechanical oscillator are both measured.
As a pump tone is tuned to the blue or red sideband of the
primary microwave mode [the former case is illustrated in
Fig. 3(d)], the weak probe tone of a vector network analyzer
is applied near the resonance of the microwave cavity to
obtain its linear response. Due to the hybridization of the
modes, the response carries information about both microwave
and mechanical modes. For both red and blue detunings, the
same pump power is set to obtain a coupling strength g ~
27 x200 kHz corresponding to a mean cavity photon number
ne ~ 4x10°.

The known case of level repulsion is obtained with a red-
detuned tone [Fig. 4(a)]. As the bare effective mechanical mode
frequency comes near the microwave resonance, the two modes
hybridize; their eigenfrequencies bend away from each other
with a gap of 2g.

With a blue-detuned tone, level attraction occurs instead.
The response, shown in Fig. 4(b), displays the characteristic
level structure of Fig. 1(b). The resonance frequencies of
the modes attract and converge to the points where the bare
frequencies of the modes differ only by +2g. In order for
the level attraction to be clearly visible, the coupling rate
g is set to dominate over the dissipation rates k and [eg.
It therefore exceeds the critical coupling g, resulting in
parametric instability. One of the modes grows exponentially
until the conditions of the validity of Eq. (4) are no longer
fulfilled. Namely, the fluctuating field is no longer negligi-
ble compared to the mean cavity photon number n.. The
original nonlinear optomechanical interaction constrains the
system to a limit cycle with a modified cavity resonance
frequency [39], the description of which lies beyond the scope
of this article. Data are omitted for clarity in the unstable
region.

IV. CONCLUSION

In summary, level attraction was experimentally demon-
strated using a dual-mode electromechanical circuit. Although
related to the well-studied parametric instability of optome-
chanics, the vastly different dissipation rates for the mechanical
and electromagnetic modes prevented its observation until
now. Level attraction, similar to level repulsion in open sys-
tems, gives rise to exceptional points. In both cases, the real part
of the frequencies converge and a gap opens in the imaginary
part (or vice versa) precisely at the exceptional point. In
future work, the exceptional points of level attraction could be
harnessed to demonstrate topological phenomena by circling
such a point in a two-dimensional parameter space [4,17,18].
Since the exceptional point only exists when the dissipation
rates of the two modes match exactly, the tunable mechanical
damping rate Iy can be used as one parameter in such an
experiment, with the tunable coupling rate g as the second.

The data and code used to produce the figures of this work
are available online [40].
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APPENDIX A: SYMMETRY BETWEEN LEVEL
REPULSION AND ATTRACTION

We explicitly derive here two minimal models, one for the
usual level repulsion of two coherently coupled modes, the
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other for level attraction of a negative-energy mode coherently
coupled to a positive-energy mode. We show that a symmetry
relation links the two cases. They are images of each other
under the exchange of frequency and dissipation rates.

First, we review level repulsion. Two modes of positive
energy (with annihilation operators @ and b, and respective fre-
quencies w; and w,) interact, as described by the Hamiltonian

Hig = hwata + hanb'h + ngabt +a'h), (A1)

with g the linear coupling strength. The equation of motion in
the Heisenberg picture is given by

d a [fw1 & a

— A )] =1 Al

dt \b g wr) \b
To solve the system in terms of eigenmodes, the matrix is
diagonalized. The eigenfrequencies are given by

2
o = ‘”‘;‘"2 :t\/<w1 2‘”2) +g2 (A3

(A2)

The model is extended to describe modes with dissipation
by adding imaginary components to the bare frequencies,
substituting w; - w; —il'}/2 and wy, — w, —il'2/2. Note
that a negative sign is required to obtain decaying exponentials.
For ease of notation, we define wy = “’”2“"2, o= @
Aw = w; —wy, and AT =T} —I',. The eigenfrequencies
can now be written as

r Aw —iAT/2\?
@%Ezwo—i—oi/<f/) +g2. (Ad)

s

The frequency of oscillation of the eigenmodes is given by
the real component of 6)1“5 and the dissipation rate by half its
imaginary component (with a minus sign).

We now consider level attraction. One (and only one) mode
has negative energy such that the system is described by the

Hamiltonian

Hip = —hwia'a + haob'b + hg(ab + a'b’).  (A5)
The equations of motion are given by
a - a
()= (5 ) () e
with eigenfrequencies
2
oy =22 i\/(“" ;wz) —gt (AD

The only difference with Eq. (A3) is the sign in front of
g%, which can result in a complex eigenvalue, meaning an
instability for the system.

It might not be intuitive that the Hermitian Hamiltonian
in Eq. (AS) leads to complex eigenfrequencies and unstable
dynamics. In fact, in an infinite-dimensional Hilbert space, an
operator must be compact as well as Hermitian to guarantee
the existence of real eigenvalues [41], which is not the case
here. We also note that only when the eigenfrequencies are real
can the eigenoperators be interpreted as Bogoliubov modes
[42]. When the eigenfrequencies are complex, the required
commutation relations cannot be satisfied.

To include dissipation, we substitute again w; — w; +
il'y/2 and wy — w, 4 i'2/2. Note that the opposite sign for
the imaginary component is required here to obtain decaying
exponentials. The eigenfrequencies including dissipation be-
come

Aw+iAT/2\?
d)lfézwo+i1‘0/2j:\/(L/> g2 (A8)

2

There is a symmetry between Eqs. (A4) and (A8). They are
equivalent under the transformation ' = I'/2 and I’ = 2w, if
Eq. (A8) is multiplied by a factor —i:

Aw —iAT)2\?
A :wé—iFé/Zi\/(u> +g2  (A9)

2

We conclude that level attraction and repulsion are equiva-
lent to each other through the exchange of frequency and
dissipation rates (within a factor of 2). In Fig. 5, this

(a) IR Level repulsion (b) @LALeveI attraction

_____ g —=y
© OLR (@) ~ LA

—/ X

_____ g —=yg
(@) OLR ") olA

T e ar ke e AT

0 0

FIG. 5. Comparison of the real (solid blue lines) and imaginary
(dashed orange lines) components of the eigenfrequencies & for the
level-repulsion Hamiltonian A, r (left column) and the level-attraction
Hamiltonian Hia (right column). (a),(b) The transition through an
exceptional point, as a function of the coupling strength g. For level
repulsion (a), the modes are originally degenerate (Aw = 0), while
for level attraction (b) they originally have matching dissipation
rates (A" = 0). (c),(d) Same as (a),(b) with a slight nondegeneracy
[Aw # O for level repulsion (c) and AT" # O for level attraction (d)],
such that the exceptional point is avoided. (e),(f) The difference
in dissipation rates AI' is varied, for degenerate modes Aw = 0.
This is the complementary case to Fig. 1, where AI' =0 and Aw
is varied. For level repulsion (e), the imaginary component of the
frequency attract and converge in a region where a gap opens in
the real components of the frequency (analogous to level attraction
as a function of Aw). For level attraction (f), the real component
is unchanged while the dissipation rates have an avoided crossing
(analogous to level repulsion as a function of Aw).
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symmetry is highlighted by contrasting equivalent situations
for both level repulsion and level attraction Hamiltonians. In
Figs. 5(a)-5(d), the curves for the real and imaginary parts of
the eigenfrequencies are interchanged when going from the
left column (level repulsion) to the right (level attraction).
Figures 5(e) and 5(f) can be compared with Fig. 1 of the
main text, where the characteristic shape of level attraction
is here seen for the dissipation rates for the Hamiltonian of
level repulsion and vice versa. In general, for level repulsion,
when a coupling is introduced the frequencies repel, while the
dissipation rates attract. The exact opposite is true for level
attraction: a coupling makes the dissipation rates repel and the
frequencies attract.

APPENDIX B: CLASSIFICATION OF EXCEPTIONAL
POINTS FOR SYSTEMS OF TWO COUPLED MODES

We describe here how to classify exceptional points of 2x2
matrices using Pauli matrices. The classification is then used to
sort recent experimental demonstrations of exceptional points.

In general, the equations of motion for a two-mode system
can be written in the form

d (d, d
i—| . ) =M. ),
dt \d, d>
where d 1 c?z are operators for the two modes and M is a 2x2
matrix. The eigenmodes of the system and their eigenfrequen-
cies correspond to the eigenvectors and eigenvalues of M. If
for some parameter values, M only has a single eigenvector
and a single eigenvalue, this is called an exceptional point.

The matrix M can always be decomposed in terms of the
Pauli matrices, defined as

01 0—i 10
oy = 1o) oy = io0) and o, = 0—1) (B2)

in the form

(B1)

M = aol + a0, + axoy + azo; (B3)

with 1 the identity matrix and a; complex numbers. The
eigenvalues of M are now easily expressed as

) =a0:|:,/a%+a%+a§-

Note that the first term in Eq. (B3), proportional to the identity,
only shifts the eigenvalues by a constant and has no effect on
the eigenvectors. Anytime that the matrix M can be written
as a multiple of o, + iog (o # B) (plus the identity), there is
only one eigenvalue and this is an exceptional point [43]. We
can use this decomposition to classify examples of exceptional
points.

(I) The most common case is the level repulsion of two
(positive-energy) modes of degenerate frequencies due to a
coherent coupling. Many experimentally demonstrated excep-
tional points fall in this category [4,10-15,17]. The two modes
are d; = a and d, = b, in our previous notation. The matrix
M can be written as

r AT
M:(mo—i—0>]l—i—

(B4)

o, + goy. (BS)

2 4

Forlow coupling rate g, M is diagonal with a gap for dissipation
rates. For large g, the last term dominates such that the
eigenmodes are eigenvectors of o,: g opens a gap in frequency,
while the dissipation rates are evenly distributed between the
modes. The transition between the regimes is marked by an
exceptional point at g = AT /4.

(IT) In this article, we consider the case of level attraction
of modes of negative and positive energies and matching
d1s51pat10n rates. Here the operators are d| = a and d, = bf
in our notation. The matrix M can be written as

—M = <a)0 + i&)ﬂ + %Gz —igo,. (B6)

2 2 ’

At low coupling g, there is a gap in frequency, while at
high coupling, the o, term opens a gap in dissipation rates
and the frequencies are identical. An exceptional point marks
the transition at g = Aw/2. Note that the coherent coupling
corresponds to a term with an imaginary coefficient for a
system with one mode of negative energy.

(IIT) Level attraction of two modes can be realized in any
system in which the coupling term has an imaginary compo-
nent. In particular, dissipative interactions [34] represent an
alternative way to the one presented in this article. The matrix
M is there expressed as

M= (wo —i ;“ )11 += 2o, +igao, (B
where for simplification the effective dissipation rate ['ef of
the two coupled modes is taken to be approximately equal. The
effective interaction between the two modes has an imaginary
coefficient and they have an increased effective dissipation rate
[efr due to the dissipative interaction as well. Similar to the
previous case, by increasing the coupling gg;s the original gap
in frequency is closed and a difference in dissipation rates is
created. In contrast, however, ey grows proportionally with
&dis, such that the gap in dissipation rates does not result in an
instability. The mode hybridization between modes of positive
energy coupled with dissipative interactions can be interpreted
as level attraction.

Examples of this type of exceptional points were realized
experimentally. In the experiment of Xu et al. [18], two me-
chanical oscillators are effectively coupled by both interacting
with the same optical cavity. In the experiment of Khanbeykyan
et al. [35], two modes of an optical resonator interact through
multiple quantum dots. In the experiment of Gloppe et al. [36],
two modes of a nanowire interact through the nonconservative
force of an optical field, which although not dissipative in
nature, cannot be derived from a Hamiltonian in a similar way.

(IV) Finally, yet another way to implement an exceptional
point was realized in the experiment of Chen et al. [16].
The clockwise and counterclockwise modes of a whispering-
gallery-mode resonator (of degenerate frequencies and dissi-
pation rates) interact through two Rayleigh scatterers. This
results in a combination of coherent and dissipative interaction
that can be described by

r
M= <wo - iyo)]l + 8con0x + 18disTy. (B8)
As the coupling gqon and ggis are varied, the relative phases of
the bare modes that compose the hybrid eigenmodes change.
When the two coupling strengths match (gcon = gais), the two
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eigenmodes coalesce and there is an exceptional point. Inter-
estingly, this corresponds to a point of maximal nonreciprocity,

with one bare mode coupled to the second but not the other way
around [44].
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