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Photonic time-frequency entanglement is a promising resource for quantum information processing technolo-
gies. We investigate swapping of continuous-variable entanglement in the time-frequency degree of freedom using
three-wave mixing in the low-gain regime with the aim of producing heralded biphoton states with high purity and
low multipair probability. Heralding is achieved by combining one photon from each of two biphoton sources via
sum-frequency generation to create a herald photon. We present a realistic model with pulsed pumps, investigate
the effects of resolving the frequency of the herald photon, and find that frequency-resolving measurement of
the herald photon is necessary to produce high-purity biphotons. We also find a trade-off between the rate of
successful entanglement swapping and both the purity and quantified entanglement resource (negativity) of the
heralded biphoton state.
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I. INTRODUCTION

Entangled photon pairs are an important resource for quan-
tum communication, quantum metrology, and quantum net-
working [1,2]. Their generation is typically not deterministic,
either for fundamental reasons, as in sources based on spon-
taneous nonlinear optical processes, or for technical reasons,
as is the case of single quantum emitters, such as quantum
dots or atoms, where losses arise from imperfect coupling of
photon pairs into the desired optical modes [3]. The optical-
field state generated by these sources necessarily contains
an undesired vacuum component, and additional unwanted
multipair components are present for spontaneous nonlinear
optical sources. Sources that deterministically generate exactly
the desired number of entangled photon pairs would enable
large-scale quantum information processing and would be an
important resource for secure quantum communication.

In the absence of true deterministic entangled pair gener-
ation, the heralding approach, where a pair generation event
is heralded by an accompanying signal, enables efficient
realization of quantum operations [4]. Heralding removes the
vacuum component from the optical-field state at the cost of
reduced generation probability and can be implemented in
ways that remove higher-order components that contain more
than the desired number of photon pairs.

Entanglement swapping has been proposed as a means to
convert two nondeterministically generated photon pairs into a
single heralded entangled photon pair [5,6]. In this scheme, two
independent nondeterministic sources each create an entangled
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photon pair. One photon of each pair is in a spatial mode which
we will call active, and the other in the bystander mode. The
active modes from each source are jointly measured, and the
measurement result indicates whether or not entanglement has
been successfully swapped. A measurement result indicating
successful swapping heralds creation of entanglement between
the remaining pair of bystander photons, and indicates that the
swapping process has erased information about the state of the
converted active photons in the entangled degree of freedom.
Bystander photons prepared in this manner are entangled
despite having never been in the same place at the same time.
Entanglement swapping is particularly relevant for sponta-
neous parametric down-conversion (SPDC) and spontaneous
four-wave mixing (SFWM) sources, which are inherently
probabilistic [2], and has been analyzed and demonstrated in
many degrees of freedom of the optical field [7–14].

The spectral-temporal degree of freedom of light has been
recently recognized as a promising framework for quantum
information science, since it enables multidimensional encod-
ing of quantum information in a way compatible with existing
guided-wave and free-space optical infrastructure [15–26].
Moreover, spectral-temporal entanglement naturally arises in
SPDC and SFWM as a consequence of energy conservation in
parametric optical processes.

Realization of spectral-temporal entanglement swapping
(STES) will provide another important tool for implementing
quantum information processing using time-frequency modes
(i.e., temporal modes). The necessary joint measurement of the
active down-conversion modes can be implemented using sum-
frequency generation (SFG) in a nonlinear optical medium, as
proposed by Molotkov and Nazin [27]. These authors analyzed
STES using an idealized model in which the pump laser is
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FIG. 1. Entanglement-swapping setup. The infinity symbols de-
note entangled photon pairs. Pulsed pump beams, denoted in blue,
are directed into PPKTP-waveguide-based SPDC sources. The active
fields comprise the signal from source 1 (s1) and idler from source 2
(i2), while the remaining i1 and s2 are the bystander fields. Dichroic
filters (DC) separate the signal and idler fields within the sources,
and combine the active fields. PPKTPSFG is the SFG PPKTP waveg-
uide and DCSFG is the dichroic filter separating the sum-frequency
converted photons from unconverted active photons. Entanglement
swapping is performed when exactly one SFG photon is detected with
an ideal spectrometer and there is no detection at the fail detector Dfail

(a single-photon counting module).

monochromatic and the SFG phase-matching bandwidth is
infinite.

In this paper, we analyze an experimentally realistic im-
plementation of STES by SFG on photons generated by
SPDC. Our design includes pulsed pump beams, which are
necessary for clocked operation in quantum information pro-
cessing networks, and realistic phase matching constraints,
which crucially affect the joint measurement of the active
modes. We discuss the necessity of frequency-resolving herald
detection and propose a design that produces high-purity
entangled photon pair states. We verify that the scheme not
only creates heralded entangled pairs, but also that the heralded
pair states contain greater entanglement than is present in
the states produced by the SPDC sources. The scheme also
suppresses multipair generation events. The major limitation of
the method is the low heralding rate, although we point out that
the needed joint measurement, performed using SFG of two
individually generated single photons (without any additional
pumping), has been demonstrated experimentally in [28].

II. CONCEPT

Our design for spectral-temporal entanglement swapping is
presented in Fig. 1. Pulsed pump beams of central frequency
ωp are sent through periodically poled potassium titanyl
phosphate (PPKTP) waveguides in crystals of length L and
poling period � to create photon pairs via SPDC in the type-II
phase matching configuration. Dichroic filters (DC) within
each source separate the frequency-nondegenerate signal and
idler fields. The active modes, composed of the signal from
source 1 (s1) and the idler from source 2 (i2), are directed
into a third PPKTP waveguide of length LSFG where the sum-
frequency generation (SFG) process probabilistically com-
bines them into a photon at the original pump frequency. This
erases information about the difference frequency between

the converted photons. A subsequent dichroic filter (DCSFG)
directs successfully converted light to an ideal spectrometer,
to measure ωSFG. This heralds the generation of a spectrally
entangled two-photon state between the bystander fields, i1

and s2, which have never interacted. The other output of
DCSFG is monitored by a single-photon-counting module,
constituting the “fail” detector, Dfail. Simultaneous detection
in the spectrometer and at Dfail indicates that more than one
pair-generation event took place in at least one source, and the
bystander modes contain more photons than desired. Similarly,
detection of more than one photon in the spectrometer indicates
the bystander modes have more than the desired number of
photons. Thus, conditioning the use of the output photons on
a successful SFG frequency measurement in a single bin and
no detection at Dfail prepares a heralded single photon-pair
output state with entanglement between the bystander modes
and substantially suppressed contributions from higher-order
photon number terms.

It is important to consider whether the swapping process
can distinguish two photon-pair creation events that occur in
the same source from events that occur in separate sources.
The creation process in source 1 is statistically independent of
the process in source 2. Thus, during a given pump pulse, the
probability that two photon-pair generation events will happen
in a single source is the same as the probability that a single
photon-pair generation event occurs in each of the two sources.
If the active field photons are indistinguishable, then two pair-
generation events in the same crystal give rise to false herald
detections (so-called because the output photons occupy the
same field and are not usefully entangled) with probabilities
comparable to those for true herald detections. In our design,
the phase matching in the SFG crystal is satisfied only when
both a signal and an idler photon (one each from two separate
sources) are present. This avoids the false herald pitfall because
two pair-generation events in the same crystal generate two
photons that do not satisfy the phase mismatch requirement
for generation of an SFG photon.

III. THEORY

A single spontaneous parametric down-conversion (SPDC)
source generates the state

|�〉 =
√

1 − |ξ |2 − O(|ξ |4) |vac〉

+ ξ

∫ ∞

0
dωidωs�̄(ωi, ωs )â†

i (ωi )â
†
s (ωs ) |vac〉 + O(ξ 2),

(1)

where ξ is the probability amplitude for creating a photon pair,
the s and i subscripts denote the signal and idler fields, respec-
tively, and �(ωi, ωs ) = ξ�̄(ωi, ωs ) is the two-frequency joint
spectral amplitude (JSA). We consider the low-gain regime
where the probability of a single biphoton creation event
|ξ |2 � 1. The higher-order terms represented with orderO(ξ 2)
make non-negligible contributions to the state input to the
swapping process, but we configure this process so these terms
make negligible contributions to the state prepared upon herald
detection. For clarity, we neglect terms of order O(ξ 2) and
above in the following derivation of the state prepared by the
entanglement swapping process with the caveat that this is
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justified only when the active modes into the swapping process
are distinguishable.

The Hamiltonian governing the SFG process is

ĤSFG =
∫
V

drχ̃ (2)Ê(+)
a1 Ê(+)

a2 Ê(−)
SFG + H.c., (2)

where χ̃ (2) is the second-order nonlinear susceptibility tensor,
subscripts a1 and a2 refer to the active fields, respectively from
sources 1 and 2, that are converted to the sum frequency field,
and H.c. is the Hermitian conjugate. The electric field operators
are defined as

Êj (r, t ) = Ê(+)
j (r, t ) + Ê(−)

j (r, t ), (3)

where j indexes the active signal and idler fields and the SFG
field over the subscripts {a1, a2, SFG}, and

Ê(+)
j (r, t ) = i

∫ ∞

0

dωj

2π
êjEj (r)ei[kj (ωj )·r−ωj t]âj (ωj ), (4)

Ê(−)
j (r, t ) = i

∫ ∞

0

dωj

2π
ê∗
jE∗

j (r)e−i[kj (ωj )·r−ωj t]â
†
j (ωj ), (5)

where êj is the unit polarization vector, kj is the wave vector,
ωj is the angular frequency, â†

j (ωj ) and âj (ωj ) are respectively
the creation and annihilation operators with commutator

[â(ωj ), â†(ω′
j )] = 2π δ(ωj − ω′

j ), (6)

and Ej (r) =
√

h̄ω
2ε0nj (ωj )c uj (r) is the single-photon electric field

amplitude with material refractive index nj (ωj ), speed of light
in vacuum c, and waveguide mode uj (r). Similar approaches
are detailed in [29–31].

We select a crossed-polarization scheme and take χ̃ (2) to
be the element from the full nonlinear tensor that couples the
zyy crystallographic axes, which allows us to reduce the vector
equations to a scalar problem [32]. For simplicity we collect
constant factors into χ (2) in this theory section (the absence of
the overtilde indicating the presence of the constants), but they
are shown in detail in Appendix A. With this, the Hamiltonian
simplifies to

ĤSFG = χ (2)
∫
V

dr
∫ ∞

0
dωa1dωa2dωSFG

×{exp[i(r · �k − �ωt )]âa1âa2â
†
SFG + H.c.}, (7)

where

�k = ka1(ωa1) + ka2(ωa2) − kSFG(ωSFG) + k�, (8)

�ω = ωa1 + ωa2 − ωSFG, (9)

with k� accounting for the quasi-phase-matching contribution.
We have assumed that the field amplitudes are slowly varying
in frequency and can be taken outside the integrals and then
absorbed them into χ (2). To first order, the state output after
the SFG waveguide is described as

|�(t )〉out ≈ |�(t0)〉in − i

h̄

∫ t

t0

ĤSFG(t ′) dt ′ |�(t0)〉in . (10)

We select our SFG waveguide parameters such that SFG can
only take place if a photon from each source is present, and

take the input state to be

|�(t0)〉in =
∫ ∞

0
dωi1dωi2dωs1dωs2�1(ωi1, ωs1)

×�2(ωi2, ωs2)â†
i1â

†
i2â

†
s1â

†
s2 |vac〉 , (11)

where the frequency dependence of the creation operators has
been suppressed and where �j is the JSA of source j ∈ {1, 2}.
We assign the active and bystander fields as a1 ↔ s1, b1 ↔
i1, a2 ↔ i2, and b2 ↔ s2. Combining Eqs. (10) and (11),
extending the limits of the temporal integral to be from −∞
to ∞, writing the phase matching in a general form as

�(ωa1, ωa2, ωSFG) =
∫ L

0
dz exp (−i �k z), (12)

suppressing the time dependence in the states, and noting that
the Hermitian conjugate term of the Hamiltonian acting on the
input state gives zero, we find

|�〉out

= |�〉in − iχ (2)

h̄

∫ ∞

0
dωSFGdωb1dωb2

×ψ (ωb1, ωb2, ωSFG)â†
SFG(ωSFG)â†

b1(ωb1)â†
b2(ωb2) |vac〉 ,

(13)

where the three-frequency joint spectral amplitude is

ψ (ωb1, ωb2, ωSFG)

=
∫ ∞

0
dωa2dωa1�(ωa1, ωa2, ωSFG)

× δ(ωSFG − ωa1 − ωa2)�1(ωb1, ωa1)�2(ωa2, ωb2). (14)

Note that entanglement can only be swapped if there is
entanglement in the input states to begin with; i.e., �1 and
�2 are both inseparable in their frequency arguments such
that �(ωi, ωs ) 
= F (ωi )G(ωs ) where F and G are arbitrary
functions that depend on their arguments only. Armed with this
three-photon state, our task is now to determine what phase
matching function (SFG crystal parameters) and heralding
measurement swap the input entanglement to generate the most
desirable output entangled biphoton state.

Heralding swapped entanglement

It is worthwhile to consider the use of two categories of
herald detectors. The first category detects the arrival of a
photon without resolving its frequency and we refer to them
as “nonresolving” detectors. The second category, “frequency
resolving” detectors, report the frequency of the herald photon
to within some resolution limit. A dispersive element can
be combined with an array of nonresolving detectors, as
shown in Fig. 1, to make a frequency-resolving detector.
Frequency-nonresolving detectors offer simplicity and lower
cost as advantages over frequency-resolving detectors, so
we start with consideration of entanglement swapping with
frequency-nonresolving detection.

Just as heralding one photon from an SPDC source with
a frequency-nonresolving detector can produce either a pure
or a mixed single-photon state depending on the separability
of �(ωi, ωs ) [33,34], the purity of the output biphoton state
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FIG. 2. |�(ωi, ωs )|2, the joint spectral intensity (JSI) from a
single source with the phase matching function and parameters
described in Sec. IV. The two input sources are modeled to be
identical. The dashed line is the difference-frequency axis and the
dot-dashed line is the sum-frequency axis.

after measurement of the SFG photon is set by the separability
characteristics of ψ (ωb1, ωb2, ωSFG). A pure-state biphoton is
created only if ψ can be factored such that

ψ (ωb1, ωb2, ωSFG) = P (ωb1, ωb2)Q(ωSFG), (15)

where P is a function that is nonseparable in ωb1 and ωb2 and Q

is a function of ωSFG only. If frequency-nonresolving heralding
is performed on a ψ that does not meet this separability
criterion, then the output biphoton will be in an undesirable
mixed state.

1. Simple model: Infinitely long crystals

The simplest model that achieves heralded entanglement
swapping is perfect anticorrelated phase matching in the
SFG crystal. Let k′(ω) = ∂k(ω)/∂ω = 1/νg be the inverse
of the group velocity νg , referred to as the group slowness.
Anticorrelated phase matching means

k′(ω̄a1) = k′(ω̄a2), (16)

k′(ω̄a1) 
= k′(ω̄SFG), (17)

� = δ(ωa1 + ωa2 − ω̄SFG), (18)

where ω̄i is the central frequency of ωi , around which k(ωi ) is
Taylor expanded, and the Dirac delta function in Eq. (18) re-
sults from assuming perfect phase matching due to an infinitely
long SFG crystal. Frequencies that satisfy this phase-matching
condition are oriented along the difference-frequency axis, as
illustrated in Fig. 2, from whence the term anticorrelated. With
this phase matching, ψ becomes manifestly separable in ωSFG

with the form

ψ (ωb1, ωb2, ωSFG) = δ(ω̄SFG − ωSFG)
∫ ∞

0
dωa1�1(ωb1, ωa1)

×�2(ω̄SFG − ωa1, ωb2). (19)

The integral enforces entanglement of the bystander modes,
as can be seen by taking the source lengths L → ∞ and
assuming the source and SFG crystals are identical (which
implies ω̄SFG = ω̄p), yielding

ψ (ωb1, ωb2, ωSFG) = δ(ω̄p − ωSFG)δ(ωb1 + ωb2 − ω̄p ).

(20)

Equation (20) satisfies the separability criterion [Eq. (15)],
so using the SFG photon as a herald leaves the remaining
signal/idler biphoton in an ideal state that is both pure and
maximally entangled.

In contrast, perfect correlated phase matching (satisfied by
frequencies oriented along the sum-frequency axis of Fig. 2)
with

[k′(ω̄a1) − k′(ω̄SFG)] = −[k′(ω̄a2) − k′(ω̄SFG)], (21)

� = δ(ωa1 − ω̄a1 − ωa2 + ω̄a2) (22)

in an infinitely long SFG crystal gives

ψ (ωb1, ωb2, ωSFG) = �1[ωb1, (ωSFG − �ω̄a )/2]

×�2[(ωSFG + �ω̄a )/2, ωb2], (23)

where �ω̄a = ω̄a1 − ω̄a2. Taking L → ∞,

ψ (ωb1, ωb2, ωSFG) = δ

(
ωSFG − �ω̄a

2
+ ωb1 − ω̄p

)
× δ

(
ωSFG + �ω̄a

2
+ ωb2 − ω̄p

)
,

(24)

and it is clear that ωSFG is manifestly inseparable from both
ωb1 and ωb2. Thus, with monochromatic pumps, long crystals,
and heralding with the SFG photons directed to frequency-
nonresolving detectors, correlated phase matching in the SFG
crystal produces undesirable output states, while anticorrelated
phase matching heralds pure-state entangled biphotons.

This can be understood through the availability or erasure
of frequency information. Correlated phase matching allows
determination of ωa1 and ωa2 through measurement of ωSFG,
which simultaneously collapses the values of ωb1 and ωb2.
Anticorrelated SFG erases information about the difference
between the input frequencies, so measurement of ωSFG does
not allow determination of the input frequencies and the
quantum superposition of the bystander modes is preserved.

No real experimental system will have perfectly delta-
correlated phase matching, so it is necessary to consider
mathematical tools for assessment of the effects of finite length
and pulsed pump beams on the purity of the heralded biphoton
state.

2. Analytic model: The Gaussian phase-matching approximation

To facilitate analytical investigation, we approximate
both the pump pulses and the phase-matching functions as
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Gaussians, such that

�(ωa1, ωa2, ωSFG) ≈ L exp

[
− (L�k̃)2

2σ 2
π

]
, (25)

�(ωs, ωi ) ≈ AL exp

[
− (ωs + ωi − ω̄p )2

2σ 2
p

− (L�k̃)2

2σ 2
π

]
,

(26)

where A is the pump peak power, σπ is the Gaussian width
(explained below), and we assume that the wave vectors

are co-oriented along the waveguide (z) axis, allowing the
use of a scalar �k with implicit frequency dependence.
We neglect the phase factor in �(ωa1, ωa2, ωSFG) as it is
irrelevant to the analysis in this section. Recall that k(ω) =
n(ω)ω/c. It is convenient for separability analysis to define
�k̃ = c �k and absorb the factor of c into the definition of
σπ = κc/L, where κ = 12.8831 is the fit parameter that best
matches a Gaussian width to the exact sinc functional form.
The Gaussian approximation avoids the added complexity of
evaluating the integrals of products of sinc functions, which
are found in exact phase-matching models (and are resolved
numerically in Sec. IV) by allowing analytic integration
of

ψ (ωb1, ωb2, ωSFG)

=
∫ ∞

0
dωa1 �(ωa1, ωSFG − ωa1, ωSFG)�1(ωb1, ωa1)�2(ωSFG − ωa1, ωb2)

= LSFGL2A2
∫ ∞

0
dωa1 exp

[
− (ωb1 + ωa1 − ω̄p )2 + (ωSFG − ωb1 + ωb2 − ω̄p )2

2σ 2
p

− (�k̃1)2 + (�k̃2)2

2σ 2
π

− (�k̃SFG)2

2σ 2
SFG

]
, (27)

where σSFG = κc/LSFG. Taking the refractive index variation
over the wavelength range of each field to be small, we set
nj = n(ωj ) ≈ n(ω̄j ), for j ∈ {p, s, i}. Equation (27) satisfies
the separability criterion [Eq. (15)] when the prefactors for the
cross-terms ωSFGωb1 and ωSFGωb2 are both zero. However, this
occurs only when

−(np − ns )(np − ni ) = σ 2
π

σ 2
p

, (28)

which is the condition for separable input states, i.e.,
�(ωs, ωi ) = F (ωs )G(ωi ), which have no entanglement to be
swapped. Thus, the frequency-nonresolving measurement will
produce mixed states for any realistic source that produces
entangled output biphotons.

Why is separability in accordance with Eq. (15) achievable
in the infinite crystal limit, but not with finite crystals? Because
using an infinitely long SFG crystal produces a monochromatic
output field, which resolvesωSFG. This implies that we must use
a frequency-resolving heralding scheme to achieve high-purity
output biphoton states.

3. Figures of merit: Purity and negativity

In this section, we develop a discretized description of
the quantum state and review the mathematical machinery
necessary for numerical simulation of a realistic model system.
Consider heralding through frequency-resolving measurement
of the SFG photon with outcomes forming a discrete set of
disjoint frequency bins. We assume perfect detection with unit
quantum efficiency, no dark counts, and lossless optical ele-
ments. Thus, herald detections occur uniquely after successful
SFG [the second term in Eq. (13)], and always indicate the
presence of a biphoton in the bystander fields.

Using a discretized frequency-bin description, the density
matrix entries with ωb1 indexed by {j, j ′}, ωb2 indexed by

{k, k′}, and ωSFG indexed by {l, l′} are

ρ(j, k, l, j ′, k′, l′)

= ψ (ωj , ωk, ωl )ψ
∗(ωj ′ , ωk′ , ωl′ )�ωb1 �ωb2 �ωSFG,

(29)

where �ωα refers to the spacing between the frequency
grid points for field α ∈ {b1, b2, SFG}, so ρ values here are
probabilities, not probability densities. The spacings must, of
course, be set smaller than the scale of the smallest structures
in ψ in order to resolve those features, and it is useful to keep
in mind the experimentally accessible spectroscopic resolution
limit of the SFG field of about 25 GHz (0.16 rad/ps) [35,36].

If the SFG photon is measured with a frequency-
nonresolving detector, then ωSFG is traced out, yielding the
reduced density matrix [37,38]

ρr (j, k, j ′, k′) =
∑

l

ψ (ωj , ωk, ωl )ψ
∗(ωj ′ , ωk′ , ωl )

×�ωb1 �ωb2 �ωSFG. (30)

Loss of information about the value of ωSFG degrades the purity
of the output state

P = Tr(ρ2), (31)

where Tr is the trace operation.
To describe heralding with a frequency-resolving detector,

let the spectroscopic measurement of ωSFG be described by a
set of projective measurement operators {�̂m} with

�̂m =
∫ ω̄m+�′/2

ω̄m−�′/2
|ω〉 〈ω| dω, (32)

N∑
m=1

�̂m = I, (33)

�̂m�̂m′ = δmm′�̂m, (34)
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where |ω〉 = â†(ω)|vac〉SFG is a single photon in the SFG
spatial mode with frequency ω, N is the number of frequency
bins, ω̄m is the central frequency of the mth bin, �′ is
the frequency-space width of a measurement bin, I is the
identity matrix, and δmm′ is the Kronecker delta. In order for
Eq. (33) to hold, the range of frequencies measured N�′ must
exceed the range of frequencies produced via SFG. Otherwise,
successful entanglement swapping events will go undetected.
Conditioning on a herald detection alleviates the need for a
vacuum outcome in Eq. (33), and Eqs. (33) and (34) together
imply that �̂

†
m�̂m = �̂m. Detection of the frequency of the

SFG photon projects the output state into

ρ̂ ′
m(ωb1, ωb2, ω

′
b1, ω

′
b2) = �̂mρ̂ �̂m

Tr(�̂mρ̂ )
, (35)

with ωSFG = ω̄m.
To account for the limited resolution of a realistic mea-

surement, let � be the separation between the frequency grid
values used for computation and enforce � < �′. If we posit
that �′/� = Q, which we take to be a positive integer, then
we can divide Eq. (33) by grouping together the Q operators
that comprise the nth measurement outcome, starting at n = 1,
to make the operator for the resolution-limited measurement

ˆ̃
�n =

nQ∑
m=(n−1)Q+1

�̂m. (36)

Thus Eq. (35) generalizes to a linear combination of measure-
ment operators at the discretization size with the straightfor-

ward substitutions �̂m → ˆ̃
�n and ρ̂ ′

m → ˆ̃ρ ′
n. The populations

ˆ̃ρ ′
n(ωb1, ωb2, ωb1, ωb2) compose the joint spectral intensity

(JSI) of the biphoton prepared upon detection of the nth
herald outcome. In principle, the upper bound on n can be
an arbitrarily large integer, but in practice this upper bound is
resource constrained. The trade-off between the number of grid
points considered and the computational resources required to
calculate the density matrix is discussed in Appendix B. Q

must be chosen to give a good estimate for the purity, but
computational resource requirements scale sharply with Q.

The entanglement in the state of the heralded bystander
photons can be quantified using the negativity of the density
matrix [39]

N (ρ̂ ) ≡ (‖ρ̂�i1‖ − 1)/2, (37)

where �i1 denotes the partial transpose operation with respect
to subsystem i1 and ‖ρ̂‖ ≡ Tr [(ρ̂†ρ̂ )1/2]. The presence of
negative eigenvalues μi of the partially transposed density
matrix ρ̂�i1 implies entanglement, and the negativity can also
be expressed as the sum of these negative eigenvalues

N (ρ̂) =
∑

i

|μi |. (38)

The system is entangled in subsystem i1 if the negativity is
positive. The negativity gives an upper bound on the amount
of entanglement distillable from the state for teleportation [40].
An investigation of the behavior of the negativity using simple
density matrices is provided in Appendix C.

IV. NUMERICAL SIMULATION

What SFG crystal parameters optimize the entanglement
swapping process and produce output biphotons with the
highest negativity and purity? In this section, we answer this
question using numerical studies that include exact phase-
matching functions. Let the SFG waveguide poling period
�SFG = �, so the central frequencies of the interacting fields
{ω̄p, ω̄s, ω̄i} are the same in all crystals, but allow the SFG
waveguide length LSFG to be free to vary. We set the average
pump power Pavg such that the probability of a single photon
pair from a source is |ξ |2 = 0.1, calculate ψ , use ψ to calculate
the herald count rate

RH = (2π )3�ωb1 �ωb2 �ωSFG

∑
j,k,l

|ψ (j, k, l)|2RR, (39)

where RR is the pump laser repetition rate, and calculate both
negativities and purities via the appropriate density matrices.

We model sources 1 and 2 in Fig. 1 as a periodically poled
potassium titanyl phosphate (KTP) crystal waveguide with
length L and a poling period � = 8.33 μm. The type-II phase
matching function of the source is

�source = L sinc(L�k/2)exp(−iL�k/2), (40)

�k = ny (ωp )ωp

c
− nz(ωi )ωi

c
− ny (ωs )ωs

c
− 2π

�
, (41)

where nj (ω) is the frequency-dependent refractive index along
the crystallographic axis j ∈ {y, z} [41], and the last term in
Eq. (41) includes the first-order quasi-phase-matching effects
of periodic poling [42]. We assume that the only spatial mode
excited in all frequency bands of all PPKTP waveguides is the
fundamental.

We set the length of the source crystals L = 0.5 mm
so the simulation can be carried out in a reasonable time
and then match the pump bandwidth σp to the approxi-
mate phase-matching bandwidth, σπ = σp = 7.7245 rad/ps.
When pumped with a laser that has central wavelength λ̄p =
405.0 nm (ω̄p = 4.651 rad/fs), these sources create signal
and idler fields at λ̄s = 609.6 nm (ω̄s = 3.090 rad/fs) and
λ̄i = 1207 nm (ω̄i = 1.561 rad/fs), respectively. We chose our
simulation parameters based on real pump laser systems [43]
with the highest repetition rates RR where appropriate pump
power is achievable. Appendix B contains further simulation
details and the parameters used herein are listed in Table I.

Assuming a Gaussian pump spectral profile

A(ωp ) =
√

Pavg

h̄ωpRRσp

√
π

exp

[
− (ωp − ω̄p )2

2σ 2
p

]
, (42)

with average power Pavg = 1.380 W and repetition rate RR =
1 GHz, the JSI (|�(ωi, ωs )|2) of a single source is shown in
Fig. 2. The average power is set such that the probability of
a photon pair being generated in a single source |ξ |2 = 0.1,
which sets the probability of the next-highest-order contribu-
tion to |ξ |4 = 0.01.

Guided by insight from the simpler model of Sec. III A 1,
we choose a pump wavelength and poling period to give an
anticorrelated input JSA with a narrow width �+ along the
sum-frequency axis [set by the pump bandwidth σp and the
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TABLE I. Parameters used in the presented simulation.

Parameter Value

Source length, L 0.50 mm
Central pump frequency, ω̄p 4.651 rad/fs
Central signal frequency, ω̄s 3.090 rad/fs
Central idler frequency, ω̄i 1.561 rad/fs
Pump Gaussian bandwidth, σp 7.725 rad/ps
SFG frequency spacing, �ωSFG 1.287 rad/ps
Frequency spacings, �ωs = �ωi 4.544 rad/ps
Poling periods, � = �SFG 8.33 μm
Average pump power, Pavg 1.380 W
Pump repetition rate, RR 1.0 GHz
Nonlinear parameter, d24 3.92 pm/V
Effective nonlinearity, d 2d24/π pm/V
Effective area, AI 15 μm2

Grid points per outcome, Q 3
integrationPoints 300

phase-matching bandwidthσπ (L)] and a broad width�− along
the difference-frequency axis [set by dispersion and σπ (L)].
An extreme aspect ratio (e.g., �−/�+ � 1), which indicates
a large number of time-frequency modes [16], in addition to a
small probability amplitude for the vacuum term in Eq. (1), is
a good heuristic for large negativity.

The SFG crystal has the same phase-matching function as
given in Eq. (40) and (41) but with L → LSFG and ωp →
ωSFG. Taking LSFG = L = 0.5 mm, the three-frequency JSI
|ψ (ωb1, ωb2, ωSFG)|2 is visualized in Fig. 3. The expected
rate at which heralded biphotons are produced with these
lengths (whether or not ωSFG is resolved) is 5.2 × 10−3

biphotons/second, corresponding to one heralding event every
3.2 minutes.

Consider a spectroscopic measurement that resolves ωSFG

into 8 possible outcomes, indexed by n, each with frequency
size �′ = 3.862 × 10−3 rad/fs, i.e., 614.7 GHz. Let the
probability-valued spectrum be denoted p(ωn

SFG). To account
for finite resolution, we use the incoherent sum prescribed by

FIG. 3. 3D contour surface showing |ψ (ωb1, ωa2, ωSFG)|2 with
contour plots of the projections on the back planes. The 3D contour
surface connects values of one-tenth of the maximum value of |ψ |2.
The tilt angle resulting from the correlation between ωSFG and the sum
frequency ωb1 + ωb2 is more apparent in the output JSIs of Fig. 6.

Eq. (36) with Q = 3 grid points. This choice underestimates
the purity by a few percent due to discretization error, which
means the stated purity values should be understood as lower
bounds, but allows a full computational run to be carried out
in a reasonable amount of time (see Appendix B).

We now allow LSFG to vary while holding L fixed at 0.5
mm. Figure 4 shows the ωSFG spectrum and swapping success
rate for many values of LSFG. It is clear that LSFG sets the
width and height of the ωSFG spectrum, and thus the count
rate. Figure 5 displays the behavior of the negativity N and
purity P with respect to the ωSFG measurement outcome for
several LSFG values. The broader frequency distribution output
from short crystals (due to larger conversion bandwidths)
corresponds to more gradual changes in the state along the
ωSFG axis, which leads to higher purity. Broader distributions
correspond to entanglement over more frequency modes and
increased negativity. These improvements in negativity and
purity trade-off with entanglement swapping success rates,
which are higher with longer SFG crystals.

Figure 5(a) shows a correlation between larger ωSFG mea-
surement values and larger negativity values because the dis-
tribution of the prepared biphoton is correspondingly broader
along the difference-frequency axis. This can be clearly seen

FIG. 4. Scaling of the (a) ωSFG spectrum p(ωn
SFG), and the corresponding (b) rate of entanglement swapping events as LSFG varies. In (a)

straight lines connect calculated points to serve as eye guides. Frequency-resolving measurement of ωSFG gives discrete outcomes described
after Eq. (36) and labeled with the central frequency of the range of frequencies that constitute the corresponding frequency bin.
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FIG. 5. Figures of merit with frequency-resolving detection. The (a) negativity N (ωn
SFG) and (b) purity P (ωn

SFG) for the output biphoton
state prepared by each measurement outcome are shown for five LSFG values. A single SPDC source used in this experiment has a purity of
0.82 (indicated with the dashed reference line) and a negativity of 2.89 (not shown). The points indicate calculated values and are connected by
lines to serve as eye guides, which should not be taken to represent the actual shape of the curve.

by comparing the JSIs for each ωSFG measurement outcome,
shown in Fig. 6. The slight shift in the sum frequency
of each JSI shifts with the ωSFG measurement outcome so
the total output photon energy is equal to the input photon
energy.

It is illuminating to compare these entanglement-swapping-
prepared biphoton states, which have negativities ranging from
9 to 19, to that of the biphoton state from a single SPDC source.
Using our design parameters, negativity of the biphoton state
from a single source is 2.89. If the vacuum contribution were to
be eliminated and the source produced only biphotons, then the
negativity would increase to 28.9 [a factor of 1/|ξ |2 increase in
agreement with the linear relationship given in Eq. (C5)]. The
vacuum contribution is removed by the swapping process, but
the conversion process produces fewer entangled frequency
modes within the resulting biphoton than are present in the
source, so no outcome exceeds the ideal negativity of the source
with the vacuum contribution removed [see Fig. 5(a)]. The
net result is that the probability of having a photon pair in a
known time window is increased from 0.1 in the case of a single
SPDC source to near unity after detection of a herald signals
successful swapping, which also substantially increases the
negativity.

To compare the purity of biphoton states prepared through
entanglement swapping to those prepared by a single SPDC
source, it is important to note that the state of a biphoton
generated through SPDC depends on the phase φ of the pump
field used to create it. If the phase of the pump field is not
resolved through measurement (and it is common practice to
not resolve this phase), then the coherence elements between
the biphoton and vacuum subspaces are lost [44]. Appendix C
describes this in more detail. The purity of the biphoton state
output from a single SPDC source in our design is 0.82.
As shown in Fig. 5(b), LSFG can be chosen such that all
ωSFG measurement values exceed 0.82, but as LSFG increases,
outcomes with lower purity can occur.

The purity and negativity will vary from shot to shot in
accordance with the ωSFG measurement outcome. A weighted

average over the measurement outcomes

Ā =
[

N∑
n=1

p
(
ωn

SFG

)
Am

]/
N∑

n=1

p
(
ωn

SFG

)
, (43)

where A stands in for either the negativity N or the purity P
and gives the average values, i.e., expected performance, over
many successful swapping events. If ωSFG is not resolved, then
the mixed output state gives negativity and purity values that
are the same for each shot. Thus, the expected performance
of entanglement swapping with frequency-resolving heralding
can be compared to frequency-nonresolving heralding by
comparing the weighted averages for the frequency-resolving
configurations to the unresolved values, as shown in Fig. 7
for many LSFG values. Frequency-resolving heralding clearly
yields superior performance for both purity and negativity.

The negativity of all configurations in Fig. 7(a) exceed the
negativity of the biphoton state output from a single source
(2.89), so entanglement swapping purifies (in the entanglement
sense) the output state. In contrast, Fig. 7(b) shows that
frequency-nonresolving heralding offers inferior purity com-
pared to a single source for all LSFG choices. Even though some
ωSFG measurement outcomes give biphoton states with purity
below that produced by a single source [see Fig. 5(b)], the
average purity is improved for all frequency-resolving herald-
ing configurations here considered. These averages could be
further improved by rejecting heralding events that produce
biphoton states with undesirable properties, at the cost of
production rate.

V. DISCUSSION

While entanglement swapping with frequency-resolving
heralding produces entangled biphotons with superior negativ-
ity and purity compared to SPDC sources, the count rates are
inferior by roughly 7 orders of magnitude. This is compensated
in a sense by creating, through heralding, near-unity probability
of having an entangled pair in a known time window. While use
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FIG. 6. Output JSIs with LSFG = 0.5 mm. The dashed line is the difference-frequency axis and the dot-dashed line is the sum-frequency
axis. Energy conservation requires that the sum frequency of the output biphoton decreases as the measured ωSFG increases. The ωSFG spectrum
is relatively narrowband, so these differences are visible but small.
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FIG. 7. Comparison of the (a) negativity and (b) purity of output states prepared via either frequency resolving or frequency nonresolving
heralding over five LSFG values. The effect of frequency resolution using the same measurement configuration as used in Fig. 5 and the weighted
average of Eq. (43) is shown with the blue points, while the orange points show the values when the SFG photon is detected but ωSFG is
unresolved.

of high repetition rate pump lasers can improve the count rate,
the low probability of success during any given pump pulse
remains a substantial challenge. Count rates can be modestly
increased through increasing the source crystal lengths L

and maximizing LSFG as allowed by negativity and purity
tolerances, but keeping the sources in the low-gain regime
with |ξ |2 ≈ 0.1 limits these improvements. Additionally the
computational resources required to perform the simulation
scale sharply with the source lengths L.

Increasing the pump repetition rate RR to limits set by
technical constraints such as achievable pump power and
detector recovery times will increase the rate of successful
swapping [Eq. (A16)]. However, this seems like a less promis-
ing approach compared to increasing the single-shot success
probability while avoiding the false heralding problem due
to indistinguishable inputs discussed in the introduction of
Sec. IV. Thus, investigation of whether four-wave mixing can
offer better count rates through higher effective nonlinearity
is a natural extension for future research. Investigation of
entanglement swapping outside the low-gain regime, where
higher-order Hamiltonian terms that we neglect in Eq. (10)
contribute, may offer higher count rates and the heralded
preparation of higher number states.

In summary, we propose a design for a source of heralded
time-frequency-entangled photon pairs with high-dimensional
frequency-bin encoding and give a detailed description of the
mathematical machinery necessary for its characterization.
Heralding with frequency-resolving detection produces high-
purity (P ≈ 0.97) output biphoton states and improves the
negativity compared to an SPDC source by roughly a factor of
5 (depending on the exact configuration chosen). The length
of the SFG crystal and the size and number of detection bins
sets the negativity, purity, and rate of successful entanglement
swapping. Shorter SFG crystals offer superior negativity and
purity due to broader conversion bandwidth, but inferior count
rates, so a balance must be struck for a particular application.

The quantum erasure of which-path information via SFG
that is essential for entanglement swapping has recently been
identified as a key resource for quantum illumination and

entanglement-enhanced metrology [45–47], and the detailed
calculations and design considerations we present are pertinent
to implementation of those schema. One promising extension
of this work is to produce output biphotons with the same
central frequencies for all ωSFG outcomes by deterministically
frequency shifting the photon frequencies output from entan-
glement swapping depending on which SFG bin is detected
[25]. Another is that measurement of photons produced with
this apparatus in a pulse-mode (“temporal mode”) basis [48]
would increase experimental complexity, but may offer even
better negativity and purity values due to what appears to
be a more natural basis choice. With improved count rates,
this scheme would offer an ideal source for distributing
entanglement resource over a network.
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APPENDIX A: COUNT RATES

In this Appendix, we include all constants in our calcula-
tions and predict photon-pair creation rates for each source (cf.
[29]), and for the entire entanglement swapping process. The
sum-frequency generation (SFG) interaction Hamiltonian and
output state for the single-biphoton subspace from an SPDC
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source in the low-gain regime are

ĤSFG = ε0

2

∫
d3r dÊ

(−)
SFGÊ

(+)
s1 Ê

(+)
i2 + H.c., (A1)

|ψ〉k =
∫ ∞

0
dωskdωik�k (ωik, ωsk )â†

sk (ωsk )â†
ik (ωik ) |vac〉 ,

(A2)

�k (ωik, ωsk ) = bd
(2π )2

√
AI

�(ωsk + ωik )�(ωsk )�(ωik )

×�(ωsk + ωik, ωsk, ωik )α(ωsk + ωik ),

(A3)

where ε0 is the permittivity of free space, Ê(±)
j are the positive

and negative frequency components of the quantized electric
field operators, H.c. is the Hermitian conjugate, k ∈ {1, 2}
indexes the source, ωs is the angular frequency of the signal
photon, ωi is the angular frequency of the idler photon, ωp is the
angular frequency of the pump, and energy conservation ωp =
ωs + ωi is strictly enforced. Here d is the effective nonlinear
coefficient set by the material, �(ω) is the electric field per
photon, AI is the effective area of the interaction (defined
below) which depends on the transverse spatial distributions
uj (x, y) of the interacting fields j ∈ {p, s, i}, �(ωp, ωs, ωi )
is the phase-matching function of the medium, and α(ωp ) is
the spectral pump pulse profile (assumed to have a Gaussian
distribution).

Refining those definitions:

b = ε0

2h̄(2π )3
, (A4)

�(ω) =
√

h̄ω

2ε0n(ω)c
, (A5)

�(ωp, ωs, ωi ) = L sinc[L�k(ωp, ωs, ωi )/2]

× exp[−iL�k(ωp, ωs, ωi )/2], (A6)

AI = 1

/[ ∫ ∞

−∞
dxdy up(x, y)u∗

i (x, y)u∗
s (x, y)

]2

, (A7)

�k(ωp, ωs, ωi ) = k(ωs ) + k(ωi ) − k(ωp ) + q2π

�
, (A8)

α(ωp ) =
√

Pave

h̄ωpσp

√
πRR

exp

[
− (ωp − ω̄p )2

2σ 2
p

]
, (A9)

where n(ω) is the refractive index experienced by the photon
in the source along the relevant polarization axis, L is the
longitudinal length of the nonlinear material that constitutes
the source, sinc(x) = sin(x)/x with sinc(0) = 1, �k is the
momentum mismatch along the waveguide (z) axis, q is
the order of the quasi-phase-matching, and we use q = 1.
Additionally, � is the crystal poling period, h̄ is Planck’s
constant divided by 2π , the average pump power is Pave,
the repetition rate is RR , ω̄p is the central frequency of
the pump, and σp is the spectral bandwidth of the pump
pulse.

Our design produces output photons with nondegenerate
frequencies, and we use signal (idler) to refer to the higher
(lower) frequency photon in accordance with historical con-
vention. Given a pump pulse, the probability of photon-
pair creation from a single source (with the source index k

suppressed) is given by

|ξ |2 = 〈ψ |ψ〉 = (2π )4b2d2

AI

∫ ∞

0
dωsdωi �2(ωs + ωi )�

2(ωs )�2(ωi )|α(ωs + ωi )|2|�(ωs + ωi, ωs, ωi )|2 (A10)

= d2L2Pave

27(2π )2c3
√

πε0RRσpAI

∫ ∞

0
dωsdωi

1

ny (ωs + ωi )ny (ωs )nz(ωi )
exp

[
− (ωs + ωi − ω̄p )2

σ 2
p

]

× sinc2

[
L�k(ωs + ωi, ωs, ωi )

2

]
. (A11)

Each SPDC source creates an output state of the form given
in Eq. (1), so the full input is the product state |�〉1 |�〉2.
The annihilation operators in the SFG Hamiltonian given
in Eq. (7) remove contributions where only a single source
produces photons. The lowest-order term of the input state that
contributes to the SFG output state, using the configuration as
shown in Fig. 1, is

|�〉in =
∫ ∞

0
dωa1dωa2dωb1dωb2 �1(ωb1, ωa1)�2(ωa2, ωb2)

× â
†
a1(ωa1)â†

a2(ωa2)b̂†b1(ωb1)b̂†b2(ωb2) |vac〉 , (A12)

where the argument ordering in the � functions indicates
that the active photons directed into the SFG element are
the signal from source 1 and the idler from source 2. We

discuss the effects of higher-order terms at the end of this
Appendix.

Equation (A12) assumes that the pumps for each source are
phase synchronized, as the pair creation process gets a phase
imprint from the pump and if the pump lasers are not phase
synchronized, phase diffusion introduces a relative phase shift
between the photons sent into the SFG element. This phase
difference will not affect conversion efficiency, but the output
biphoton component of the state will acquire a phase shift that
varies from shot to shot. Locking the pump phases to each other
solves this problem.

Equation (13), representing the state output from the SFG
crystal, can be rewritten as

|�〉out = |�〉in − |ψ〉SFG , (A13)
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where |ψ〉SFG is the state produced by successful SFG. The
corresponding probability of successful SFG is

|	|2 = 〈ψ |ψ〉SFG

= (2π )3
∫ ∞

0
dωSFGdωb1dωb2 |ψ (ωb1, ωb2, ωSFG)|2,

(A14)

where

ψ (ωb1, ωb2, ωSFG)

= bd
(2π )3

√
AI

∫ ∞

0
dωa2 �(ωSFG)�(ωSFG − ωa2)

× �(ωa2)�(ωSFG − ωa2, ωa2, ωSFG)

×�1(ωb1, ωSFG − ωa2)�2(ωa2, ωb2). (A15)

The count rate for successful swapping is then

RH = |	|2RR. (A16)

The higher-order contributions to the input state where
both sources generate photon pairs and at least one source
generates more than one photon pair are selected against by
the fail detector. The most likely contribution to this is two
pairs generated in one source and a single pair generated in
the other, which triggers the fail detector whether or not an
SFG photon is generated from two of the three input photons.
In the case where both sources produce the same number
of photon pairs and that number is greater than one, it is
possible for all input photons to be converted to SFG photons,
which would not be detected by the fail detector, but is likely
to trigger two simultaneous detections in the spectrometer.
Though this contribution is negligible in our configuration
as when LSFG = L = 0.5 mm, the rate of false events from
the leading-order term is |	|4RR = 4.10 × 10−14 events/sec,
using SFG media with higher effective nonlinearities could
result in this contribution being non-negligible. The use of
a herald detection system that resolves the number of SFG
photons in each frequency bin protects against this pitfall.

The ability of the fail detector to suppress multiphoton
contributions is limited by its quantum efficiency γ . Given
a herald detection, the leading-order probability that an extra
photon pair was generated in a source, but the remaining active
photon was not detected by the fail detector, is

P
swap
multi = (1 − γ )|ξ |2. (A17)

A superconducting nanowire single photon detector with γ ≈
0.9 and our scheme’s |ξ |2 = 0.1 gives P

swap
multi = 0.01, which

means the output state generated after a herald detection
has approximately 99% entangled biphoton probability and
1% multiphoton probability. In comparison, a single SPDC
source generates a state with approximate probabilities of
10% entangled biphoton, 1% multiphoton, and 89% vacuum.
Larger quantum efficiency is better, but even in the worst case
limit where γ → 0, the state prepared by our entanglement
swapping scheme has 90% entangled biphoton probability,
which is a substantial improvement over the SPDC state.

APPENDIX B: NUMERICAL SIMULATION DETAILS

We use MATHEMATICA [49] and MATLAB [50] with the
QETLAB toolbox [51] to perform the numerical calculations
presented in this paper. Table I gives the parameters used in
our presented calculations. ψ is calculated from Eq. (A15) with
the integral evaluated numerically. The integrationPoints
parameter in Table I is how many points are used with a
trapezoidal rule method to perform this numerical integration.

The number of entries in the full three-frequency density
matrix scales quickly with the number of signal, idler, and
SFG frequency grid elements as

Ntotal = (Ns × Ni × NSFG)2. (B1)

We make efficient use of computational resources with utiliza-
tion of sparse matrices, vectorized code, and direct calculation
of the post-frequency-measurement density matrix of Eq. (35),
which contains only

Nmeasured = NSFG × (Ns × Ni )
2 (B2)

elements. Longer crystal lengths (L,LSFG) correspond to
narrower phase-matching bandwidths, which in turn requires
finer frequency grid spacing. The negativity must be calculated
in the signal/idler basis and entangled JSIs are oriented along
diagonals, so this finer spacing requires more points in both the
signal and idler directions. Memory requirements scale steeply
with resolution improvement; e.g., doubling the number of
frequency grid points for both the signal and idler frequency
grids requires 16 times more total memory. Thus, longer crystal
lengths require substantially more memory and processor time
for computation of purities and negativities. We choose the
parameters in Table I as realistic parameters that allow for
calculations that complete in a reasonable amount of time. A
full computational run for all data presented herein completes
in 40 hours on a workstation with two 3.06 GHz, 6 core Xeon
processors, and 96 GB of RAM.

The step size for bystander frequencies is �ωs = �ωi =
σp/1.7, while �ωSFG = σp/6 is set for finer resolution. The
SFG spectroscopic pixel bin size is set to �′ = 3.862 rad/ps
(614.7 GHz), and includes Q = 3 points from the underlying
SFG frequency grid. d24 is the nonlinear parameter for type-
II phase matching with the pump and signal polarized along
the crystallographic y axis and the idler polarized along the
crystallographic z axis. The pump bandwidth is set to match the
phase-matching bandwidth for LSFG = L = 0.5 mm, which
corresponds to σp = σπ = 7.725 rad/ps.

APPENDIX C: NEGATIVITY BEHAVIOR

In this Appendix, we investigate the behavior of the neg-
ativity as we adjust a simple model to give a sense of how
it behaves. The four standard entangled two-qubit Bell states,
e.g., (|00〉 − |11〉)/

√
2, all have negativity 1/2 [52].

To investigate the behavior of the negativity for higher-
dimensional quantum information encoding, we model the
state out of a photon-pair source that directs one photon each
to two parties, Alice (A) and Bob (B) with respective photon
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FIG. 8. Negativity as a function of pair-production efficiency η.
Coherences between the vacuum and the biphoton subsystem are
included. Straight lines connect calculated points to serve as an eye
guide.

creation operators â† and b̂†, as

|ψ〉 =
√

1 − η |vac〉 + √
ηeiφ

N∑
j,k

�j,kâ
†
j b̂

†
k |vac〉 , (C1)

where φ is the pump phase, j and k are frequency mode labels
with integer values in the range [1, N], and �j,k is the complex-
valued discretized joint spectral amplitude. For simplicity, we
use a two-level model, which is good for approximating an
SPDC source when η � 1. For convenience, we also introduce
the shorthand notation

|1〉A |1〉B =
N∑
j,k

�j,kâ
†
j b̂

†
k |vac〉 , (C2)

where the frequency labels have been suppressed on the left-
hand side of the equality.

As pointed out in the supplementary material of Chou
et al., photon-pair creation processes such as SPDC are
sensitive to the phase of the pump used to generate them [44].
Naively creating the density matrix ρ = |ψ〉 〈ψ | includes the
coherence terms |1〉A |1〉B 〈vac|AB + |vac〉AB 〈1|A 〈1|B . In this

case the vacuum could be used to coherently transfer quantum
information, and plotting the negativity as a function of η

(see Fig. 8) shows a turnaround point where the negativity
decreases with increasing η. As η → 1, the vacuum mode
probability goes to zero. This reduction in the number of
excited modes offers an intuitive explanation for the turnaround
behavior.

In a real system, this coherence is preserved if the phase
of the pump is measured, but decays at very fast optical
frequencies otherwise. If the pump phase is not resolved, φ is
traced out and the coherences between the vacuum and one-pair
subsystem vanish, yielding

ρ = (1 − η) |vac〉AB 〈vac|AB + η |1〉A |1〉B 〈1|A 〈1|B . (C3)

Using a maximally entangled frequency-anticorrelated state,

�j,k = δj,N+1−k/
√

N, (C4)

where δa,b is the Kronecker delta, the negativity of the incoher-
ent combination of Eq. (C3) is shown in Fig. 9 for many values
of the number of modes N , and follows the simple expression

N = N − 1

2
η, (C5)

which agrees with the Bell state negativity for N = 2 and
η = 1. Thus, if quantum information is encoded in frequency
bins, the number of bins chosen will influence the negativity.
The negativity is not an intrinsic property of the continuous-
variable state prepared by the SFG conversion process, but
depends on the discretization imposed in detection of the herald
and biphoton.

FIG. 9. NegativityN (ρ ) vs η for multiple numbers of frequency modes, N . The input density matrices for this calculation have no coherence
between the vacuum and biphoton subsystems.
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