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Fundamental noise dynamics in cascaded-order Brillouin lasers
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The dynamics of cascaded-order Brillouin lasers make them ideal for applications such as rotation sens-
ing, highly coherent optical communications, and low-noise microwave signal synthesis. Remarkably, when
implemented at the chip scale, recent experimental studies have revealed that Brillouin lasers can operate in
the fundamental linewidth regime where optomechanical and quantum noise sources dominate. To explore new
opportunities for enhanced performance, we formulate a simple model to describe the physics of cascaded
Brillouin lasers based on the coupled mode dynamics governed by electrostriction and the fluctuation-dissipation
theorem. From this model, we obtain analytical formulas describing the steady-state power evolution and
accompanying noise properties, including expressions for phase noise, relative-intensity noise, and power spectra
for beat notes of cascaded laser orders. Our analysis reveals that cascading can enhance laser noise, resulting in a
broader emission linewidth and larger intensity fluctuations with increased power. Consequently, higher-coherence
laser emission can be achieved if indefinite cascading can be prevented. In addition, we derive a simple analytical
expression that enables the Stokes linewidth to be obtained from spectra of beat notes between distinct cascaded
laser orders and their relative powers. We validate our results using stochastic numerical simulations of the
cascaded laser dynamics.
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I. INTRODUCTION

Highly coherent integrated photonic lasers will play an
increasingly important role in a wide range of applications
including low-noise microwave photonics [1], atomic clocks
[2], optical frequency synthesis, spectroscopy and rotation
sensing [3–6], coherent fiber communications [7], Doppler ve-
locimetry [8], and high-resolution spectroscopy [9]. Photonic
integration of these high-performance lasers is entering the
era where it is feasible to implement chip-level functionalities
that push sub-Hz linewidths, have low relative-intensity noise
(RIN), and have extremely low frequency jitter—performance
typically requiring laboratory-based systems. In spite of these
impressive demonstrations, the theoretical description of these
integrated lasers is not yet complete, and a full understanding of
the complex steady-state and fast laser dynamics that determine
the fundamental laser linewidth, RIN, center-frequency jitter,
and technical noise is lacking [10]. With a more complete
understanding of these dynamics, we can develop tools to
measure and optimize the performance of these highly coherent
integrated lasers.

Semiconductor laser emission linewidths in the range of
10 Hz to several-100 Hz are traditionally based on external
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cavity designs using discrete [11] or hybrid-chip [12,13]
components in combination with frequency and phase locking
feedback control. These designs make it possible to lower
the fundamental laser linewidth, defined by a small number
of terms given in the Schawlow-Townes linewidth [14], by
combining techniques to increase the total number of photons
in the cavity, decrease the cavity decay rate, and decrease the
number of noise modes.

Another class of high-performance lasers utilizes stimulated
Brillouin scattering (SBS). By leveraging unique dynamics that
inhibit pump noise transfer [15,16] and suppress RIN [17–19],
these lasers are capable of sub-Hz linewidth emission [15].
Early fiber Brillouin lasers demonstrated <30 Hz intrinsic
linewidth [15], while Brillouin lasers utilizing externally cou-
pled high-Q whispering gallery mode resonators (WGMRs)
[20–22] achieve frequency noise indicative of sub-Hz intrinsic
linewidths. Integration of Brillouin lasers onto a waveguide
platform offers tremendous opportunities for reduced size,
lower cost, and improved performance. Integrated Brillouin
lasers have been created using a hybrid chalcogenide waveg-
uide ring resonator bonded to a silicon photonic bus [23]
and in engineered photonic-phononic silicon waveguides [24].
However, at present, the properties of these lasers, with large
Brillouin gain and relatively large optical losses, produce mod-
est linewidths (∼3 kHz to 5 MHz). Recently, an integrated
Brillouin laser based on a SiN waveguide with low Brillouin
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gain and low optical losses has been reported [25]. By harness-
ing these properties, this laser can produce sub-Hz fundamental
linewidth laser emission, bringing fiber-like performance to the
chip scale [25].

Cascaded-order Brillouin lasers are particularly suited to
an array of technologies. These lasers produce multiple highly
coherent emission lines that are spaced at microwave frequen-
cies, making them ideal for microwave photonics, sensing,
navigation, and timing applications. Cascading is produced
when energy transfers from lower to higher order emission
lines, a process that can be made more efficient by resonantly
enhancing the Brillouin gain or by using additional optical gain
mechanisms [26,27]. For example, compact Brillouin lasers
using waveguide resonators, or discrete microresonators, are
highly efficient at generating cascaded orders, due to high
cavity Q in combination with optical and/or acoustic confine-
ment [22,25,28]. The emergence of these high-performance
lasers, in addition to their value in applications, has created a
pressing need for models of noise dynamics in these multiorder
Brillouin laser systems.

In this paper, we present a theoretical investigation of lasing
dynamics and fundamental noise properties of cascaded-order
bulk, microcavity, or photonic integrated Brillouin lasers.
This investigation is based on a cascaded-order Brillouin
laser model that builds on validated theories of single-mode
Brillouin lasers and cascaded Raman lasers [24,28–32]. By
assuming that the acoustic fields decay rapidly in comparison
to the optical fields, we derive an approximate set of coupled
nonlinear stochastic equations that describe the cascaded-order
Brillouin laser dynamics. These laser equations describe the
energy transfer dynamics between the various optical modes
and reveal rich noise dynamics generally described by col-
ored multiplicative (spontaneous-spontaneous) processes. In
agreement with prior work [22,29], we find steady-state energy
exchange relations between various cascaded orders that reveal
threshold and clamping behaviors as well as asymmetries
for the even and odd Stokes orders, with properties that are
reminiscent of the behavior of Raman lasers. By linearizing
about the steady state for small amplitude, we find a simple
compact set of equations describing the time evolution of the
phase and amplitude, and under the condition of perfect phase
matching, these linearized phase and amplitude dynamics
decouple. These equations show that energy exchange between
adjacent laser orders leads to complex relaxation oscillation
dynamics, and besides reproducing the known behavior of
single-mode Brillouin lasers [28,31,32], we find power spectra
for cascaded-order laser noise. Our model shows that cascading
increases the noise of intermediate laser orders, broadening the
linewidth by as much as a factor of 3 and enhancing the RIN
by as much as 30 dB at low frequencies. This enhancement
occurs when cascaded orders inject spontaneous anti-Stokes
photons into lower orders.

As an application of these phase dynamics, we calculate the
phase noise for beat notes between neighboring laser orders,
which to date has only been performed for pump-Stokes beat
notes [32]. This result can be used to assess the coherence of mi-
crowave signals that are synthesized using cascaded Brillouin
lasers. In addition, we show that measurements of the beat note
phase noise and the relative powers of the participating optical
fields enable precise fundamental linewidth measurements of

the individual optical fields. Being insensitive to variations
in component fabrication parameters and changes to these
parameters as operating and environmental conditions change,
this result can enable high-resolution linewidth measurement
of ultranarrow linewidth lasers using heterodyne detection
techniques.

This paper is structured as follows. In Sec. II, we de-
scribe the physics of cascaded Brillouin lasers. Section III
describes the laser model, given in terms of a Hamiltonian
describing the optoacoustic interactions of a cascaded Brillouin
laser system, from which the laser dynamics is described in
terms of Heisenberg-Langevin equations that include quantum
and thermal fluctuations. The equations of laser dynamics are
simplified using the adiabatic phonon field approximation and
the steady-state amplitude equations are analytically derived.
Using this formalism in Sec. IV, we derive a simple set of
analytical equations for threshold and clamped powers for a
cascaded Brillouin laser system. In Sec. V, we formulate the
amplitude and phase dynamics of individual optical modes
and use these equations to find the power spectra describing
RIN and phase noise. We derive the phase noise of a beat note
between arbitrary Stokes orders and show how it can be used to
characterize the noise properties of individual Stokes tones. We
corroborate our amplitude and noise models using stochastic
simulations of the Heisenberg-Langevin equations. Finally, we
discuss the future directions to our work.

II. CASCADED BRILLOUIN LASER PHYSICS

A. Brillouin coupling and lasing

Brillouin coupling, enabling light scattering from traveling
sound waves, is the key physics permitting Brillouin lasing
[33]. By optically pumping a transparent medium, Brillouin
coupling can be used to create an optical amplifier [see
Fig. 1(c)]. Through this nonlinear optomechanical process,
a high-frequency (pump) photon of frequency ω0 and wave
vector k0 can decay into a lower frequency (Stokes) photon
and a phonon with respective frequencies ω1,�0 and wave
vectors k1, q0 [see Figs. 1(a) and 1(b)]. Provided that phase
matching is satisfied, i.e., ω0 = ω1 + �0 (energy conservation)
and k0 = k1 + q0 (akin to momentum conservation), Brillouin
coupling can efficiently transfer energy from the pump mode to
the Stokes mode. Similarly to gain media for laser systems with
inverted populations, a Stokes photon can stimulate the decay
of a pump photon into a Stokes photon, thereby producing stim-
ulated emission and optical amplification. This amplification
process occurs within a narrow gain window, at a frequency
determined by the phase-matching conditions, and with a width
given by the decay rate �0 of the participating phonons [see
Fig. 1(d)]. For backward Brillouin scattering, where the Stokes
wave propagates antiparallel to the copropagating pump and
phonon, phase matching places the gain window at ω1 ≈
[1 − (2nv/c)]ω0, where n and v are the material’s index of
refraction and longitudinal sound speed and c is the speed
of light [33]. For silica glass, (2nv/c) ∼ 5 × 10−5, making
ω0 − ω1 ∼ (2π )11 GHz for a pump wavelength of 1.5 μm. By
pumping an optical resonator that supports an optical mode at
the Stokes frequency, the Brillouin gain window overlaps with
ω1, and a Brillouin laser can be created [see Fig. 1(e)].
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FIG. 1. Fundamentals of Brillouin lasing. (a) Energy conservation
and (b) wave vector phase matching requirements. Brillouin coupling
mediated (c) optical amplifier and (d) energy transfer. (e) Ring-
resonator-based Brillouin laser. Here, spatial growth and depletion of
the optical fields around the resonator are exaggerated for illustrative
purposes; this spatial growth must be small for the mean-field
approximation to remain valid.

B. Cascaded Brillouin lasing

At high Stokes laser intensities, cascaded Brillouin lasing
can occur (see Fig. 2). Under this condition, the Stokes field
(red of Fig. 2) acts as a pump for a counterpropagating second
Stokes (orange) order with frequency ω2. This process is medi-
ated by a distinct phonon, with frequency �1 and propagating
in the direction opposite to that of the phonon participating in
the pump to Stokes energy transfer. Consequently, the pump-
Stokes frequency difference is roughly ∼(2π )600 kHz greater
than the first Stokes–second Stokes frequency difference in
silica and for a pump wavelength of 1.5 μm. In high quality
factor resonators with evenly spaced modes, this frequency
shift can produce walk-off that can stifle further cascading.
However, provided that the resonator supports an optical mode
near ω2 (or any successive order), i.e., within the gain window,
cascaded lasing of the second or higher order Stokes mode(s)
can be produced. With sufficiently high pump powers and given
a resonator supporting optical modes at higher-order Stokes
frequencies, cascading can continue to many orders, each
cascaded order pumped by the previous order and mediated
by a distinct phonon.

This cascaded lasing behavior naturally occurs in WGMRs
and ring resonators, where the optical modes are regularly
spaced by the cavity free spectral range (FSR) [see Fig. 1(e)
and Fig. 2]. For a range of systems, the gain bandwidth and
optical cavity linewidths are much larger than the walk-off
produced by successive phase matching as described above,
and consequently these systems can produce cascaded lasing
to many Stokes orders [21,22,25,34]. As concrete examples,
we base the laser modeling to follow on integrated waveguide-

FIG. 2. Illustration of a cascaded Brillouin laser. A laser of
frequency ωpump and linewidth �νpump pumps an optical resonator.
Light in the ω0 mode (blue) can scatter to ω1 (red) by emitting a
phonon. When lasing, the ω1 optical mode can act as a pump for higher
Stokes orders. Here, gm and γ̃m respectively quantify the Brillouin
coupling rate between the m and the (m + 1)th modes and the optical
decay rate of the mth mode.

based Brillouin lasers of the type described above and similar
to the systems reported in Refs. [21,22,25,34].

C. Brillouin laser noise

We show that the noise dynamics of Brillouin lasers are
distinct above and below the threshold for cascaded Brillouin
lasing. This is because cascaded lasing opens new noise
channels that are absent in uncascaded Brillouin lasers. We
explain the origin of this behavior in Fig. 3, which considers
energy transfer dynamics to and from an optical mode a1.

Optomechanical coupling produces a nonlinear interaction
between three waves in a manner that is similar to a mixer (see
Fig. 3), where the mixer output frequency is given by the sum
and difference of the two injected tones. Using this analogy,
we can explain the optomechanical noise present in Brillouin
lasers. For example, when a coherent field in the optical mode
a0 and a noisy acoustic field b0 (due to thermal fluctuations)
are injected into neighboring mixer ports, the mixer output
comprises a coherent carrier with two noisy sidebands. In a
Brillouin laser, the frequency of the lower sideband is given by
ω1, and as a result this spontaneous Stokes scattering process
injects noise into the a1 mode. Likewise, a coherent field
present in the optical mode a1 can also mix with an acoustic
field to produce a carrier with noisy sidebands. However, in
this case the frequency of the higher sideband is given by ω0,
thereby transferring noise from the acoustic field to the a0 mode
through spontaneous anti-Stokes scattering [see Fig. 3(a)].

Below the cascaded lasing threshold, the optical mode a2 is
neither coherent nor occupied with a large number of quanta.
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FIG. 3. Illustration of noise dynamics in cascaded Brillouin
lasers. Tiles represent optical and acoustic modes. The mixer symbol
represents the nonlinear optomechanical coupling between two opti-
cal modes and one acoustic mode. (a) Below threshold for cascaded
lasing, optomechanical coupling enables noise transfer between the
m = 0 and the m = 1 through spontaneous Brillouin scattering from
the phonon mode b0. (b) Above threshold for cascaded lasing, noise
can be injected into the m = 1 mode from spontaneous scattering
from thermal phonons in the b0 and b1 modes.

In other words, a2 is noisy and fluctuates in amplitude around
zero. While this noisy field, in addition to a noisy acoustic
field b1, can be injected into the two ports of a mixer to
produce multiplicative (spontaneous-spontaneous) noise in the
a1 mode, the magnitude of this noise source is small because
the thermal occupation (quantifying the noise amplitude) of
the optical mode a2 is essentially zero.

However, once cascaded lasing is achieved, the coherent
field now present in the a2 mode can efficiently transfer noise
from the acoustic mode b1 to a1 [as seen in Fig. 3(b)], coupling
the optical mode a1 to an additional heat bath. We find that
these noise channels, introduced by cascading, enhance the
phase and amplitude noise, thereby producing contrasting
behaviors from single-mode Brillouin lasers [28,31,35]. For a
lasing order with a fixed emitted power, we find that presence
of additional laser orders (due to cascading) can alter the
laser linewidth by as much as a factor of 3, and enhance the
relative-intensity noise by nearly 30 dB at low frequencies.

III. THEORY

Model Hamiltonian. The physics of a cascaded Brillouin
laser can be described by the model Hamiltonian H given by

H = h̄
∑
m

[ωma†
mam + �mb†mbm + (gma†

mam+1bm + H.c.)],

(1)

and schematically represented in Figs. 2 and 3. This model
generalizes the treatment of optomechanical laser noise de-
scribed in prior work [24,28,30–32] to include the effects of
cascaded lasing. Here, am and bm are the respective annihi-
lation operators for the mth optical and phonon modes, with
respective frequencies ωm and �m. The mode index m labels
the cascaded Stokes order, m = 0 corresponding to the pump,
m = 1 corresponding to the first Stokes order, etc. In contrast

TABLE I. Cascaded Brillouin laser simulation parameters (based
on Ref. [25]). The coupling rate g, optical decay rate γ̃ , and acoustic
decay rate � are the same for all considered orders.

g 1.54 kHz Electrostrictive coupling rate
� (2π )200 MHz Phonon decay rate
γ̃ (2π )6.88 MHz Optical decay rate
ωpump (2π )195.3 THz Pump laser frequency
GB 0.1 (W m)−1 Brillouin gain
κ 0.0025 Power coupling
L 0.0743 m Resonator length
vg 2.08 × 108 m/s Optical group velocity
γext (2π )1.11 MHz External optical loss rate
�νpump (2π )100 Hz Pump laser linewidth
μ 3.8 mHz 1/2 × Bril. ampl. rate per photon

with linear waveguides, where mode amplitudes can change
along the system’s symmetry direction, our model treats the
field within the optical and acoustic resonator as independent
of space, and essentially composed of a pure k-vector mode
(either traveling or standing); this aspect of our model contrasts
with the work of Debut et al. [35], which accounts for the spatial
dynamics of the optical field throughout the laser resonator.
This approximation is valid so long as the loaded optical decay
rate and the gain bandwidth are much smaller than the free
spectral range of the resonator. The coupling rate gm quantifies
the Brillouin interaction between the mth phonon mode and
the mth and (m + 1)th optical modes, including the effects of
spatial phase matching. This coupling rate, determined by the
spatial overlap of the acoustic and optical modes, is discussed
in detail in Appendix A.

Finally, we point out that through the formulation of this
model, we neglect interactions produced by the Kerr effect,
such as self- and cross-phase modulation. This is a good
approximation in a variety of materials used to create Brillouin
lasers, where Brillouin coupling is much larger than Kerr
nonlinearities [20,21,23,25,34].

Kerr nonlinearities can shift the resonance conditions for
the laser resonator and mimic the effects of cascaded-order
lasing by energy transfer through four-wave mixing (FWM).
When the pump laser is locked to the resonator, the primary
effect of Kerr-induced resonance frequency shifts is to perturb
the phase matching for Brillouin scattering. These effects are
negligible when the shift in frequency is much less than the
Brillouin gain bandwidth, quantified by the inequality given
by ωmn2I/(n�) � 1, where n2 is the Kerr-induced second-
order refractive index, and I is the total optical intensity inside
the resonator. For example, this inequality is well satisfied for
the laser described by Table I (see Ref. [25]) over the range
of investigated powers (i.e., intracavity power much less than
1500 W).

The relative importance of FWM can be quantified by taking
the ratio of the bulk Brillouin gain gB to ωn2/c, representing the
spatial rate of energy transfer per W/m2 produced by the Kerr
effect. In high band gap materials, such as silica [28] and CaF2

[20], this ratio [cgB/(ωn2)] is ∼163 at 1.55 μm in silica and
∼532 at 1.06 μm in CaF2 [20,33,36], illustrating that FWM
is perturbative in these systems. Moreover, cascaded Brillouin
lasing has been observed to nine orders with negligible effects
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produced by Kerr nonlinearities [28]. Combined, these results
show that Kerr nonlinearities are negligible in these high band
gap systems. In contrast, for high-index materials such as
silicon or chalcogenide, cgB/(ωn2) is ∼22 at 1.55 μm for
the silicon laser reported in Ref. [24,33] and ∼9 for As2S3

chalcogenide glass at 1.06 μm [33,37]. Consequently, the
effects of Kerr nonlinearities must be carefully accounted for
in high-index materials and may be required for accurate laser
modeling at high powers.

Heisenberg-Langevin equations. The laser dynamics are
described by the Heisenberg-Langevin equations of motion
resulting from Eq. (1). In a frame rotating at the resonance
frequency of each field, we find

ȧm = − 1

2
γmam + √

γextFpumpe
−iωmt δm0 + ηm

− igmam+1bme−i�ωm+1t − ig∗
m−1b

†
m−1am−1e

i�ωmt , (2)

ḃm = − 1

2
�mbm + ξm − ig∗

ma
†
m+1amei�ωm+1t . (3)

Here, we have added the decay rates, γm and �m, for the
respective mth optical and acoustic modes, and the Langevin
forces ηm and ξm to equations of motion. These terms describe
the noise and dissipation present in each degree of freedom. We
require that these terms yield a state of thermal equilibrium in
the absence of electrostrictive coupling, and physics consistent
with the fluctuation-dissipation relation. Above, the parameter
�ωm is the difference in resonance frequencies given by
ωm − ωm−1 + �m−1, and γext denotes the component of the
optical mode decay rate due to coupling of the laser resonator
to a bus waveguide that supplies power to the laser. The
time-dependent function Fpump, representing the optical pump,
supplies power to and is assumed to be locked to the m = 0
mode of the resonator. This function is normalized such that
|Fpump|2 is given in units of photon flux, so that the power
supplied to the laser through the bus waveguide Ppump is given
by h̄ωpump|Fpump|2. In addition, we assume that the noise of this
source laser is dominated by phase noise; as a result we assume
that Ppump is time-independent and all of the time dependence
of Fpump, aside from oscillation at the carrier frequency, is
described in terms of a random time-dependent phase ϕpump.
This randomly varying phase models a pump laser with a
finite linewidth �νpump (see Fig. 2). The Langevin forces ηm

and ξm quantify the quantum and thermal fluctuation of the
respective optical and acoustic fields. These Langevin forces
are zero-mean Gaussian random variables with white power
spectra [28,30,31], yielding the correlation properties given by

〈η†
m(t )ηm′ (t ′)〉 = γmNmδ(t − t ′)δmm′ , (4)

〈ηm(t )η†
m′ (t ′)〉 = γm(Nm + 1)δ(t − t ′)δmm′ , (5)

〈ξ †
m(t )ξm′ (t ′)〉 = �mnmδ(t − t ′)δmm′ , (6)

〈ξm(t )ξ †
m′ (t ′)〉 = �m(nm + 1)δ(t − t ′)δmm′ , (7)

where Nm and nm are the thermal occupation numbers
of the mth optical and acoustic modes [i.e., Nm =
(exp{h̄ωm/kBT } − 1)−1 and nm = (exp{h̄�m/kBT } − 1)−1]

and 〈...〉 denotes an ensemble average with respect to the
Langevin forces.

Adiabatic elimination of phonon fields. In many Bril-
louin lasers the decay rate of the relevant acoustic modes is
much larger than the decay rate of the participating optical
modes (i.e., �m 
 γm and γm+1). For near-resonant systems
(i.e., �ωm � �) possessing this separation of timescales, the
phonon fields adiabatically follow the electrostrictive forcing
generated by the beat notes of the various optical fields. In
this limit, we find the approximate solution for the phonon
dynamics given by

bm ≈ −ig∗
mχma

†
m+1am + b̂m, (8)

where χm ≡ (−i�ωm+1 + �m/2)−1 and b̂m, quantifying the
thermal and quantum fluctuations of the phonon field, is given
by

b̂m =
∫ t

−∞
dτ e− �m

2 (t−τ )ξm(τ ). (9)

Physically, this approximation is valid so long as the magnitude
of the electrostrictive forces produced by the optical fields
change so slowly in time that the phonon assumes its steady-
state amplitude at each instant.

By adiabatically eliminating the phonon field, we can
obtain a simplified set of equations describing the dynamics
of a cascaded Brillouin laser. By combining the approximate
solution for bm with Eqs. (2) and (3), we find the effective
equation of motion for the optical field amplitudes given by

ȧm = −
(

γ̃m

2
+ μma

†
m+1am+1 − μ∗

m−1a
†
m−1am−1

)
am

+ hm + √
γextFpumpe

−iωmt δm0, (10)

where μm ≡ |gm|2χm and γ̃m ≡ γm + 2μm, and the
Langevin force hm, defined by hm = ηm − igmam+1b̂m −
ig∗

m−1b̂
†
m−1am−1, describes the colored multiplicative noise

imparted to the optical fields through electrostrictive coupling
in addition to quantum and thermal fluctuations of the optical
modes. The function μm is the nonlinear susceptibility
associated with Brillouin scattering, 2Re[μm], yielding the
Brillouin amplification rate per pump photon. This function
can be related to the Brillouin gain factor GB,m, quantifying
the spatial rate of Brillouin-mediated energy transfer per watt
of pump power along a waveguide, through the relation

GB,m = 2Re[μm]L

h̄ωm−1vg,mvg,m−1
, (11)

where L is the resonator length and vg,m is the group velocity
of the mth optical mode. This gain factor GB,m can also be
expressed in terms of the bulk gain gB,m, in units of meters
per watt, by multiplying by the effective acousto-optic overlap
area Aeff , i.e., gB,m = AeffGB,m. Through energy transfer
measurements of Brillouin scattering in a waveguide segment
with the same properties as the waveguide used to create the
laser resonator, the gain factor GB,m can be obtained and the
electrostrictive coupling rate gm can be derived.

It is important to point out that adiabatic elimination of
the phonon modes can produce singular behavior in very long
optical resonators where many optical modes fit within the
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gain bandwidth—a regime that produces distinct pulsed laser
dynamics [38]. However, by virtue of the mean-field form of
our laser model, this problematic behavior is outside the regime
of validity of our model which requires the resonator FSR to be
much bigger than the Brillouin gain bandwidth (i.e., the phonon
linewidth). In other words, one optical mode falls within the
gain bandwidth at most.

Equation (10) shows that the dynamics of the mth
mode exhibit laser threshold behavior. Namely, when
Re[μ∗

m−1]a†
m−1am−1 >

γ̃m

2 + Re[μm]a†
m+1am+1 the mth mode

becomes unstable, and the mode amplitude can grow in
magnitude. When this laser threshold condition is satisfied,
a small fluctuation of am can be be amplified, creating strong
coherent laser oscillation, so that |am| acquires a nonvanishing
mean value. This behavior is analogous to a second-order phase
transition [39], where the average amplitude plays the role of
the order parameter.

Above laser threshold, it is convenient to describe the
dynamics of am using the following decomposition:

am = (αm + δαm)eiϕm . (12)

Here, αm is the time-independent steady-state laser amplitude,
and δαm and ϕm are time-dependent fluctuations of the re-
spective amplitude and phase of the laser emission from the
mth optical mode. These fluctuating quantities describe the
laser noise properties, the zero mean amplitude fluctuation
δαm describing the RIN, and ϕm the phase noise. In the
following sections, we use the representation of am above to
derive the steady-state laser dynamics of the optical modes
and to describe the fundamental noise properties of cascaded
Brillouin lasers.

IV. STEADY-STATE LASER AMPLITUDES, THRESHOLD,
AND CASCADING

By inserting the representation of am given by Eq. (12) into
Eq. (10), dropping the Langevin forces, and taking the modulus
of the time average, we find the following recursion relation
between the various laser amplitudes and the time-independent
mean amplitude of the pump field |Fpump|(

γ̃m

2
+ μ′

mα2
m+1 − μ′

m−1α
2
m−1

)
αm = √

γext|Fpump|δm0.

(13)

Here, μ′
m = Re[μm] and we have dropped nonvanishing terms

of order δα2
m (away from threshold αm 
 |δαm|). Equivalently,

this recursion relation can be written in terms of the coherent
occupation numbers pm = α2

m yielding the steady-state equa-
tions for the mode occupation number given by(

γ̃m

2
+ μ′

mpm+1 − μ′
m−1pm−1

)
pm = √

γext|Fpump|√pmδm0.

(14)

These recursion relations are reminiscent of prior results for
cascaded Raman lasers (see steady-state limit of Eq. (10) in
Ref. [29]), which can be modeled by physics similar to Eq. (1).

We can use these recursion relations to find the emitted laser
power for each mode. To obtain the emitted power of the mth
mode Pm, one first obtains the intracavity power by multiplying

FIG. 4. Steady-state laser power for the laser parameters given in
Table I. Solid lines represent theoretical predictions for the steady-
state powers given by Eqs. (36) and (37), and solid points denote the
steady-state powers obtained from stochastic simulations of Eqs. (2)
and (3). From top to bottom, the power curves are P0, P1, P2, P3, P4,
and P5.

the occupation number pm by the energy stored in the resonator
per photon h̄ωmvg,m/L, where L is the length of the resonator
and vg,m is the group velocity of the mth mode. By multiplying
the intracavity laser power by resonator-bus waveguide power
coupling factor κ , we obtain Pm given by

Pm = h̄ωmvg,mκ

L
pm. (15)

To find the steady-state laser powers, we use the recursion
relation Eq. (13). When only k orders are lasing, we know
αk+1 = 0, and given that the anti-Stokes mode to the pump
cannot lase we know α−1 = 0. These two conditions can be
used with Eq. (13) to give

(
γ̃0

2
+ μ′

0α
2
1

)
α0 = √

γext|Fpump| for m = 0, (16)

α2
k−1 = γ̃k

2μ′
k−1

, (17)

α2
m−1 = μ′

m

μ′
m−1

α2
m+1 + γ̃m

2μ′
m−1

for k > m > 0. (18)

There are a number of important results that can be drawn
from these equations. First, for kth-order cascading, the k − 1
mode is clamped. As a result, the recursion relation Eq. (18)
implies that the k − 3, k − 5, k − 7, . . . are clamped as well.
This behavior is illustrated in Fig. 4 which shows the emitted
powers of each Stokes order as function of power supplied to
the laser Ppump. In other words, if k is even, all odd orders are
clamped, and if k is odd all even orders are clamped.

Combining the results of Eqs. (16), (17), and (18), the
powers in the 2mth and the (2m + 1)th orders are respectively
given in terms of the α0 and α1 as

α2
2m = C (e)

m

(
α2

0 − S (e)
m

)
, (19)

α2
2m+1 = C (o)

m

(
α2

1 − S (o)
m

)
, (20)
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where the recursion formulas for the steady-state amplitudes
yield

C (e)
m =

m∏
j=1

μ′
2j−2

μ′
2j−1

, (21)

S (e)
m = 1

μ′
0

m∑
j=1

1

2
γ̃2j−1C

(o)
j−1, (22)

C (o)
m =

m∏
j=1

μ′
2j−1

μ′
2j

, (23)

S (o)
m = 1

μ′
0

m∑
j=1

1

2
γ̃2jC

(e)
j . (24)

A. Laser thresholds and powers

Using the analysis given above, we obtain the power emitted
from each mode and threshold powers for each order of
cascaded lasing. We find the expressions for the emitted power,
in terms of P0 and P1, given by

P2m = C (e)
m

ω2mvg,2m

ω0vg,0

[
P0 − h̄ω0vg,0κ

L
S (e)

m

]
, (25)

P2m+1 = C (o)
m

ω2m+1vg,2m+1

ω1vg,1

[
P1 − h̄ω1vg,1κ

L
S (o)

m

]
, (26)

which can be used to calculate the power emitted from any
mode in terms of P0 and P1. To find P0 and P1, we must
separately consider the cases when an even and an odd number
of Stokes orders are lasing.

B. Cascading to 2k + 1 orders (odd number of Stokes orders)

First, we consider the case when an odd number of Stokes
orders are lasing. In this case, the powers of all even orders are
clamped. Using Eqs. (25), (26), (16)–(18), and (15), we find

P0 = h̄ω0vg,0κ

L
S

(e)
k+1, (27)

P1 = h̄ω1vg,1κ

L

1

μ′
0

(√
γextPpump

h̄ωpumpS
(e)
k+1

− γ̃0

2

)
. (28)

C. Cascading to 2k orders (even number of Stokes orders)

In contrast, for an even number of Stokes orders all odd
orders are clamped. Again, using Eqs. (25), (26), (16)–(18),
and (15), we find

P0 =ω0vg,0κ

Lωpump

(
γ̃0

2
+ μ′

0S
(o)
k

)−2

γextPpump, (29)

P1 = h̄ω1vg,1κ

L
S

(o)
k . (30)

Using the relations above we can determine the threshold
power for cascading at an arbitrary order. The threshold for the
kth order is met when the power in the (k − 1)th mode becomes
clamped. Using Eqs. (17) and (15), this clamped power is given
by

Pk−1 = h̄ωk−1vg,k−1κ

L

γ̃k

2μ′
k−1

, (31)

yielding the threshold power for the kth mode P th
k given by

P th
k = h̄ωpump

γext

{
S

(e)
k/2(μ′

0S
(e)
k/2 + γ̃0/2)2, k even,

S
(e)
(k+1)/2(μ′

0S
(o)
(k−1)/2 + γ̃0/2)2, k odd.

(32)

D. Special case: γ̃m = γ̃ , μ′
m = μ′, and vg,m = vg

Up to this point, we have accounted for the possibility that
the gain and loss properties of the resonator may vary mode by
mode. However, in many Brillouin laser resonators these prop-
erties are approximately constant over a large frequency range.
In this short section we explore the steady-state laser physics
for the case where γ̃m = γ̃ , μ′

m = μ′, and vg,m = vg , yielding a
dramatic simplification of the analysis. Under these conditions
C (e)

m = C (o)
m = 1 and S (e)

m = S (o)
m = (γ̃ /2μ′)m, leading to the

emitted powers given by

P2m = ω2m

[
P0

ω0
− h̄γ̃ γext

2μ′ m

]
, (33)

P2m+1 = ω2m+1

[
P1

ω1
− h̄γ̃ γext

2μ′ m

]
, (34)

and the threshold powers given by

P th
j = h̄ωpumpγ̃

3

64μ′γext

{
j (j + 2)2, j even,

(j + 1)3, j odd,
(35)

where we have used γext = vgκ/L. Next, we find the power
emitted by each order.

1. Cascaded lasing of 2k + 1 orders only

When an odd number 2k + 1 of cascaded orders are lasing,
we find the following expressions for the laser power emitted
by the even 2m and odd 2m + 1 orders:

P2m = h̄ω2mγextγ̃

2μ′ (k + 1 − m),

P2m+1 = 4ω2m+1γ
2
ext

ωpumpγ̃ 2

m + 1

(k + 1)3

[√
P th

2k+1Ppump
k + 1

m + 1
− P th

2k+1

]
.

(36)

2. Cascaded lasing of 2k orders only

When an even number 2k of Stokes orders are lasing the
emitted powers are given by

P2m = 4ω2mγ 2
ext

ωpumpγ̃ 2

1

(k + 1)2

[
Ppump − m

k
P th

2k

]
,

P2m+1 = h̄ω2m+1γextγ̃

2μ′ (k − m). (37)

Under the appropriate assumptions, these formulas reproduce
the results of previous works on cascaded Raman and Brillouin
lasers [29,40,41].

In Fig. 4, we plot the emitted laser powers described by
Eqs. (36) and (37), and compare with the emitted powers
obtained through stochastic simulations of Eqs. (2) and (3).
The results displayed in Fig. 4 show that these analytical
expressions accurately capture the steady-state laser dynamics.
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V. LASER NOISE DYNAMICS

In this section we explore the amplitude and phase noise
dynamics of cascaded Brillouin lasers. We base this analysis
on the effective dynamics described by Eq. (10). Consequently
our results differ slightly from Loh et al. [31], who included
nonadiabatic effects of the phonon mode(s) but neglected
quantum fluctuations. To explore the phase and amplitude
dynamics of a cascaded-order Brillouin laser, we explicitly
solve Eq. (10), linearized for small δαm. To obtain the desired
equations of motion, we combine Eq. (12) with Eq. (10), keep
terms to linear order in δαm, take the real and imaginary parts,
and use the relations between the steady-state amplitudes to
find

˙δαm = − 2(μ′
mαm+1δαm+1 − μ′

m−1αm−1δαm−1)αm

+ Re[h̃m] − 1

αm

√
γext|Fpump|δm0δαm

+ √
γext (Re[F̃pump] − |Fpump|)δm0, (38)

αmϕ̇m = − 2(μ′′
mαm+1δαm+1 + μ′′

m−1αm−1δαm−1)αm

− δωm(1 + δαm/αm) + Im[h̃m]

+ √
γextIm[F̃pump]δm0, (39)

where μ′′
m = Im[μm] and δωm = (μ′′

mα2
m+1 + μ′′

m−1α
2
m−1)αm.

To obtain the equation above, we have multiplied Fpump as well
as the Langevin forces by exp{−iϕm}, yielding the definitions
h̃m ≡ hm exp{−iϕm} and F̃pump ≡ Fpump exp{−iϕm}.

The cascaded Brillouin laser noise dynamics described by
the equations above share two important features with typical
laser systems. Generally, the laser phase noise and RIN couple,
and the dynamics of the various cascaded orders couple. When
phase matching is precisely satisfied μ′′

m = 0 and the laser
phase and amplitude decouple. However, the amplitudes of
adjacent laser orders continue to interact, resulting in complex
relaxation oscillation dynamics.

To begin our discussion of laser noise, we explore the
dynamics of the a0 (m = 0 mode). This mode acts as the pump
for the Brillouin laser and has distinct dynamics from those of
the other optical modes. Among these distinctions, the m = 0
mode does not undergo a lasing transition, and it is driven by
a noisy external pump laser, noise that is directly transferred
to the pump mode and can be fed into cascaded Stokes orders.

A. Pump dynamics

In this section we analyze the dynamics of the m = 0 optical
mode, playing the role of the pump, beginning with the phase.
To obtain the time dependence of the pump (m = 0 optical
mode) we assume that the external pump laser is given by

Fpump = |Fpump| exp{i(�ωt + ϕpump)}, (40)

where �ω ≡ ωpump − ω0 is the difference between the external
pump laser frequency and the resonance frequency of the
pump (m = 0) mode (see Fig. 2). As discussed above, we
assume that the source laser is phase-noise-dominated, that the
amplitude |Fpump| is time-independent, and that the phase ϕpump

FIG. 5. Simulated pump phase ϕ0 and external pump phase ϕpump

as a function of time for Ppump = 50 mW. Simulation parameters given
in Table I.

is randomly fluctuating in time with a variance determined
by the external pump laser linewidth �νpump (see Fig. 2).
We model the behavior of ϕpump using the phase diffusion
model [35]. These assumptions yield the equation for ϕ0

given by

α0ϕ̇0 = − 2μ′′
0α1α0δα1 − δω0(1 + δα0/α0)

+ Im[h̃0] + √
γext|Fpump| sin(�ωt + ϕpump − ϕ0),

(41)

where δω0 is defined just after Eq. (39). To find the dynamics of
ϕ0, we assume that precise phase matching is satisfied (i.e., the
electrostrictive coupling parameter μm is real and μ′′

m = 0),
that the pump mode is driven on resonance (�ω = 0),
that

√
γext|Fpump| 
 |h̃0|, and that γ̃0 
 2π�νpump. In other

words, the last condition means that the optical pumping of
our system is not Lorentz-limited. Under these conditions,
the pump phase decouples from the laser amplitudes and
adiabatically follows the phase of the external source laser
ϕpump, yielding

ϕ0 ≈ ϕpump. (42)

This behavior is illustrated in Fig. 5 where the time evolution of
ϕpump and ϕ0, obtained from stochastic simulations of Eqs. (2)
and (3), is shown. Under the same assumptions given above,
we find the pump amplitude dynamics given by

˙δα0 ≈ −2μ′
0α1α0δα1 − 1

α0

√
γext|Fpump|δα0 + Re[h̃0], (43)

where, justified by the dynamics of ϕ0, we have dropped a term
proportional Re[F̃ext] − |Fpump|. In the following, we will use
these equations, along with equations describing the steady-
state powers, to find the RIN and the phase noise in cascaded
Brillouin lasers.

B. Cascaded Brillouin laser noise in phase-matched systems

While the development presented up to this point is general,
here we restrict our analysis to perfectly phase matched sys-
tems. Under such conditions the laser dynamics dramatically
simplify. As discussed in Sec. II B, it is important to note
that the Brillouin frequency shift is distinct for each cascaded
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order (e.g., decreasing by ∼600 kHz in silica for a pump
of 1.55 μm for each cascaded order). Consequently, in laser
resonators with a constant FSR, the peak of the Brillouin gain
will slowly walk-off from resonance with increasing Stokes
orders, and perfect phase matching is only approximately
satisfied. This effect can decrease the Brillouin coupling for
higher Stokes orders, yield a larger threshold [42], lead to
amplitude and phase coupling, and produce frequency pulling
[40]. For lasers with a gain bandwidth that is much larger
than this shift from perfect phase matching, these effects
produce a perturbative effect on the phase noise. In the future,
a variety of dispersion engineering techniques, such as atomic
layer deposition, nanostructuring, coupling to resonators, and
modifying the waveguide shape, may enable group velocity
dispersion that precisely aligns a large number of cascaded
Stokes orders with resonator modes.

By utilizing these simplifying assumptions, we calculate
the laser noise for a range of examples. For the examples
considered here, satisfying strict phase matching for all cas-
caded orders, the coupling parameters are real, i.e., μm =
μ′

m and μ′′
m = 0, and the linearized dynamics of the various

laser phases decouple from the amplitudes, yielding the laser
dynamics described by

˙δαm = −2μmαm+1αmδαm+1 + 2μm−1αm−1αmδαm−1

− 1

α0

√
γext|Fpump|δm0δαm + Re[h̃m], (44)

αmϕ̇m = Im[h̃m]. (45)

Let us take a moment to address a subtlety of the decoupling
between the amplitude and the phase dynamics. Recall that
the Langevin forces given above are multiplied by factors
of the form exp{−iϕm} [see below Eq. (39)], and therefore,
the amplitude and phase dynamics are coupled, in contrast
with the claims above. However, when the correlation time
for hm is short compared to that of the laser phases (which
is well satisfied in typical systems), the correlation properties
of hm and h̃m are indistinguishable (see Appendix B), and the
amplitude and phase dynamics become effectively decoupled.
This decoupling enables the laser amplitude and phase noise
to be analyzed independently.

We begin our analysis of laser noise by calculating the RIN.
Unlike the laser phases, Eq. (44) shows that the amplitudes
of the various laser orders couple together. This coupling
can produce relaxation oscillation dynamics with multiple
resonant frequencies, depending on the number of lasing
modes. Consequently, the RIN must be analyzed case by case.

1. Relative-intensity noise

In this section, we use the decoupled equations (44) to find
the RIN of a cascaded Brillouin laser, quantifying the relative
stability of the emitted laser power. For the mth laser mode,
the RIN SRIN

m [ω] is defined by the two-sided power spectrum
of the relative laser power fluctuations:

SRIN
m [ω] = 1

P 2
m

∫ ∞

−∞
dτ eiωτ 〈δPm(t + τ )δPm(t )〉, (46)

where δPm represents the time-dependent variation of the laser
power from its steady-state value. By using (Pm + δPm) ∝

(αm + δαm)2 and assuming that |δαm| � αm, we can express
the power spectrum for relative-intensity noise in terms of the
laser amplitude fluctuations as

SRIN
m [ω] = 4

α2
m

∫ ∞

−∞
dτ eiωτ 〈δαm(t + τ )δαm(t )〉. (47)

Here, we have neglected subleading terms of order δα4.
In the following, we solve the laser equations for the ampli-

tude dynamics and use Eq. (47) to find explicit expressions for
the RIN that depend on the number of cascaded lasing orders.

2. RIN: First-order cascading

We begin by finding the RIN when the threshold for the
m = 2 mode has not been met. In this limit, the laser amplitude
equations reduce to

˙δα0 = − 1

α0

√
γext|Fpump|δα0 − 2μ0α1α0δα1 + Re[h̃0], (48)

˙δα1 = 2μ0α0α1δα0 + Re[h̃1]. (49)

As has been described in Ref. [31], the amplitude coupling
between the pump and first Stokes modes described above
leads to relaxation oscillations of energy between the modes,
with a frequency given by ωrel

0 ≡ 2μ0α0α1 and a damping rate
�RIN ≡ √

γext|Fpump|/α0.
We solve this coupled set of linear differential equations by

Fourier transform, yielding the solution for δα1 given by

δα1(t ) =
∫ ∞

−∞

dω

2π

∫ ∞

−∞
dt1 e−iω(t−t1 )χRIN(ω)

× {
ωrel

0 Re[h̃0(t1)] + (−iω + �RIN)Re[h̃1(t1)]
}
,

(50)

where χRIN(ω) = (−ω2 − i�RINω + ωrel
0

2
)−1. Using the cor-

relation properties for h̃m (see Appendix B), we find the two-
time correlation function for the amplitude 〈δα1(t + τ )δα1(t )〉;
the Fourier transform of this correlation function can be used to
find the power spectrum for the RIN of a single-mode Brillouin
laser, yielding

SRIN
1 [ω] = |χRIN(ω)|2

[
1

2
ωrel

0
2
γ̃0(N0 + 1/2)

+ 1

2

(
ω2 + �2

RIN

)
γ̃1(N1 + 1/2)

+ 1

2
|g0|2(n0 + 1/2)

(
ωrel

0
2
α2

1 − 2ωrel
0 �RINα1α0

+ (
ω2 + �2

RIN

)
α2

0

) �0

ω2 + �2
0/4

]
. (51)

Equation (51) reproduces the RIN in Brillouin lasers described
by Loh et al. [31], when quantum noise is neglected and when
�0 
 γ̃0 is assumed. In Fig. 6(a), we compare Eq. (51) to the
RIN power spectrum obtained from stochastic simulations of
Eqs. (2) and (3); both calculations use Table I for input parame-
ters. The agreement between Eq. (51) and the laser simulations,
shown in Fig. 6(a), justifies the various approximations that
led to our analytic expressions describing the RIN. In the next
section, we consider RIN in cascaded Brillouin lasers.
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FIG. 6. Relative-intensity noise of the first Stokes order (a) prior to cascaded lasing [point (a) of inset], (b) cascaded lasing to two Stokes
orders [point (b) of inset], and (c) cascaded lasing to three Stokes orders [point (c) of inset]. Gray dashed line (c) is the theory curve from (a),
included for comparison.

3. RIN: Higher-order cascading

Here, we derive general expressions for the RIN for Bril-
louin lasers that have cascaded to k orders. To formulate this
general problem, it is convenient to express the amplitude
dynamics in terms of a vector differential equation given by

˙δα = −M · δα + Re[h̃], (52)

where · denotes matrix multiplication. Here δα and h̃ are col-
umn vectors composed of the respective amplitude fluctuations
and Langevin forces for each order,

δα =

⎛
⎜⎜⎜⎜⎝

δαk

δαk−1
...

δα1

δα0

⎞
⎟⎟⎟⎟⎠, h̃ =

⎛
⎜⎜⎜⎜⎜⎝

h̃k

h̃k−1
...

h̃1

h̃0

⎞
⎟⎟⎟⎟⎟⎠, (53)

and the k × k matrix M, encoding the amplitude coupling
among the various orders, is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ωrel
k−1 . . .

ωrel
k−1 0
...

. . .
...

0 −ωrel
2 0 0

ωrel
2 0 −ωrel

1 0

0 ωrel
1 0 −ωrel

0

. . . 0 0 ωrel
0 �RIN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(54)

where ωrel
j ≡ 2μjαjαj+1.

This vector differential equation is a compact representation
of the dynamics described by Eq. (44). We obtain the following
solution for Eq. (52) given by

δα(t ) =
∫ ∞

−∞

dω

2π

∫ ∞

−∞
dt ′ e−iω(t−t ′ )G[ω] · Re[h̃(t ′)], (55)

where G[ω] ≡ [−iωI + M]−1 (−1 denotes matrix inverse),
and I is the k × k identity matrix. The two-sided power
spectrum SRIN

j [ω] for the RIN of the j th mode can be obtained
by computing the Fourier transform of the two-time amplitude

correlation function in Eq. (47). From the analysis detailed in
Appendix C, we find

SRIN
j [ω] = 4

α2
j

(G[ω] · C[ω] · G†[ω])jj , (56)

where the suffix jj denotes the jj (diagonal) matrix element of
G[ω] · C[ω] · G†[ω], and C[ω] is a dyadic with matrix elements
given by Cmn[ω] = ∫ ∞

−∞ dτ eiωτ 〈Re[h̃m(t + τ )]Re[h̃n(t )]〉. To
find the RIN for a general case, one finds G[ω] for the relevant
number of cascaded orders k, and then uses Eq. (56). We
give explicit expressions for G[ω] and C[ω] for a variety of
cascaded orders in Appendix C. This expression for the RIN
of a cascaded Brillouin laser represents the first major result
of this paper.

In Fig. 6, we display SRIN
1 [ω], calculated using Table I (and

the results of Appendix C), for a range of powers and cascaded
orders; the solid black lines are calculated from Eq. (56), and
the red dots denote the RIN extracted from simulations of
Eqs. (2) and (3). Figure 6(b) shows the RIN for the first Stokes
order just prior to threshold for cascading to 3 orders. Although
the emitted power for the first Stokes mode is nearly identical
for Fig. 6(a) and Fig. 6(b), the additional noise channel opened
by lasing in the second Stokes order enhances the RIN by nearly
30 dB at low frequencies. As cascading proceeds to higher
orders, energy transfer between the cascaded orders produces
complex relaxation oscillation dynamics. For example, after
third-order cascading, the amplitude coupling between the op-
tical modes produces the multipeaked spectra seen in Fig. 6(c).

4. Phase noise

Continuing our discussion of noise in cascaded Brillouin
lasers, we now explore the phase noise of individual Stokes
orders, quantifying the laser frequency stability. Following
the conventions of Halford et al. [43], we quantify the phase
noise of the mth laser order with the power spectrum of phase
fluctuations Lm(f ) defined by

Lm(f ) =
∫ ∞

−∞
dτ ei2πf τ 〈ϕm(t + τ )ϕm(t )〉. (57)

By integrating Eq. (45) and using the correlation properties
of the Langevin force h̃m detailed in Appendix B, we find the
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phase noise given by

Lm(f ) ≡ 1

2πf 2
�νm

= 1

8π2α2
mf 2

[
γ̃m

(
Nm + 1

2

)

+ |gm|2α2
m+1

(
nm + 1

2

)
�m

(2πf )2 + �2
m/4

+ |gm−1|2α2
m−1

(
nm−1 + 1

2

)
�m−1

(2πf )2 + �2
m−1/4

]
,

(58)

where, in the top line, we have introduced �νm, the funda-
mental linewidth of the mth laser mode. From left to right, the
first term in the brackets originates from thermal and quantum
fluctuations of the optical mode, the second term represents the
contribution to the phase noise from spontaneous anti-Stokes
scattering from the m + 1 optical mode, and the last term
describes the noise injected into the mth mode by spontaneous
Stokes scattering from the m − 1 mode. This result shows that
Lm(f ) is insensitive to the phase noise of the pump laser. This
insensitivity is due to a compression of the phase diffusion
transferred to the Stokes modes from the pump and is a property
of the phase noise in Brillouin lasers where the phonon decay
rate is large compared to the optical decay rates and pump laser
linewidth [35]. Brillouin lasers satisfying these properties can
be viewed as “noise eaters.” In spite of this property, some
pump noise transfers to the Brillouin laser emission, and in
certain systems can dominate the laser linewidth. For the model
parameters given in Table I, we find that the pump contributes
∼0.1 Hz to the laser linewidth (see Appendix B for further
details).

This result, quantifying the contribution from spontaneous
anti-Stokes scattering to the phase noise, is one of the central
results of this paper. We illustrate the impact of spontaneous
anti-Stokes scattering on the phase noise in Fig. 7, showing

FIG. 7. Comparison of the phase noise of the first Stokes order,
above and below threshold for cascaded lasing. The solid lines are
calculated using Eq. (58), and the points represent simulated phase
noise, open circles for point B of the inset and red points for point
A. The emitted laser power is P1 = 5.2 mW for both curves, whereas
the power supplied to the laser is respectively 197 mW and 369 mW.

the phase noise for the first Stokes order below (point A) and
above (point B) threshold for cascaded lasing. Due to power
clamping, the emitted power for the first Stokes order at point A
and point B is the same, yet, in distinction from insights drawn
from the behavior of first-order Brillouin lasers, the phase
noise is different. The origin of this difference in the phase
noise magnitude is due to spontaneous anti-Stokes scattering
produced by the second Stokes order.

5. Phase noise of beat notes between cascaded Stokes orders

In this section, we calculate the coherence properties
of microwave signals synthesized using cascaded Brillouin
lasers. Cascaded Brillouin lasers offer a compelling method to
synthesize high-coherence microwaves [34]. During cascaded
operation, a Brillouin laser can co-emit a number of high-
coherence laser tones that are spaced by ∼10 s of GHz in
frequency. By photomixing this laser emission on a high-speed
receiver, a coherent electrical signal is produced at the beat
frequencies of the various Stokes orders.

To quantify the coherence of microwave signals synthesized
using cascaded Brillouin lasers, we calculate the phase noise
power spectrum of the beat note between two distinct Stokes
orders. We represent such a beat note βmm′ , between the mth
and m′th modes, by

βmm′ = a†
mam′ = (αm + δαm)(αm′ + δαm′ )e−iϕmeiϕm′ . (59)

If m �= m′ ± 1 then the exponents can be combined (i.e., these
phases commute as quantum operators) to yield

e−iϕmeiϕm′ = e−i(ϕm−ϕm′ ), (60)

which gives the beat note phase �ϕmm′ ≡ ϕm − ϕm′ .
We calculate them-m′ beat note phase noise power spectrum

Lm,m′ (f ) by taking the Fourier transform of the two-time beat
note phase correlation function. Given that the phases of the
two cascaded laser orders are uncorrelated, the beat note phase
correlation function is given by the sum of the phase correlation
functions of the individual orders,

〈�ϕmm′ (t + τ )�ϕmm′ (t )〉
= 〈ϕm(t + τ )ϕm(t )〉 + 〈ϕm′ (t + τ )ϕm′ (t )〉, (61)

yielding the power spectrum for the beat note phase given by

Lm,m′ (f ) =Lm(f ) + Lm′ (f ). (62)

This result, combined with Eq. (58), shows us that the linewidth
of the beat note �νm,m′ is an upper bound on the linewidths of
the individual tones (i.e., �νm,m′ � �νm,�νm,m′ � �νm′). In
the low-frequency limit, i.e., 2πf � �m,�m′ , and by using the
recursion relations for the power [Eq. (13)],Lm,m′ (f ) becomes

Lm,m′ (f ) ≈
∑

j=m,m′

1

8π2α2
j f

2
[γ̃j (Nj + nj−1 + 1)

+ 2μjα
2
j+1(nj + nj−1 + 1)]. (63)

This expression, quantifying the phase noise of beat notes
between distinct cascaded laser orders, is the third major result
of this paper.

As a concrete example, we give the phase noise of the beat
note between the first and third Stokes orders for a laser that has
cascaded to 3 orders. Assuming that the Brillouin coupling and
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FIG. 8. Phase noise of beat note of the first and third Stokes laser
orders for parameters given in Table I. The power spectrum given
by Eq. (64) is represented as the solid line. The gray dots represent
the simulated beat note phase noise power spectrum obtained by
numerically solving Eq. (10). The on-chip pump power is 756 mW.

optical decay rates for the first and third modes are the same,
we find

L1,3(f ) ≈ γ̃

8π2f 2

[
1

α2
1

(N1 + 2n0 + 2 + n1)

+ 1

α2
3

(N3 + n2 + 1)

]
, (64)

where the clamped value for α2 has been used. Note that
because α1 and α3 are connected by the recursion relation
Eq. (13), a measurement of the emitted power of either order
is sufficient to predict the phase noise of the beat note.

Figure 8 compares Eq. (64) to the beat note phase noise
obtained by simulating Eqs. (2) and (3), showing excellent
agreement between the theory and simulation.

As another key result of this paper, Eq. (64) enables the
linewidth of the individual optical tones to be quantified by
measuring the phase noise of the beat note and the relative
powers of the relevant emitted orders. This analysis can be
done by using the theoretical form for the laser linewidths.
For a Brillouin laser cascaded to 3 orders and having equal
optical decay rates and Brillouin couplings, Eq. (58) gives the
linewidths of the first and third Stokes orders as

�ν1 = γ̃

4πα2
1

(N1 + 2n0 + 2 + n1), (65)

�ν3 = γ̃

4πα2
3

(N3 + n2 + 1). (66)

Using these relations, we find

�ν3 = (N3 + n2 + 1)

(N1 + 2n0 + 2 + n1)

α2
1

α2
3

�ν1. (67)

For a Brillouin laser operating at room temperature, the thermal
occupation of the optical modes is much less than one, while
the phonon modes are highly excited n0 ≈ n1 ≈ n2 
 1. For
these conditions, we find �ν3 ≈ P1/(3P3)�ν1 which yields
the following relationship between the beat note linewidth
and the linewidth of the first Stokes for the specific example

FIG. 9. Power dynamics of the first Stokes (red, left), third Stokes
(green, bottom right), and first-third beat note (gray, top right)
linewidth.

considered here:

�ν1,3 ≈ [1 + P1/(3P3)]�ν1. (68)

Equation (68) is a useful result for designing and character-
izing cascaded-order Brillouin lasers. This expression provides
a method to assess the Stokes order linewidths without knowing
values that have high measurement uncertainty (e.g., fiber cou-
pled power, resonator coupling, and ring-down under thermal
variations and noncold cavity conditions). Consequently, an
independent measurement of the beat note phase noise and the
relative emitted optical powers of the lasing orders can be used
to determine the optical linewidths.

6. Linewidth power dynamics in cascaded Brillouin lasers

Thus far, we have shown how the noise depends on the
powers of each of the laser orders. Here, we combine these
noise results with the steady-state power dynamics of Sec. IV
to describe the evolution of the laser linewidth with the power
supplied to the laser.

Figure 9 shows the evolution of the linewidth of the first
and third Stokes orders as well as their beat note as a function
of power supplied to the laser. Beginning at powers below
threshold for the second Stokes order, the linewidth �ν1 (blue
curve) decreases inversely with the emitted power P1. Once the
threshold power is met for the second Stokers order P th

2 , Fig. 9
shows a sharp rise in �ν1. This rise is due to the excess noise
injected into the first Stokes order by spontaneous anti-Stokes
scattering from the m = 2 mode. The third Stokes order and
the beat note display similar behavior to that of the first order.
Figure 9 shows that the linewidth of the beat note and various
laser tones exhibits highly nontrivial power dynamics, and,
in contrast with single-mode Brillouin lasers, intermediate
powers may be preferable for the purpose of producing highly
coherent optical or microwave signals. Viewed differently,
these results show that cascading can degrade Brillouin laser
performance by producing a broadened emission linewidth and
that improved noise properties can be achieved by engineering
the laser physics to inhibit cascading.
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VI. CONCLUSION

In this paper, we explored the power and noise dynamics
of cascaded Brillouin lasers. We based this exploration on
analytical and numerical studies of a coupled-mode laser
model that captures the critical features of cascaded Brillouin
lasers. To streamline our theoretical analyses, we investigated
the physics of this model under the following simplifying
conditions, (1) that the temporal decay rate of the acoustic
fields is much faster than the optical fields, and (2) that phase
matching is satisfied for all optical fields participating in
cascaded lasing. Under these conditions, we showed that the
laser dynamics can be described by a set of nonlinear stochastic
differential equations driven by colored multiplicative noise,
and when linearized for small fluctuations around steady state,
the amplitude and phase dynamics decouple. Utilizing this
drastic simplification, we found the steady-state laser power,
and the phase and amplitude dynamics under a variety of lasing
conditions, yielding the laser RIN and phase noise, as well as
the phase noise of beat notes between distinct laser orders.
To corroborate these analytical calculations, we performed
stochastic simulations of the full laser model (without the
assumptions listed above), and compared the output of these
simulations to our theoretical results.

In contrast with single-mode Brillouin lasers, we showed
that cascaded operation can degrade laser performance at
higher powers. This contrasting behavior originates from new
noise channels opened by cascaded lasing. We demonstrated
that these noise channels can dramatically enhance the noise
of a given laser order (e.g., see Fig. 6), modifying the laser
linewidth and enhancing the RIN. These results show that
better noise performance can be obtained with laser designs
that inhibit cascading.

We have also presented a simple method to extract Stokes
order linewidths, by knowing only the microwave beat note
phase noise and relative optical Stokes order powers. This tech-
nique will prove invaluable for assessing sub-Hz linewidths,
and optimizing performance for optical and microwave appli-
cations.

In the future, we anticipate that these results will provide
a valuable tool set to assess the performance or sensitivity of
applications of cascaded Brillouin lasers ranging from optical
gyroscopes to coherent microwave generation.
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APPENDIX A: OPTOMECHANICAL COUPLING RATE

The coupling rate gm is quantified by the spatial overlap
of the acoustic and optical modes that participate in Brillouin
scattering. For a laser based on backward Brillouin scattering
in a ring resonator, the coupling rate is given approximately by

gm ≈ −i

√
h̄ωmωm+1

2ρ�mL

ωm

vp,m

(ε − 1)
∫

WG
d2x EmE∗

m+1Um,

(A1)

whereEm andUm are respective mode profiles of the optical and
acoustic fields, ε is the relative permittivity of the waveguide
material, and the suffix WG denotes integration across the
waveguide cross section. These profiles are normalized across
the resonator waveguide cross section, so that∫

WG
d2x |Em|2 = 1,

∫
WG

d2x |Um| = 1. (A2)

To calculate the coupling rate above, we have treated the
optical resonator as a linear waveguide with periodic boundary
conditions along the propagation direction. This expression
must be generalized to describe resonators with a radius of
curvature that is comparable to the mode field diameter. In such
systems, the phase accumulated by the inner and outer extreme
of the optical mode envelope can be significantly different,
leading to the failure of the approximation described above.

APPENDIX B: COMPARISON OF BRILLOUIN LASER
LINEWIDTH CONTRIBUTIONS FROM TRANSFERRED

PUMP NOISE AND FUNDAMENTAL NOISE

Transferred noise from the pump laser contributes to the
Brillouin laser linewidth. In the analysis above, the chosen
model parameters enable this contribution to be neglected.
However, for different systems, e.g., those having a broader
pump laser linewidth, the transferred pump noise can dominate
the Brillouin laser linewidth.

In this Appendix, we quantitatively compare the funda-
mental and transferred pump noise, determining the dominant
contribution to the Brillouin laser linewidth. The contributions
to the Brillouin laser linewidth depend on the dynamical
properties of the optical and acoustic fields, the external
coupling rate for the Stokes field, the emitted laser power, the
temperature, and the pump laser linewidth.

In the limit where transferred pump noise dominates the
laser noise, the first Stokes order linewidth �ν tr

1 (tr for
transferred) is given by [35]

�ν tr
1 = 1

(1 + �0/γ1)2
�νpump. (B1)

We can quantify the relative importance of the fundamental and
pump transferred noise by taking the ratio of the fundamental
linewidth of the first Stokes order of �ν1 (for a first-order laser)
to Eq. (B1). This ratio gives

�ν1

�ν tr
1

=
h̄ω1γ γext

4πP1
(N1 + n0 + 1)

1
(1+�0/γ1 )2 �νpump

. (B2)
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At room temperature and for typical Brillouin frequencies (i.e.,
10s of GHz), (N1 + n0 + 1) ≈ kBT /h̄�0, giving

�ν1

�ν tr
1

≈ γ1γextkBT

4πP1�νpump

ω1

�0

(
1 + �0

γ1

)2

, (B3)

showing that the transferred pump noise and the fundamental
noise are comparable when P1�νpump = 1591 mW Hz for a
laser with the parameters given Table I. Transferred pump noise
must be taken into account when �ν1/�ν tr

1 � 1.

APPENDIX C: CORRELATION FUNCTIONS FOR THE
PHONON FIELDS AND THE LANGEVIN FORCES

In this section, we evaluate the correlation properties of all
the Langevin forces that are required to calculate the laser
noise. First, we begin by finding the two-time correlation
function for b̂m.

1. Two-time phonon correlation functions

Using the solution for b̂m given in Eq. (9) and the properties
ξm, we find the two-time phonon correlation functions given
by

〈b̂†m(t )b̂m′ (t ′)〉 = δmm′nme− �m
2 |t−t ′|, (C1)

〈b̂m(t )b̂†m′ (t ′)〉 = δmm′ (nm + 1)e− �m
2 |t−t ′|, (C2)

giving the appropriate equal-time expectation value for the
phonon number operator and preserving the equal-time
commutation relations for phonon annihilation and creation
operators.

2. Correlation properties of the Langevin force h̃m

By using the correlation properties described in Eq. (4)
along with the correlation properties of b̂m, we find

〈h̃m(t )h̃†
m′ (t ′)〉 = 〈[ηm(t ) − igmαm+1e

iϕm+1(t )b̂m(t ) − ig∗
m−1b̂

†
m−1(t )αm−1e

iϕm−1(t )]eiϕm(t )

× e−iϕm′ (t ′ )[η†
m′ (t ′) + ig∗

m′αm′+1e
−iϕm′+1(t ′ )b̂

†
m′ (t ′) + igm′−1b̂m′−1(t ′)αm′−1e

−iϕm′−1(t ′ )]〉
= 〈ηm(t )η†

m′ (t ′)〉 + |gm|2α2
m+1〈b̂m(t )b̂†m′ (t ′)〉〈eiϕm+1(t )eiϕm(t )e−iϕm′ (t ′ )e−iϕm′+1(t ′ )〉

+ |gm−1|2α2
m−1〈b̂†m−1(t )b̂m′−1(t ′)〉〈eiϕm−1(t )eiϕm(t )e−iϕm′ (t ′ )e−iϕm′−1(t ′ )〉

≈ δmm′[γ̃m(Nm + 1)δ(t − t ′) + |gm|2α2
m+1(nm + 1)e− �m

2 |t−t ′| + |gm−1|2α2
m−1nm−1e

− �m−1
2 |t−t ′ |]. (C3)

In the last line we have assumed that the correlation time for the phases is long compared to the phonons. To understand this
approximation, assume that the phase noise is described by a Gaussian process, so that we can evaluate the following expectation
value as

〈eiϕm−1(t )eiϕm(t )e−iϕm(t ′ )e−iϕm−1(t ′ )〉 ∼ e− 1
2 γφ |t−t ′|, (C4)

where 1/γφ characterizes the correlation time for the phases, and directly relates to the laser linewidths. For typical Brillouin lasers
�m 
 γφ , giving 〈eiϕm−1(t )eiϕm(t )e−iϕm(t ′ )e−iϕm−1(t ′ )〉 ≈ 1 when multiplied by the relatively rapidly decaying function exp{−�|t −
t ′|/2}, resulting in the last line of Eq. (C3). This result shows when and why the phase noise of the pump laser does not contribute
to the Brillouin laser noise.

We can obtain 〈h̃†
m(t )h̃m′ (t ′)〉 by replacing Nm + 1 → Nm, nm + 1 → nm, and nm−1 → nm−1 + 1 in Eq. (C3).

In addition, we find

〈h̃m(t )h̃m′ (t ′)〉 ≈ 〈[ηm(t ) − igmαm+1b̂m(t ) − ig∗
m−1b̂

†
m−1(t )αm−1][ηm′ (t ′) − igm′αm′+1b̂m′ (t ′) − ig∗

m′−1b̂
†
m′−1(t ′)αm′−1]〉

= − |gm|2αm+1αm〈b̂m(t )b̂†m(t ′)〉δm,m′−1 − |gm−1|2αm−1αm〈b̂m−1(t )b̂†m−1(t ′)〉δm,m′+1

= − [|gm|2αm+1αm(nm + 1)e− �m
2 |t−t ′|δm,m′−1 + |gm−1|2αm−1αmnm−1e

− �m−1
2 |t−t ′|δm,m′+1], (C5)

where we have used the same argument regarding the laser phases given above. A similar calculation yields

〈h̃†
m(t )h̃†

m′ (t ′)〉 ≈ − [|gm|2αm+1αmnme− �m
2 |t−t ′|δm,m′−1 + |gm−1|2αm−1αm(nm−1 + 1)e− �m−1

2 |t−t ′|δm,m′+1]. (C6)

Using the expressions above, we can find the correlation properties of 〈Re[h̃m(t )]Re[h̃†
m′ (t ′)]〉, 〈Re[h̃m(t )]Im[h̃†

m′ (t ′)]〉, and
〈Im[h̃m(t )]Im[h̃†

m′ (t ′)]〉, which are relevant to the amplitude and phase noise. Defining Re[h̃m(t )] = [h̃m(t ) + h̃
†
m(t )]/2 and

Im[h̃m(t )] = [h̃m(t ) − h̃
†
m(t )]/(2i), we find

〈Re[h̃m(t )]Re[h̃m′ (t ′)]〉 = 1

4
[〈h̃m(t )h̃m′ (t ′)〉 + 〈h̃†

m(t )h̃m′ (t ′)〉 + 〈h̃m(t )h̃†
m′ (t ′)〉 + 〈h̃†

m(t )h̃†
m′ (t ′)〉], (C7)

〈Im[h̃m(t )]Re[h̃m′ (t ′)]〉 = 1

4i
[〈h̃m(t )h̃m′ (t ′)〉 − 〈h̃†

m(t )h̃m′ (t ′)〉 + 〈h̃m(t )h̃†
m′ (t ′)〉 − 〈h̃†

m(t )h̃†
m′ (t ′)〉], (C8)

〈Im[h̃m(t )]Im[h̃m′ (t ′)]〉 = −1

4
[〈h̃m(t )h̃m′ (t ′)〉 − 〈h̃†

m(t )h̃m′ (t ′)〉 − 〈h̃m(t )h̃†
m′ (t ′)〉 + 〈h̃†

m(t )h̃†
m′ (t ′)〉]. (C9)
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3. Phase noise for Brillouin laser

In this section we evaluate the correlation function for the phase of an individual laser tone. Representing the solution to
Eq. (45) for the phase in Fourier space we find

ϕm(t ) = lim
ε→0

1

αm

∫ ∞

−∞

dω

2π

∫ ∞

−∞
dt1

e−iω(t−t1 )

−i(ω + iε)
Im[h̃m(t1)], (C10)

where the parameter ε is included to enforce causality. This expression can be used to find the two-time phase correlation function,
giving

〈ϕm(t + τ )ϕm(t )〉 = − lim
ε→0

1

α2
m

∫ ∞

−∞

dω

2π

∫ ∞

−∞
dt1

∫ ∞

−∞

dω′

2π

∫ ∞

−∞
dt2

e−iω(t+τ−t1 )e−iω′(t−t2 )

(ω + iε)(ω′ + iε)
〈Im[h̃m(t1)]Im[h̃m(t2)]〉 (C11)

= lim
ε→0

1

α2
m

∫ ∞

−∞

dω

2π

∫ ∞

−∞
dτ ′ e

−iωτ eiωτ ′

ω2 + ε2
〈Im[h̃m(τ ′)]Im[h̃m(0)]〉 (C12)

= lim
ε→0

1

α2
m

∫ ∞

−∞

dω

2π

e−iωτ

2(ω2 + ε2)

[
γ̃m(Nm + 1/2) + |gm|2α2

m+1(nm + 1/2)
�m

ω2 + �2
m/4

+ |gm−1|2α2
m−1(nm−1 + 1/2)

�m−1

ω2 + �2
m−1/4

]
, (C13)

where we have used the stationarity of the noise correlation function 〈Im[h̃m(t1)]Im[h̃m(t2)]〉 = 〈Im[h̃m(t1 − t2)]Im[h̃m(0)]〉 in
the second line and made a change of variables τ ′ = t1 − t2. From this expression, we can read off the phase-noise power spectrum
Lm(f ), defined in Eq. (57) [43] (where f is ω/2π ), for the mth laser tone:

Lm(f ) = 1

8π2α2
mf 2

[
γ̃m(Nm + 1/2) + |gm|2α2

m+1(nm + 1/2)
�m

(2πf )2 + �2
m/4

+ |gm−1|2α2
m−1(nm−1 + 1/2)

�m−1

(2πf )2 + �2
m−1/4

]
.

(C14)

This expression can be dramatically simplified in the low-frequency limit, i.e., 2πf � �m, by using the recursion formula for
the steady-state laser powers. In this low-frequency limit, the phase noise reduces to

Lm(f ) ≈ 1

2πf 2

1

4πα2
m

[γ̃m(Nm + nm−1 + 1) + 2μmα2
m+1(nm + nm−1 + 1)]︸ ︷︷ ︸

�νm

, (C15)

which defines the generalized Schawlow-Townes-like linewidth �νm for the mth order of a cascaded Brillouin laser.

APPENDIX D: RIN FOR CASCADED BRILLOUIN LASERS

Here, we derive the RIN for a Brillouin laser that has cascaded to k orders. Using Eq. (55) we compute the two-time correlation
function for δαj ,

〈δαj (t + τ )δαj ′ (t )〉 =
∫ ∞

−∞

dω

2π

∫ ∞

−∞
dt1

∫ ∞

−∞

dω′

2π

∫ ∞

−∞
dt2 e−iω(t+τ−t1 ) e−iω′(t−t2 )Gjm[ω]Gj ′n[ω′]Cmn(t1, t2), (D1)

where Cmn(t1, t2) ≡ 〈Re[h̃m(t1)]Re[h̃n(t2)]〉, Gjn = ([−iω′I + M]−1)jn is the jn matrix element of [−iω′I + M]−1, and the
Einstein summation convention is used for repeated indices.

We can simplify this expression by using the properties of h̃m given above. These properties show that Cmn(t1, t2) is time-
stationary, i.e., the correlation function Cmn(t1, t2) = Cmn(t1 − t2). Using this stationary property, the change of variables given
by t2 → t1 − t ′ can be made, and the t1 integral can be done to give (2π )δ(ω + ω′), allowing the ω′ integral to be done. These
steps give

〈δαj (t + τ )δαj (t )〉 =
∫ ∞

−∞

dω

2π
e−iωτ Gjm[ω]Gjn[−ω]Cmn[ω], (D2)

where Cmn[ω] = ∫ ∞
−∞ dt ′ eiωt ′Cmn(t ′). We obtain SRIN

j [ω] given in Eq. (56) by taking the Fourier transform of 〈δαj (t + τ )δαj (t )〉.
Using the results from Appendix B, we find the explicit form for the dyadic matrix C,

Cmn[ω] = [
1
2 γ̃m(Nm + 1/2) + α2

m+1Lm(ω) + α2
m−1Lm−1(ω)

]
δmn − αm+1αmLmδm,n−1 − αmαm−1Lm−1δm,n+1, (D3)

where Lm(ω) is defined by

Lm(ω) = 1

2
|gm|2(nm + 1/2)

�m

ω2 + �2
m/4

. (D4)
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1. Explicit forms for G and C
In matrix form, and by adopting the shorthand �j ≡ 1

2 γ̃j (Nj + 1/2) + α2
j+1Lj + α2

j−1Lj−1, we can express C generally as

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 γ̃k (Nk + 1/2) + α2

k−1Lk−1 −αkαk−1Lk−1 . . .

−αkαk−1Lk−1 �k−1
...

. . .
...

�3 −α3α2L2 0 0

−α3α2L2 �2 −α2α1L1 0

0 −α2α1L1 �1 −α1α0L0

. . . 0 0 −α1α0L0
1
2 γ̃0(N0 + 1/2) + α2

1L0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(D5)

In contrast, the matrix G must be obtained separately for a given number of cascaded laser orders. Below we give the explicit
form for G for 0, 1, and 2 cascaded orders.

2. One lasing order, zero cascaded orders

G[ω] = 1

det(iωI + M)

(−iω + �RIN ωrel
0

−ωrel
0 −iω

)
, (D6)

det(iωI + M) = −ω2 − i�RINω + ωrel
0

2
. (D7)

3. Two lasing orders, first-order cascading

G[ω] = 1

det(iωI + M)

⎛
⎜⎝

ωrel2

0 − i�RINω − ω2 ωrel
1 (�RIN − iω) ωrel

0 ωrel
1

−ωrel
1 (�RIN − iω) −iω(�RIN − iω) −iωrel

0 ω

ωrel
0 ωrel

1 iωrel
0 ω ωrel

1
2 − ω2

⎞
⎟⎠, (D8)

det(iωI + M) = iω3 − �RINω2 − i
(
ωrel

0
2 + ωrel

1
2)

ω + ωrel
1

2
�RIN. (D9)

4. Three lasing orders, second-order cascading

G[ω] = 1

X

⎛
⎜⎜⎜⎜⎜⎝

−iωrel
0

2
ω + (

ωrel
1

2 − ω2
)
(�RIN − iω) ωrel

0
2
ωrel

2 − iωωrel
2 (�RIN − iω) ωrel

1 ωrel
2 (�RIN − iω) ωrel

0 ωrel
1 ωrel

2

−[
ωrel

0
2
ωrel

2 − iωωrel
2 (�RIN − iω)

] −iωrel
0

2
ω − ω2(�RIN − iω) −iωωrel

1 (�RIN − iω) −iωrel
0 ωrel

1 ω

ωrel
1 ωrel

2 (�RIN − iω) iωωrel
1 (�RIN − iω) (�RIN − iω)

(
ωrel

2
2 − ω2

)
ωrel

0

(
ωrel

2
2 − ω2

)
−ωrel

0 ωrel
1 ωrel

2 −iωrel
0 ωrel

1 ω −ωrel
0

(
ωrel

2
2 − ω2

) −iω
(
ωrel

1
2 + ωrel

2
2 − ω2

)

⎞
⎟⎟⎟⎟⎟⎠,

(D10)

X ≡ det(iωI + M) = ωrel
0

2
ωrel

2
2 − i�RIN

(
ωrel

1
2 + ωrel

2
2)

ω − (
ωrel

0
2 + ωrel

1
2 + ωrel

2
2)

ω2 + i�RINω3 + ω4. (D11)
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