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Reciprocal optical activity in multihelicoidal optical fibers
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We have studied manifestation of optical activity for higher-order modes that propagate in optical fibers with
multihelical distribution of the refractive index profile. We have shown that due to form-induced intermodal
coupling between the fundamental modes and the higher-order modes the hybrid modes of such fibers are
symmetric (antisymmetric) combinations of circularly polarized optical vortices with opposite orbital angular
momentum. We have demonstrated that because of the spin-orbit interaction the system features circular
birefringence for such hybrid modes. We have obtained analytical expressions for the coefficients of optical
activity related to propagation of such hybrid higher-order modes. We have shown that for those modes the effect
of optical activity greatly surpasses the one exhibited for the fundamental modes. The obtained results might
be useful for predicting possible new phenomena concerned with propagation of higher-order fields in twisted
photonic crystal fibers and for understanding the nature of optical activity for fundamental modes in them.
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I. INTRODUCTION

Optical activity belongs to basic notions of classical optics
[1]. Since the discovery of the ability of certain media to rotate
the polarization plane of light or, more generally, the axes of
its elliptical polarization, this phenomenon is associated with
the presence of a circular birefringence. It is manifested in
materials with differing refractive indices n+ and n− for left
and right circularly polarized light, respectively. In such media
the polarization plane rotates through an angle γ that turns out
to be proportional to the propagation distance z: γ = π (n+ −
n−)z/λ, where λ is the wavelength. Such material optical
activity is connected with the presence of chiral molecules
in optically active media. Recent progress in fabrication of
nanoengineered metamaterials enabled creation of optically
active media by introducing structural chirality into a locally
nonchiral medium [2–7].

Recent decades have essentially extended our understand-
ing of the mechanisms of inducing optical activity. It has been
recognized that this phenomenon may take place in specially
engineered optical systems composed of locally nonchiral
matter. In such cases the polarization plane can be forced to
rotation by bending the path of light. It was shown that this
could be achieved by coiling the monomode fiber and thus
invoking the topological Berry phase [7–10]. Optical activity
is also induced in twisted optical fibers [11,12].

A rather counterintuitive example of that phenomenon has
recently been demonstrated in twisted solid-core photonic-
crystal fibers (PCFs) [13]. Usually, optical activity in twisted
fibers is explained through the presence of two specific direc-
tions in the transverse cross-section of the nontwisted fiber
with form or material anisotropy, along which polarization
vectors of fundamental linearly polarized eigenmodes are
directed [14]. Rotation of such axes is assumed to induce
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the circular birefringence [15]. However, it is impossible to
explain the reported optical activity in twisted PCFs [13]
due to the presence of such specified directions. Indeed,
the PCFs in question possess a multifold symmetry of their
cross-sections, so that it is impossible to choose any unique
pair of orthogonal axes in the cross-section, along which
polarization of eigenmodes should be directed. It is important
to note that in Ref. [14] it was implied that such procedure is
implementable for any cross-section’s form. The wrongness of
that (implicit) statement was not understood until publication
of Refs. [16,17], where it was pointed out that if the cross-
section has a multifold symmetry such a choice of orthogonal
directions cannot be made unambiguously. To overcome this
difficulty in explaining the experimental results one has to al-
low for the coupling of the fundamental � = 0 mode and orbital
angular momentum (OAM) modes with higher values of orbital
number �, also known as optical vortices (OVs) [18]. Since
the wave front of an OV possesses an �-fold symmetry it can
be sensitive to the rotation of the cross-section with the same
type of symmetry. The physical mechanism responsible for
this effect was conventionally called the topological Zeeman
effect [19,20]. Later on, with the example of a simplified model
of a multihelicoidal fiber (MHF) [21] the importance of the
spin-orbit interaction (SOI) in emerging of optical activity in
such systems was emphasized [22]. Typical values of n+ − n−
for such systems proved to be very small—of the order of 10−9

RIU (refractive index units)—so that to facilitate observation
of that phenomenon it was suggested to study this effect near
resonances where fundamental modes are converted in the
helical fiber lattice into OVs [23,24]. The existence of such
resonance points was previously predicted for chiral fibers
[25–30].

In the present paper we resume studying the effects of
intermodal coupling in MHFs. All the previous studies were
focused on the influence of such coupling on the properties of
the fundamental modes. Meanwhile, if the propagation of such
modes in MHFs proves to be affected by higher-order modes
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there should exist “recoil,” reciprocal influence of fundamental
modes on the propagation and structure of OAM modes. The
aim of this paper is to study the structure and propagation
constants of those higher-order modes of MHFs, which are
coupled to the fundamental modes through form-induced
perturbation, and demonstrate the presence of optical activity
for such modes.

II. MODEL AND PERTURBATION THEORY
FORMULATION

In a wide sense, a MHF can be determined as a spun optical
fiber with a multifold axial symmetry of the refractive index
distribution in a cross-section (see Fig. 1 for an example of
such a fiber). The lines of constant refractive index value in a
MHF form � identical (up to a 2π/� rotation about the fiber’s
axis) families of helices, which explains the validity of the term
“multihelical” for such fibers. Such optical systems are able to
change the topological charge of both transmitted and reflected
light by either ±� or ±(� ± 2) (in a.u.) depending on the type
of mode coupling that mediates the corresponding transition
[27,29,31]. Helical fiber gratings represent a particular case of
MHFs [32–35]. At present, MHFs are fabricated by twisting
PCFs [23,30].

The refractive index distribution in a MHF can be theoret-
ically modeled in a number of ways [27,28,36]. We prefer to
use one of its simplest forms suggested in Ref. [37]:

n2(r, ϕ, z) ≈ ñ2 − n2
co�(r ) cos �(ϕ − qz) = ñ2 − ν2, (1)

where ñ2 = n2
co[1 − 2�f (r )]; ν2 = n2

co�(r ) cos �(ϕ − qz);
� � 1 is a dimensionless parameter; f is the profile function
that determines the radial dependence of the refractive index in
the corresponding “source” ideal fiber, from which the MHF
in question is generated; nco is the core’s refractive index;
�(r ) = 2�δrf ′

r , wheref ′
r ≡ df (r )

dr
; δ � 1 is the dimensionless

parameter of the cross-section’s deformation; q = 2π/H ; and
H is the pitch of the lattice. Here we use cylindrical-polar
coordinates (r, ϕ, z). The electric field in optical fibers satisfies
the so-called vector wave equation [38]. If the pitch of the
helical lattice is sufficiently large [18], one can neglect the
coupling between the transverse electric-field component Et

FIG. 1. The model of a MHF (� = 5) and the geometry of the
problem. In a cross-section z the frame X′Y ′ rotated by an angle
qz with respect to laboratory frame XY is introduced, in which a
point A has polar coordinates r̃ = r , ϕ̃ = ϕ − qz (also z̃ = z). There
are shown the pitch H and rotation of the electric vector Eout of the
outcoming field by an angle γ with respect to the vector Ein of the
incoming field.

and the longitudinal one. In this approximation, the wave
equation reduces to

( �∇2 + k2n2)Et = −�∇t (Et · �∇t ln n2), (2)

where k is the wave number in vacuum and �∇t = (∂/∂x, ∂/∂y ).
Since refractive index Eq. (1) depends on z, Eq. (2) is not

translational invariant in this variable so that one cannot make
the standard substitution, which is widely used in fiber optics:
Et = et (r, ϕ) exp(iβz), where β is the propagation constant.
To restore the translational invariance in Eq. (1) it is necessary
to pass to the rotating frame. In effect, this is achieved through
passing to new fields ẽ± = e± exp(±iqz), where the fields e±
are defined through the components of the transverse vector
et (ex, ey ) as e± = (ex ∓ iey )/

√
2. Also one has to introduce

new variables r̃ = r , z̃ = z, and ϕ̃ = ϕ − qz. Upon such
transformations the wave equation becomes translationally
invariant in the z̃ variable, so that one can use the standard
substitution: Ẽt (r̃ , ϕ̃, z̃) = ẽt (r̃ , ϕ̃) exp(iβz̃). This leads to the
eigenvalue equation [22]:

{[∇̃2
t + k2n2 − (β − qĴz̃)

2 + Ĥso
]}|ψ̃〉 = 0, (3)

where |ψ̃〉 = col(ẽ+, ẽ−), Ĵz̃ = l̂z̃ + τ̂3, l̂z̃ = −i∂/∂ϕ̃, and τ̂i is
the Pauli matrix. It should be emphasized that in Eq. (3) n2 is
given in terms of the new coordinates (r̃ , ϕ̃, z̃) (actually, it is z̃

independent). Here the transverse Laplace operator ∇̃2
t has the

standard form in new variables. The operator Ĥso arises from
the gradient term in Eq. (1) and, essentially, describes the SOI.
Its explicit form is [22]

Ĥso = (2ψ + r̃ψ ′
r̃ + r̃ψ∇r̃ )τ̂0 + ψτ̂3 l̂z̃

+
(

0 exp(−2iϕ̃)â+
exp(2iϕ̃)â− 0

)
, (4)

where â± = r̃ψ∇r̃ + r̃ψ ′
r̃ ± ψl̂z̃ and ψ = �f ′

r̃ /r̃ .
The main idea of Ref. [22] on obtaining the analytical

expressions for optical activity was to study the effect of
twisting (chirality) on the propagation constants of circularly
polarized fundamental modes on the background of intermodal
coupling and SOI. In that paper it was found that combination
of chirality and intermodal coupling results in the dependence
of the propagation constant value on the polarization sign. To
take advantage of the same approach one has first to make
necessary changes to the perturbation theory used in Ref. [22].
Such changes concern the choice of the zero-approximation
state, to which the corrections are found. Following the cited
paper, we start from the notion that the propagation of light
in ideal fibers is governed in the scalar approximation by
the Hamiltonian Ĥ0 = ∇̃2

t + k2ñ2 [18,38]. The eigenvalue
equation Ĥ0|ψ0〉 = β̃2|ψ0〉 yields the eigenvectors |ψ0〉, which
describe the fiber modes in the scalar approximation, and
scalar propagation constants β̃. The eigenvectors |ψ0〉 can be
chosen in the form of OVs |σ,m〉 [18]. In the basis of linear
polarizations |e〉 = col(ex, ey ) their expressions read as

|σ,m〉 =
(

1
iσ

)
exp(imϕ̃)Fm(r̃ ), (5)

where σ = ±1 determines the sign of circular polarization,
the orbital number m specifies the topological charge of this
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vortex solution, and the radial function Fm satisfies the known
equation [38].

It is well established that the spectrum β̃m is fourfold
degenerate for m > 1 and twofold degenerate at m = 0. This
circumstance introduces the difference between the actions ex-
erted on ideal-fiber mode structure by the intermodal coupling
in form-perturbed fibers. Indeed, if for a circularly polarized
fundamental mode such weak coupling can only shift the value
of its propagation constant, for higher-order modes this may
result in the changing of the very mode structure. Indeed, there
are two OVs of the same polarization (|σ,m〉 and |σ,−m〉)
that belong to the eigenvalue β̃m. Here we allow for the
fact that perturbation of the form does not couple the states
with different polarizations. In this way, prior to studying the
combined effects of SOI and chirality, one has to determine
the modes of the fiber with refractive index distribution given
by Eq. (1) at q = 0.

To this end, it is convenient to apply perturbation theory with
degeneracy to the equation (∇̃2

t + k2n2)|ψ̄〉 = β̄2|ψ̄〉 treating
the term−ν2 as perturbation [39]. Here |ψ̄〉 is the eigenfunction
of the Hamiltonian ∇̃2

t + k2n2, that is, the one which describes
the nonhelical (nontwisted) straight fiber with the refractive
index modulated by the perturbation −n2

co�(r ) cos �(ϕ − qz)
(which renders the core a characteristic multipetal form), and
β̄2 is the corresponding eigenvalue. To establish the structure
of modes that appears due to intermodal coupling one has to
build the matrix H0 of the operator ∇̃2

t + k2n2 − β̄2 over the
basis of those eigenvectors of Ĥ0, which can be coupled by
such operator. Since Ĥ0 couples only the states with m = 0,
m = ±�, and the same polarization, one should search for the
eigenvectors in the following orthogonal subspaces:

|1, 0〉, |1, �〉, |1,−�〉 (6)

and

|−1, 0〉, |−1, �〉, |−1,−�〉. (7)

The eigenvector equation H0 �x = β̄2 �x in the first subspace
Eq. (6) leads to the following eigenvalue problem:∣∣∣∣∣∣∣

β̃2
0 − β̄2 Q Q

Q β̃2
� − β̄2 0

Q 0 β̃2
� − β̄2

∣∣∣∣∣∣∣
= 0, (8)

where Q = 〈σ, 0| − k2ν2|σ, �〉 is the coupling constant and
the scalar product is defined as 〈� |�〉 = ∫∫

S
(�∗

+�∗
−) (�+

�−)dS,
whereS is the total transverse cross-section of the fiber. For
step-index fibers Q = −k2n2

coδ�/
√

N0N�, where the normal-
ization coefficient is Nm = ∫ ∞

0 xF 2
mdx. In the limiting case of

small form perturbation on the background of a large splitting
of scalar propagation constants, |Q| � |β̃2

� − β̃2
0 |, one has for

the spectrum of β̄2

β̄2
1 = β̃2

� , β̄2
2 = β̃2

0 + Q2/ςβ̃0, β̄2
3 = β̃2

� − Q2/ςβ̃0, (9)

where ς = β̃0 − β̃� and we allowed for the fact that ς � β̃0.
The expressions for the corresponding modes in the limit ς �

β̃0 look like

ψ1 ∝ |1, �〉 − |1,−�〉,
ψ2 ∝ |1, 0〉 + Q

2β̃0ς
(|1, �〉 + |1,−�〉), (10)

ψ3 ∝ −Q

β̃0ς
|1, 0〉 + |1, �〉 + |1,−�〉.

In the second subspace Eq. (7) the eigenvalue problem
Eq. (8) has the same form, so that the spectrum Eq. (9) does
not change:

β̄2
1 = β̄2

4 , β̄2
2 = β̄2

5 , β̄2
3 = β̄2

6 , (11)

and the modes are

ψ4 ∝ |−1, �〉 − |−1,−�〉,
ψ5 ∝ |−1, 0〉 + Q

2β̃0ς
(|−1, �〉 + |−1,−�〉), (12)

ψ6 ∝ −Q

β̃0ς
|−1, 0〉 + |−1, �〉 + |−1,−�〉.

As is evident, the intermodal coupling in such form-
perturbed fibers changes the mode structure of higher-order
modes. The hybridized modes are combinations of circularly
polarized higher-order ideal fiber modes |σ, �〉 ± |σ,−�〉 and
fundamental modes |σ, 0〉. However, it is not necessary to
retain in such expressions relatively small terms proportional
to Q/β̃0ς � 1. The main effect of form perturbation turns
out to be the lifting of degeneracy for |1,±�〉 modes with
simultaneous merging of them into Hermite-Gaussian-like
fields. Now we are in a position to calculate the corrections
to propagation constants of these scalar-approximation modes,
which are induced by the combined action of the twisting and
the SOI.

III. RECIPROCAL OPTICAL ACTIVITY

As in the case of optical activity for fundamental modes, the
SOI-induced renormalization of propagation constants does
not lead to their splitting in polarization. Indeed, the eigenvalue
equation for the case of subspace Eq. (6) has the form∣∣∣∣∣∣∣

β̃2
0 − β2 Q Q

Q β̃2
� + α� − β2 0

Q 0 β̃2
� − α� − β2

∣∣∣∣∣∣∣
= 0, (13)

where the SOI constant α = �/r2
0 N� and r0 is the core’s radius.

For the case of subspace Eq. (7) the corresponding equation
can be obtained from Eq. (13) by inverting the sign of α. Since
the eigenvalue equation Eq. (13) is symmetric in α,
[
β̃2

0 − β2]{[β̃2
� − β2]2 − �2α2} − 2Q2(β2

� − β2) = 0, (14)

then the SOI-induced corrections to spectra are insensitive to
the sign of α and the polarization of basic fields. Left and
right circularly polarized fields in this case propagate with the
same phase velocity and no circular birefringence appears in
the system.

To allow for twisting it is necessary to average the operator
on the left of Eq. (3) over the basis Eqs. (6) and (7). The

023824-3



ALEXEYEV, BARSHAK, LAPIN, AND YAVORSKY PHYSICAL REVIEW A 98, 023824 (2018)

resulting eigenvalue equation for the subspace Eq. (6) takes on the form

∣∣∣∣∣∣∣
β̃2

0 − (β − q )2 Q Q

Q β̃2
� + α� − (β − q − q�)2 0

Q 0 β̃2
� − α� − (β − q + q�)2

∣∣∣∣∣∣∣
= 0. (15)

For the subspace Eq. (7) the analogous equation reads as∣∣∣∣∣∣∣
β̃2

0 − (β + q )2 Q Q

Q β̃2
� − α� − (β + q − q�)2 0

Q 0 β̃2
� + α� − (β + q + q�)2

∣∣∣∣∣∣∣
= 0. (16)

We will assume that the twist rate and the influence of
the SOI are small, so that the eigenmodes are still given by
Eqs. (10) and (12). Then it is sufficient to obtain the corrections
to eigenvalues.

Due to the effect of the rotating frame the corrections to
zero-approximation eigenvalues do not vanish even in the
absence of intermodal coupling and the SOI. To separate
such corrections, which should vanish upon transition to the
laboratory frame, it is helpful to notice that if one first sets
β ≡ β̄ + q in Eq. (15) then one arrives at Eq. (8) in the
subsequent limit α, q → 0. From this fact one can infer the rule
for representing the corrections to propagation constants β̄2

i

for modes Eqs. (10) and (12). According to it, the propagation
constants of modes ψ1,4 should be sought for as

β1,4 = β̄1,4 ± q + ε±, (17)

where ε± is the desired correction and the upper sign corre-
sponds to the first listed mode. Analogously,

β3,6 = β̄4,6 ± q + ε′
±. (18)

Note that here we are not interested in corrections to
propagation constants of the fundamental modes. After a little
algebra, one can obtain

ε± = −ε′
± = ς�2

2Q2
(2qβ̃0 ± α)2. (19)

To show the presence of optical activity for higher-order
modes it is helpful to get the expressions for modes ψ1,4 and
ψ3,6 in the laboratory frame:

ψ1,4 ∝ sin[�(ϕ − qz)]

(
1
±i

)
exp[i(β̃� + ε±)z],

ψ3,6 ∝ cos[�(ϕ − qz)]

(
1
±i

)
exp

[
iz

(
β̃� − Q2

2ςβ̃0

− ε±

)]
,

(20)

where we have omitted insignificant radial factors. If one
creates at the input end of such a fiber an x-polarized field
with azimuthal dependence of, say, sin �ϕ, then within the
fiber it would evolve (in the basis of linear polarizations) as
∝ sin[�(ϕ − qz)]col(cos δβz,− sin δβz), where δβ = (β1 −
β4 − 2q )/2. Note that here the term −2q appears due to the
transition to the laboratory frame. The first feature of such
evolution is the rotation of intensity distribution at a rate q,
which was previously demonstrated for elliptical twisted fibers

[40]. The second, and more important to us, is the polarization
plane rotation, which corresponds to the optical activity A of
the value:

A ≡ π (n+ − n−)

λ
= (β1 − q ) − (β4 + q )

2
≈ 2αqβ̃0ς�2Q−2.

(21)

As is evident from Eq. (20), an analogous input field with
the azimuthal dependence of cos �ϕ should feature the optical
activity of the −A value. In this way, optical activity for higher-
order modes turns out to be dependent on their oddity. This
property of optical activity’s sign to depend on the oddity of
the state has been hitherto unknown and is a unique feature of
MHFs.

It is helpful to compare the values of optical activity for
higher-order modes and the fundamental modes. For the latter
case one can obtain in the same manner

AFM = Q2�2αq

2ς3β̃3
0

, (22)

which correlates with the corresponding result of Ref. [22]. The
comparison of the values of optical activities yields through
Eqs. (21) and (22) for their ratio

A

AFM
∝

(
ςβ̃0

Q

)4

. (23)

Since |Q| � |β̃2
� − β̃2

0 | it follows that A � AFM, so that the
magnitude of optical activity for higher-order modes is much
greater than the one for the fundamental modes. Some data on
the magnitudes of optical activities and their dependence on
fiber parameters are presented in Figs. 2 and 3. Figure 4 shows
also the dependence of n+ − n− and A/AFM on wavelength.

It is also worth emphasizing the differences between the ap-
proaches of the present paper and Ref. [22] used for solving the
problem of optical activity. Both approaches are based on find-
ing SOI and twist-induced corrections to zero-approximation
roots of corresponding eigenvalue equations. In Ref. [22] we
concentrated on finding such corrections to eigenvalues β̃2

0 of
ideal fiber fundamental modes. From a formal point of view,
in the present paper we also could have chosen the analo-
gous scenario of obtaining corrections to eigenvalues β̃2

� of
degenerate OVs. The drawback of such a head-on approach is
that such corrections can be easily misinterpreted as correction
to propagation constants of OVs, whereas the corresponding
eigenmodes may differ from pure OVs. Actually, this is just
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FIG. 2. The difference n+ − n− in refractive index units (RIU)
for higher-order modes at various orders of fiber symmetry � (a) and
the ratio of optical activities A/AFM of higher-order modes and the
fundamental mode (b). Fiber parameters: nco = 1.5, r0 = 20λ0, λ0 =
800nm, δ = 0.05, q = 5m−1, � = 0.05.

the case: due to degeneracy perturbation changes the structure
of the ground state and the obtained corrections correspond
to propagation constants of |1, �〉 ± |1,−�〉 combinations of
OVs [see, for example, Eq. (10)]. We believe that by a proper
treatment of eigenvalue problems Eqs. (15) and (16) one can get
the correct results on mode structure. However, in the present
paper we have chosen a somewhat different approach based on
consecutively accounting for the perturbation factors. First, we
obtained the mode structure and propagation constants in the
absence of SOI and twisting [see Eqs. (9)–(12)]. Second, we
obtained corrections to propagation constants of such hybrid
modes induced by SOI and twisting. In such step by step
approach we are able to control physical meaning of results
and minimize misinterpretation mistakes.

To understand the nature of the obtained difference in mag-
nitudes of optical activity for higher-order and fundamental
modes it is helpful to note that, mathematically, it stems from

FIG. 3. The difference n+ − n− (in RIU) vs the height of refrac-
tive index profile � (a) and the ratio of optical activities A/AFM vs �

for higher-order modes and the fundamental mode (b); � = 5, other
parameters as in Fig. 2.

different renormalization of roots Eq. (9) [which can be also
obtained from Eq. (15) at α = 0, q = 0] by switching on the
SOI (α �= 0) and the twisting (q �= 0). Schematically, such
renormalizations can be illustrated by the following simple
example. Assume first that some third-order polynomial has
two closely spaced roots x1,2, whereas the third root x3 obeys
|x1 − x2| � |x3 − x1,2|. Let this polynomial be perturbed with
a constant κ � 1. Then the renormalized roots x̃i are found
from the equation

(x − x1)(x − x2)(x − x3) + κ = 0. (24)

To obtain renormalization of neighboring x1,2 roots it is
sufficient to set in their vicinity x − x3 ≈ x1,2 − x3 ≡ ξ in
Eq. (24). Then at |κ/ξ | � (x1 − x2)2 the renormalized roots
x̃1,2 read as

x̃1,2 ≈ x1,2 ∓ κ

ξ (x1 − x2)
. (25)
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FIG. 4. The difference n+ − n− (in RIU) vs wavelength (a) and
the ratio of optical activities A/AFM vs wavelength (b); � = 5, other
parameters as in Fig. 2.

The situation is quite different for the remaining “separated”
root x3: near this root Eq. (24) is transformed into ξ 2(x − x3) +
κ = 0, which gives

x̃3 = x3 − κξ−2. (26)

For the shifts of these roots �xi = xi − x̃i one can obtain
the following result:

∣∣∣∣�x1,2

�x3

∣∣∣∣ =
∣∣∣∣x1,2 − x3

x1 − x2

∣∣∣∣. (27)

Since |x1 − x2| � |x1,2 − x3| one arrives at

|�x1,2| � |�x3|, (28)

that is, perturbation-induced renormalization of closely spaced
levels is much greater than the one of solitary ones. In our
case the roots β̄2

1 and β̄2
3 in Eq. (9) play the role of x1,2 roots,

whereas β̄2
2 corresponds to the x3 root. Using here the values

of spectra Eq. (9) gives for the ratio in Eq. (27), (ςβ̃0/Q)2,
which qualitatively correlates with the result Eq. (23), although
it gives a wrong power. This discrepancy can be explained
through a much more complicated form of the perturbing term
implied by Eq. (15), as well as through the differences in
corresponding polynomials. Naturally, this algebra is rooted
in the fact of double degeneracy of propagation constants for
higher-order modes of ideal fibers. Although form perturbation
k2ν2 lifts it, still, the corresponding levels β̄2

1,3 remain closely
spaced. It should be stressed, however, that despite the fact that
the shift of closely spaced levels (roots) x1,2 given by Eq. (25)
can be understood also as the well-known phenomenon of
repulsion of energy levels, the final result Eq. (27) on the ratio
of energy-level shifts is, to the best of our knowledge, hitherto
unreported in the literature.

It is widely recognized that the phenomenon of optical
activity in twisted PCFs and MHFs is the effect of the SOI.
However, in explanations of SOI-related phenomena it is usu-
ally implied that spinning photons possess their own intrinsic
OAM. Our example demonstrates that this requirement is not
necessary for manifestation of the SOI-related phenomena.
Indeed, from the presented theory it follows that at the first
stage the intermodal coupling induced by the form perturbation
generates the mode structure given by Eqs. (10) and (12).
Its main feature is the merging of partial OVs |σ,±�〉 with
well-defined OAM into combinations |σ, �〉 ± |σ,−�〉 with no
OAM. Since the intensity of the field in such combinations is
modulated by cos �ϕ and sin �ϕ factors, they became sensitive
to twisting of the refractive index profile modulated by the
cos �ϕ factor. The photons in such superpositions are forced
then to follow the spiral trajectories. It is well established
by now that a spinning photon moving along a spiral path
in a guiding medium experiences in the acts of total internal
reflections the transverse shifts with respect to its momentum
vector [41]. The combined effect of such shifts depends on
the sign of the photon’s spin and, in this way, constitutes
the influence of the spin on the photon’s trajectory. Being
a manifestation of the SOI, such optical Magnus effect can
be also regarded as a consequence of the Imbert-Fedorov
effect [42]. It should be emphasized that in guiding media
OAM-carrying photons propagate along curved trajectories
as dictated by Poynting vector lines for such objects. In our
case the situation is quite different: whereas the combinations
|σ, �〉 ± |σ,−�〉 bear neither OAM nor ϕ-dependent phase
multipliers, which could have inclined their Poynting vectors
to the transverse plane and made the trajectory spiral, the
photons are forced to move along such spiraling trajectories by
the geometry of a twisting refractive index profile. However,
once they are made to spiral, they are influenced by the same
factors as OAM-carrying photons in ideal fibers and exhibit an
analogous dependence of trajectories on the spin value, which
is conventionally attributed to the SOI.

Regretfully, based on this interpretation we can provide
only qualitative physical explanation of the fact that optical
activity for higher-order modes much surpasses the one for the
fundamental modes as expressed by Eq. (23). Let us assume
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that the magnitude of the effect is proportional to the fraction
of the profile-sensitive combinations |σ, �〉 ± |σ,−�〉 in the
structure of hybrid modes Eqs. (10) and (12). Then if one
takes the magnitude of optical activity for modes ψ1,3 (or ψ4,6),
which are approximately given by such profile-sensitive fields
|σ, �〉 ± |σ,−�〉, for unity, this effect for the modes ψ2,5 should
be of lesser magnitude. Indeed, in those modes the fraction of
|σ, �〉 ± |σ,−�〉 fields is of order Q/β̃0ς � 1, which gives for
powers stored in such combinations of OVs an even stronger
estimate of (Q/β̃0ς )2. Although we do not obtain here an exact
coincidence with Eq. (23) that implies quadratic dependence on
relative power, this indicates the relevance of profile-sensitive
fields in the structure of hybrid modes.

The last comment concerns the role of intermodal coupling
in forming optical activity for fundamental and higher-order
modes. Being twisting insensitive fundamental modes need to
be coupled to higher-order modes, which react on the fiber
twisting. This is expressed through proportionality of optical
activity AFM to the coupling parameter Q in Eq. (22): at Q = 0
the effect vanishes. The situation is seemingly different for
optical activity for higher-order modes Eq. (21), which at Q →
0 does not vanish. Indeed, the combinations |σ, �〉 ± |σ,−�〉
are twisting sensitive even in the absence of the small fraction
of fundamental modes and in this way seem to not require any
intermodal coupling. Although this is true, one should bear
in mind that the very origin of such combinations of OVs is
based on the intermodal coupling: if one sets Q = 0 in Eq. (8)
one does not arrive at the hybrid mode structure given by
Eqs. (10) and (12). In addition, the result given by Eq. (21) is
valid only for intermodal exchange greater than the spin-orbit
coupling and does not permit the limiting transition Q → 0.
The obtained results might be useful both for understanding

the nature of optical activity for fundamental modes in twisted
PCFs and for predicting possible new phenomena in them,
which relate to propagation of higher-order fields.

IV. CONCLUSION

In the present paper we have studied manifestation of optical
activity for higher-order modes that propagate in optical fibers
with multihelical distribution of the refractive index profile.
We have shown that a specific perturbation of the ideal fiber
form that exists in such multihelicoidal fibers leads to forming
the mode structure, in which circularly polarized fundamental
� = 0 modes are hybridized with circularly polarized sym-
metric and antisymmetric combinations of optical vortices
with opposite OAM numbers and equal moduli �. Such zero-
OAM combinations due to azimuthal-inhomogeneous energy
distribution in them prove to be sensitive to the spiraling
of the refractive index profile that makes them adiabatically
follow the refractive index pattern. Because of the spin-orbit
interaction, the propagation constants for such hybridized
modes turn out to depend on their spin sign, which leads to the
circular birefringence for higher-order modes and the resulting
enhanced optical activity for them. We have demonstrated that
optical activity for higher-order modes in such a system greatly
exceeds the one for the fundamental modes previously reported
in the literature.
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