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X-ray emission by a high-energy electron with a nonequilibrium field in an ultrathin crystal
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The process of coherent x-ray emission by an ultrarelativistic electron crossing a system of two targets, thick
amorphous upstream and ultrathin crystalline downstream, is considered. It is shown that transformation of the
electromagnetic field around the particle after its emission from the upstream target influences upon characteristics
of radiation produced by the electron in the downstream target. The considered radiation is an interfering sum
of parametric x-ray radiation and diffracted transition radiation. It is demonstrated that in the present case
the properties of the x-ray pulse differ both from the ones typical for thick and ultrathin crystals and depend
on the distance between the targets. At multi-GeV electron energies, such dependence is observable within
macroscopically large values of this distance. Special attention is drawn to the study of the influence of the
downstream target finiteness on radiation characteristics. It is shown that it results in the dependence of radiation
yield on separation between the targets for macroscopically large values of such separation even at sub-GeV
electron energies.
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I. INTRODUCTION

When a relativistic charged particle moves through crys-
talline medium it emits different types of electromagnetic
radiation which characteristics depend on the particle energy,
polarization, and crystal alignment (see, e.g., [1–5]). They
particularly include incoherent bremsstrahlung, Cherenkov,
characteristic and transition radiation, which are also typical
for amorphous media, as well as several types of radiation
owing their origin to periodicity of the atomic arrangement.
The latter ones are represented, for instance, by coherent
bremsstrahlung, channeling radiation, and parametric x radi-
ation. The first two of these types require proper orientation
of crystallographic axes or planes with respect to the particle
velocity. The properties of such emissions are defined by the
shape of the particle trajectory (in classical consideration)
which should have sufficiently small inclination angles with
respect to a crystalline axis or plane. Parametric x-ray radiation
(PXR), on the contrary, can be emitted at wide range of crystal
orientations. It is a radiation of polarization type (like transition
or Cherenkov ones) and can be emitted even at uniform and
rectilinear particle motion through crystal (if neglect radiation
recoil). It is the very type of radiation which we consider in
this paper.

PXR is also a radiation of resonance type which pulse is
formed by a large number of parallel periodically arranged
crystallographic atomic planes which an impinging particle
(for certainty we will talk about electron) successively crosses
during its motion through crystal. The electron’s Coulomb field
polarizes the atoms of each plane causing them to radiate. The
waves emitted by different planes interfere with each other
(coherently amplifying) resulting in a nearly monochromatic
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pulse. It has a narrow angular distribution around the direction
specular to the electron velocity with respect to the planes (we
will further call it specular direction). The resonant frequency
of PXR is close to the Bragg frequency of x rays diffracted in
the corresponding direction. In this respect, the phenomenon
of PXR is closely connected to the one of x-ray diffraction
in crystals. However, presently we deal with diffraction of
virtual photons of the electron’s proper field instead of real
electromagnetic waves. The considered radiation pulse formed
of Bragg-diffracted field is usually called a reflex.

The first consideration of resonance radiation by fast par-
ticles in artificial periodic structures was presented in [6] for
relatively long wavelengths. The theory of such radiation in
crystals at wavelengths comparable to the interatomic distance
(x-ray region) was built in [1]. In this book the expression for
PXR spectral-angular density was derived with the use of kine-
matical approach, based on perturbative solution of Maxwell’s
equations. The analogous expression was further obtained in
[7] applying quantum considerations. The dynamical theory
of the effect, accounting for multiple diffraction of radiated
waves on the system of crystallographic planes, was presented
in [8,9].

First observations of PXR were reported in [10,11] and
inspired further experimental investigation of this phenomenon
(see [12–14] and references therein). A series of both ex-
perimental and theoretical studies was, particularly, devoted
to investigation of dynamical diffraction effects in PXR (i.e.,
appearance of radiation pulse along the direction of particle ve-
locity) [15–18] and correspondence between kinematical and
dynamical treatment of the effect (see [19–21] and references
therein).

PXR is produced in the bulk of a crystal. When an electron
just enters this bulk from outside, it emits transition radiation
as well. At ultrarelativistic energies of the particle certain
part of this radiation belongs to x-ray range and undergoes
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Bragg diffraction inside a boundary layer of the crystal volume.
The frequencies and propagation direction of such diffracted
transition radiation (DTR) [4,20,22–24], defined by Bragg’s
law, are very close to the ones of PXR. At sufficiently high
electron energies, the DTR differential yield at maximum of its
angular distribution can significantly exceed the corresponding
yield of PXR [25].

In [26,27] it was proposed to use PXR for the purposes
of charged particle beam diagnostics in the region of their
parameters (submicron beam size), where other techniques are
inapplicable. Such idea was experimentally verified [28] and
is being further elaborated (see, e.g., [25]). This makes further
comprehensive study of radiation of this type highly required.

Existence of boundary effect for PXR in the form of DTR
leads to the fact that the properties of x-ray emission by
an ultrarelativistic electron in ultrathin and thick crystals are
different [20,29]. By ultrathin crystals we mean here the ones
of thickness in the direction of the particle motion less than
about 1 μm (for more thorough definition, see Sec. II). Namely,
in thick crystals the so-called density effect takes place for
PXR. It occurs in the result of polarization of substance by the
electron’s proper Coulomb field, which leads to the screening
of this field on distances ρ > 1/ωp from the particle trajectory.
Here, ωp is the plasma frequency of the substance and we use a
system of units in which the speed of light is c = 1. This effect
manifests itself in saturation of PXR yield with the increase
of the electron energy ε at γ ∼ ω/ωp (here γ = ε/m is the
electron Lorenz factor, m is the electron mass, and ω is the
radiation frequency) and the energy independence of such yield
at larger γ . Moreover, in this case the position of the maximum
of PXR reflex angular distribution is defined by ωp and does
not depend on ε as well.

As shown [29] (see also corresponding remarks in [20]),
in sufficiently thin crystals the density effect is completely
absent. In this case, the position of the maximum of x-ray
reflex angular distribution is defined by γ and significantly
differs from the corresponding position in the case of thick
crystal. The radiation yield in this case does not saturate and
grows with the increase of ε at arbitrary values of this quantity.

In this paper, we consider a case in which characteristics
of x-ray reflex produced by a high-energy electron traversing
a single-crystalline target are not typical neither for thick nor
for thin crystal. Such situation, for instance, takes place if the
particle traverses a system of two targets, thick amorphous
upstream and thin single-crystalline downstream, separated by
a certain distance one from another. After the electron traversal
of the thick target, the electromagnetic field around the particle
becomes significantly suppressed comparing to the Coulomb
field in vacuum. In the result of subsequent process of the
electron’s field regeneration, transition radiation (TR) appears.
Such regeneration does not occur instantly but takes place
within the distance from the target defined by the formation
length of TR process [3,4,30,31]. At sufficiently high electron
energies, this distance can be macroscopically large even in
x-ray band and the downstream crystalline target can be placed
within it. In this region, the field around the impinging particle
significantly differs from the Coulomb one. It is manifested in
the properties of x-ray reflex produced by the electron in the
crystal, provided it is sufficiently thin. This work is devoted to
the study of such properties.

Special attention here is also paid to investigation of the
influence of the crystalline target transversal size finiteness on
radiation characteristics in the considered case. It is shown that
it causes variation of the observable radiation yield with the
increase of separation between the targets even for separations
significantly exceeding the formation length. Such separations
can be macroscopically large even at not very high (sub-GeV)
electron energies.

II. X-RAY EMISSION IN THICK
AND ULTRATHIN CRYSTALS

In this paper, we will mainly focus on the crystals of
thickness less than extinction length for x-ray photons. In
this case, it is possible [20] to neglect the effects of dynamic
diffraction, as well as radiation absorption, and apply kinematic
treatment of x-ray emission process. Let us, by the way, note
that in [7,19,21] it is argued that characteristics of PXR pulse
in the vicinity of the Bragg angle are fairly well described by
kinematic theory even for much thicker targets.

We follow the approach developed in [1], where it was
applied for the case of a boundless crystal. In this section on the
basis of the same kinematic approach the case of an ultrathin
crystal (a case of a single target) is considered as well. We
regard it as a test for the applied approach comparing the result
with the one obtained in [29] in the framework of the dynamic
theory.

A. Thick (quasi-infinite) crystal

In [1] the dielectric permittivity of the crystal is taken in the
form

ε(ω, r) = ε0(ω) + ε′(ω, r). (1)

Here, ε0 is the mean macroscopic part of the permittivity, which
at frequencies sufficiently higher than characteristic atomic
ones equals

ε0(ω) = 1 − ω2
p/ω2. (2)

The second term in (1) describes the periodically varying
microscopic part of permittivity. It is proportional to the
difference between the local microscopic atomic electron
density and its macroscopic average value. It is assumed that
|ε′| � ε0 and the Maxwell’s equations for the field created by
the electron traversing the crystal are solved with the use of
perturbation theory.

The leading-order (i.e., zeroth order in ε′) solution of these
equations in the present case is just the particle’s proper
field in a polarized matter, which (its Fourier component) in
ultrarelativistic case can be presented as follows:

E(0)
ω (r) = − ie

π

∫
d2q qQce

iωz/v+iq·ρ . (3)

Here, the particle with the charge e moves along the z axis
with the velocity v; ρ is the observation point radius vector
in the xy plane perpendicular to the z axis and Qc = 1/(q2 +
ω2

p + ω2/γ 2). Let us note that here and further in the integral
prefactor we omit the quantity ε0 which is close to unit in the
considered frequency range. The integration in (3) is made with
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respect to the wave vectors q of the electron Coulomb field in
xy plane (|q| = q).

It is convenient to present the field scattered on the per-
mittivity perturbation ε′ (which is PXR field) in the form of
decomposition over reciprocal lattice vectors g of the crystal.
After the same procedure for ε′,

ε′(ω, r) =
∑

g

nge
ig·r, (4)

the required field, being the next-to-leading order solution of
the Maxwell’s equations, acquires the form

E′
ω(r) = − eikr

4πr

∑
g

ngk × [k×Ig], (5)

where

Ig =
∫

d3r ′E(0)
ω (r′)ei(g−k)·r′

and k = ω
√

ε0r/r is the wave vector of the scattered (radiated)
field inside the crystal. Let us note that here and further
we neglect small difference of k from the wave vector of
radiation after its escape from the crystal. The integration here
is performed over the crystal volume. The Fourier components
ng of the quantity ε′ are defined by the parameters of the crystal
lattice (see, i.e., [4]). Expression (5) describes the field in the
far-field zone where |r| � |r′|. With the use of (3) and the
relation between the radiation field and its spectral-angular
distribution

d2W

dω do
= r2

4π2
|E′

ω|2 (6)

the following expression is obtained for the latter characteristic
of PXR (which is an ultrarelativistic limit of general results
[1,7]):

d2W

dω do
= e2L

2π

∑
g

|ng|2 |k × [k×κ⊥]|2
(κ2

⊥ + ω2
p + ω2/γ 2)2

δ(ω − κv),

(7)
where κ = (κ⊥, κz) = k − g and L is the crystal thickness
along the particle velocity (which is assumed to be less than
radiation attenuation length in the target). δ(x) is the delta
function which imposes a relation between radiation direction,
defined by a unit vector n, and frequency as

ωPXR = |vg|
1 − √

ε0vn
. (8)

Note that ε0 here is a function (2) of frequency and (8) should be
considered as an equation for ωPXR. Further, we will consider
just the radiation peaks of the lowest order, corresponding to
|g| = 2πs/a with the positive integer s equal unit. Here, a is
the interplanar distance.

Integration over ρ ′ in (5) created another delta function
δ(q − κ⊥) as well, which made possible direct integration
over q. The two considered delta functions together define
the well-known relation between k and the wave vector of
the initial virtual photon of the electron’s Coulomb field ki =
(q, ω/v), which undergoes Bragg diffraction, as k = ki + g.
Hence, narrow angular distribution of the vectors ki around the
direction of the electron velocity, following from (3), generates

FIG. 1. Angular diagrams of x-ray reflexes produced by electron
traversing thick (quasi-infinite) and ultrathin crystals.

the analogous narrow angular distribution of the reflex around
the specular direction (Fig. 1). At γ � ω/ωp, its characteristic
angular width is ∼ωp/ω.

It is necessary to note that the frequency ω experiences
some change with the change of the observation angle within
the reflex, according to (8). From a theoretical point of view,
with the increase of frequency resolution of measurement
the angular width of the observed peak at fixed frequency
becomes smaller, while in the ideal case of monochromatic
radiation from an infinite crystal it is described by the delta
function in (7). The mentioned reflex of angular width ∼ωp/ω

is an envelope comprising such peaks (see Fig. 2) in the
corresponding small range of frequencies. However, having
a finite (not infinitely small) size, the real detector catches
a certain range of frequencies corresponding [via (8)] to the
domain of the detector angular acceptance. Therefore, it is
usually the angular distribution of the whole reflex which
is discussed, but not the one of quasimonochromatic peaks.
Nevertheless, further we will have to consider the latter one as
well in order to judge on the possibility of interference between
PXR and DTR contributions in an ultrathin crystal.

Let us note that further, referring to radiation from a thick
crystal, it is PXR that we will talk about, not taking into account
DTR from the entrance border of the crystal. At high electron
energies these two types of radiation have different angular
regions of concentration and can be in principle separated one
from another.

FIG. 2. Angular distributions of radiation spectral density asso-
ciated with the first term (pure PXR) in (13). Left: 2θB = 2π/3;
ω ≈ 3.745 keV (left peak), ω ≈ 3.763 keV (right peak). Right: 2θB =
π ; ω ≈ 3.228 keV (solid line), ω ≈ 3.2285 keV (dashed-dotted
line). Dashed line represents the envelope comprising monochromatic
peaks at different ω (its shape fits the reflex angular distribution with
characteristic width ∼ωp/ω).
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B. Ultrathin crystal

Let us now consider the case of an ultrathin crystal. Here,
strictly speaking, the quantity ε′(ω, r) should be decomposed
into a Fourier integral, not a series. However, we will assume
the representation (4) to be valid, as well as in an infinite crystal,
since we are interested in targets still possessing more than
1000 atomic layers. Expression (5) can be also applied for
calculation of radiation field in the considered case. However,
presently the leading-order solution for the electric field, i.e.,
the field which takes place if ε(ω, r) = ε0(ω) inside the target
and ε(ω, r) = 1 outside it, is different from (3). Now, together
with (3), it also includes transition radiation (TR) generated
upon the particle traversal of crystal boundaries.

For definiteness, let us consider the process in Bragg
geometry, as shown in Fig. 1, and presume normal electron
incidence on the surface. In order to find the leading-order
solution for the total field inside the crystal at ultrarelativistic
energies of the impinging electron, it is enough to take into
account just the contribution of an upstream boundary to TR
field, neglecting the one of the downstream. Solution of the
Maxwell’s equations with the boundary conditions for electric
field on the upstream surface leads to the following expression
for this field:

E(0)
ω (r) = − ie

π

∫
d2q q{Qce

i ωz
v + Qf eiz

√
ω2ε0−q2}eiq·ρ,

(9)
where

Qf = 1/(q2 + ω2/γ 2) − 1/(q2 + ω2
p + ω2/γ 2). (10)

Substituting (9) into (5) and integrating it with respect to q and
ρ ′ (presently we consider a crystal of infinite transversal size,
so that 0 < |ρ ′| < ∞), as well as with respect to z′ in the range
0 < z′ < L for the field of the x-ray pulse, we obtain

E′
ω(r) = ie

eikr

r

∑
g

ngk × [k×κ⊥]

×
{

Kce
iLqc/2 sin(Lqc/2)

qc/2
+ Kf eiLqf /2 sin(Lqf /2)

qf /2

}
,

(11)

whereqf =
√

ω2ε0 − κ2
⊥ − κz,qc = ω/v − κz, whileKc,f are

defined by the same expressions as Qc,f with the substitution
q2 → κ2

⊥.
The first term in (11) describes the field of the same nature

as in infinite crystal. It is generated in the result of scattering
of the electron’s proper Coulomb field [first term in (9)] on
periodical inhomogeneity ε′ of permittivity. The second term
describes the Bragg-diffracted TR field.

If the condition L < 1/|qc − qf | is fulfilled, we may neglect
the difference between qc and qf in the sine arguments and
exponents in (11) and present the expression in braces in the
following form:

K ′
ce

iLqc/2 sin(Lqc/2)

qc/2
,

with K ′
c = 1/(κ2

⊥ + ω2/γ 2). It coincides with the first term in
(11) if set ωp → 0 there. It indicates that under the considered
condition for crystal thickness, the polarization of the target

does not affect radiation characteristics and the density effect
is absent, which is in accordance with corresponding state-
ments in [20,29]. Such effect of suppression of polarization
influence upon electromagnetic processes in ultrathin targets
has analogs in the processes of ionization loss [32–34] and
K-shell excitation (see [35] and references therein). After
slight transformations, the mentioned condition for L can be
rewritten in the form

L <
2

ω(γ −2 + ω2
p/ω2 + κ2

⊥/ω2)
= lc, (12)

were lc is TR coherence (formation) length inside the target.
In the targets of such thickness PXR and DTR fields, de-
scribed respectively by the first and the second terms in (11),
significantly interfere and should be considered as a single
inseparable x-ray pulse. It is such crystals that we name here
ultrathin. At frequencies ∼1 keV lc reaches the value ∼1 μm.

With the use of (11) and (6) the expression for radiation
spectral angular density can be directly obtained:

d2W

dω do
= e2ω2

4π2v2

∑
g

|ng|2|k×κ⊥|2{K2
c S2

c + K2
f S2

f

+ 2KcKf ScSf cos[L(qf − qc )/2]
}
, (13)

where we denoted Sc,f = sin(Lqc,f /2)/(qc,f /2). For targets
satisfying the condition (12) the expression in braces simplifies
to K ′2

c S2
c making (13) analogous to the result obtained in [29].

The characteristic angular width of the pulse in this case
is ∼γ −1 at arbitrary energies of the impinging relativistic
electron.

Peak width and possibility of PXR and DTR interference
in an ultrathin crystal

Generally speaking, in (13) it is not possible to make
substitution

S2
c,f → 2πLδ(qc,f ) (14)

like in (7). The finite small thickness of the target in this case
leads to widening of the radiation peak angular and frequency
distributions. Let us discuss spectral and angular widths of
such peak in the considered ultrathin target more thoroughly.
For simplicity of our estimations, we will presently consider
radiation in the plane of vectors v and g.

The discussed widths are defined by the factors Sc,f in
(13). The region of a peak approximately corresponds to the
range −2π/L < qc, qf < 2π/L of the sine arguments in these
factors. The quantityqc = ω(1 − √

ε0v cos θ ) + gv, where θ is
the angle between k and v, is zero under condition (8). Let us
make here small-angle variation δϑ/2 leaving the frequency
intact. Requiring that corresponding variation of qc equals
2π/L the peak angular width, associated with Sc, can be
obtained as

δϑ ∼ 4π

ωL sin θ
. (15)

Let us note that presently we consider the peak angular width
(15), presenting a merely theoretical interest, in order to
investigate the possibility of interference of PXR and DTR
contributions in the present case. Such interference is possible
if the corresponding peaks of these types of emission have
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sufficient width to overlap both in the angular and the frequency
domains. The value (15) should not be confused with the reflex
angular size (∼ωp/ω for PXR and ∼1/γ for DTR) which is
defined by the K2

c and K2
f terms in (13).

Further, the numerical estimations will be made for silicon
targets (ωp ≈ 31 eV) of thickness L = 0.5 μm. In this case,
for instance, at ω ∼ 3 keV δθ ∼ 10−3/ sin θ . At θ far from
π this width is noticeably smaller than ωp/ω ∼ 10−2 and the
substitution (14) is approximately valid for Sc. It is, however,
not the case in the vicinity of backward radiation direction
when π − θ � 1. The substitution (14) is also inapplicable if
we consider distribution (13) at angles ∼γ −1 from the specular
direction for γ > 103 since in this case δθ > γ −1. The exam-
ples of x-ray peak spectral-angular distribution, associated with
the first term in (13), for different values of frequency and angle
θB between v and the considered crystallographic plane (Bragg
angle) are presented on Fig. 2 for γ � ω/ωp. The dashed lines
represent here the envelope comprising a continuous series
of monochromatic peaks with slightly different frequencies
corresponding to slightly different emission directions (the
shape of such envelope coincides with the one of the frequency
integrated angular distribution of the whole reflex). For defi-
niteness here and further we consider a single term of the sum
over g in (13) corresponding to (220) plane of Si crystal (and,
as noted previously, the peak of the lowest order). In this case,
the frequency ωPXR in the specular direction for 2θB = 2π/3
(left figure) is ωPXR ≈ 3.727 keV, while for 2θB = π (right
figure), which corresponds to backward radiation direction, it
is ωPXR ≈ 3.228 keV. Here we see, in accordance with (15),
rather sharp peaks in the first case, while in the second case, due
to smallness of sin θ , the width of the peaks nearly coincides
with the one ∼ωp/ω of the reflex.

By a small variation of ω in the expression for qc, the mini-
mum frequency width of radiation peak, caused by finiteness of
the target thickness, can be obtained (since we do not consider
the case θ � 1 it is possible to put here ε0 = 1):

δω ∼ 4πv

L(1 − v cos θ )
, (16)

which is in accordance with [2] and in the considered case
(L = 0.5 μm) is about several eV. Thus, at crystal thickness
under consideration the monochromaticity of radiation peak
remains almost intact.

As noted previously, at the considered value of L the
phases of the sines in Sc and Sf are close to each other.
This makes the angular and frequency widths of radiation
peaks associated with Sf close to (15) and (16). Figure 3
shows the comparison of radiation angular distributions in the
considered case associated with the first (PXR) and second
(DTR) terms in (13) at 200 MeV electron energy. The dashed
and dotted-dashed lines represent the reflexes of DTR and
PXR, respectively. As the figure shows, in the considered case
the peaks angular width (15) for these types of emission is
enough for them to overlap, despite their maxima correspond
to slightly different angles. This fact stipulates the possibility
of significant interference of PXR and DTR in the considered
case, described by the third term in (13).

The analogous situation takes place if we compare spectral
widths of the discussed peaks. Figure 4 shows the spectral
distributions (normalized to equal height at their maxima

FIG. 3. Angular distributions of PXR and DTR from a crystal
of thickness L = 0.5 μm for two values of frequency: 3.738 keV
(left narrow peaks), 3.748 keV (right narrow peaks), and γ = 200,
2θB = 2π/3. Dashed and dotted-dashed lines are the reflexes of DTR
and PXR, respectively.

positions) of PXR (solid line) and DTR (dashed line) terms of
(13). Here, we see that at the considered value of L the width of
the peaks significantly exceeds the shift between their maxima
positions [the Bragg frequency ωB = g2/(2

√
ε0gn) of DTR

maximum, as usually, slightly exceeds ωPXR], which allows
presently to neglect the difference between ωB and ωPXR. The
figure corresponds to the observation angle θ = 2θB − ωp/ω

with 2θB = 2π/3. With the decrease of the 2θB − θ value,
the difference ωB − ωPXR decreases even more. The presented
considerations show that for the chosen thickness of the
crystalline target the x-ray peaks still remain rather narrowly
directed (except in the case 2θB = π ) and monochromatic.
Nevertheless, the peaks of PXR and DTR overlap both in
angular and frequency domains and can interfere with each
other.

Let us note that in this section we discussed the widening of
radiation peaks associated only with the target finiteness and
did not take into account the effects of finite detector resolution,
electron multiple scattering, etc. The obtained results for the
peak widths are also valid for the further considered case of
the impinging electron with nonequilibrium field [the same
quantities Sc,f appear in the correspondent formulas (26) and
(40)]. They will be used for defining the effective regions

FIG. 4. Normalized spectral distributions of PXR (solid line) and
DTR (dashed line) from thin crystal for θ = 2θB − ωp/ω, where
2θB = 2π/3 and ωPXR ≈ 3.745 keV.
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FIG. 5. Electron traversal of the system of two targets, thick
amorphous upstream and thin crystalline downstream, and schematic
picture of the accompanying field transformation.

of numerical integration in calculations of the frequency and
angle-integrated signals in Secs. III B and IV.

III. EMISSION IN THE SYSTEM OF TWO TARGETS

In the previous section we discussed the properties of x-ray
pulses emitted by an ultrarelativistic electron traversing thick
and ultrathin crystalline targets. In both cases, the impinging
electron was supposed to move uniformly rectilinearly in
vacuum before hitting the target having equilibrium Coulomb
field around it. In this section we study the influence of the
nonequilibrium state of the field around the electron caused
by the particle interaction with matter upon characteristics
of x-ray pulse generated subsequently by the electron in an
ultrathin crystal. As an example of process in which the
electron field is modified, we choose the particle traversal
of thick amorphous target (Fig. 5). In this case, due to TR
formation process after the electron exit from the target the
field around the particle can significantly differ from the
Coulomb one within macroscopically large domain of space.
As shown, this leads to modification of radiation characteristics
from an ultrathin downstream crystalline target situated in this
domain. The upstream target is assumed to be amorphous so
that all crystal-assisted radiation could be associated with the
downstream one.

A. Electric field of the particle inside the downstream thin target

According to (5), in order to define the required radiation
characteristics, it is necessary to know the leading-order
solution for the electric field in the target, which we consider
in this section.

The field around the electron after its emission from the
upstream target into vacuum can be calculated from the
Maxwell’s equations with the boundary conditions [1,31,36]
on the target surface. Let us note that presently we take
into account such conditions only on the downstream surface
assuming the target to be thick enough (at least thicker than
several microns) to absorb TR (at considered frequencies)
emitted at the upstream one. The target is also supposed to

be not very thick so that electron multiple scattering inside it,
resulting in the particle deflection from the z axis, could be
neglected. Let us denote the plasma frequency of the upstream
target as ηp, while the one of the downstream target leave as
ωp. In ultrarelativistic case in the x-ray frequency region the
field around the electron can be considered as approximately
transversal to the electron velocity [as (9)] and presented in the
form:

Eω(r) = − ie

π

∫
d2q q

{
Q′

ce
i ωz

v − Q′
f eiz

√
ω2−q2

}
eiq·ρ, (17)

where Q′
c = 1/(q2 + ω2/γ 2) and Q′

f = 1/(q2 + ω2/γ 2) −
1/(q2 + η2

p + ω2/γ 2). The first term here describes the elec-
tron proper Coulomb field in vacuum while the second one
is the free field gradually transforming into diverging waves
of TR. Within the formation distance (12), which reaches the
value lc ∼ γ 2/ω in vacuum, these fields are not separated one
from another and significantly interfere.

Let us consider more thoroughly the evolution of the field
(17) with the increase of the distance from the target. For
this purpose, it is possible to expand the square root in the
exponent of the second term and present it as

√
ω2 − q2 ≈

ω(1 − q2/2ω2). It is associated with smallness of the effective
value of the ratio q/ω for q contributing to the integral in (17),
which indicates the preferable direction of TR propagation to
be close to the electron velocity.

The integrand in (17) depends on a single constant vector
ρ, which defines the direction of Eω. The integral from the
first term in (17) can be analytically calculated and represents
the well-known expression for the Fourier component of the
Coulomb field in vacuum:

Ec
ω(r) = 2eω

γ

ρ

ρ
K1

(
ωρ

γ

)
eiωz/v, (18)

where K1(x) is the Macdonald function.
After integration with respect to angle between q and ρ, the

second term in (17) can be presented as

Ef
ω (r) = −2e

ρ

ρ
eiωz

∫
dq q2J1(qρ)Q′

f e−iq2z/2ω, (19)

where J1(x) is the Bessel function. Let us consider a part of this
expression associated with the first term of Q′

f (the one without
ηp). With the use of a procedure, applied for the analogous
integral, i.e., in [37] [formula (22)], it can be written as

2e
ρ

ρ
eiωz

{
2i

ρ
sin

(
ωρ2

4z

)
eiωρ2/4z + 1

ρ
− ω

γ
K1

(
ωρ

γ

)}
. (20)

Such representation is valid under condition z � γ 2/ω. The
similar expression (with the opposite sign) is obtained for the
remainder of (19) associated with the second term of Q′

f .

The only difference is the substitution ω/γ →
√

ω2/γ 2 + η2
p

in the third term in braces in (20). However, unlike (20),
such analytical representation of the considered part of the
expression (19) is valid at z � ω/η2

p. Under condition γ �
ω/ηp, which we are interested in, it is a stronger restriction
than the one for (20). Substituting the obtained analytical
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representations to (17), at γ � ω/ηp we have

Eω(r) = 2eηp

ρ

ρ
eiωzK1(ηpρ). (21)

This expression shows that even after the electron exit from
the target, within the distance z ∼ ω/η2

p from it, the Fourier
component of the total field around the particle has the same
form as inside the target. Comparison of (21) with (18) shows
that after the particle exit the Fourier components of frequen-
cies ω < γηp are suppressed in the field (17) surrounding
the electron and the corresponding virtual photons are almost
absent in this field.

Such structure of the field resembles the one which takes
place after a charged particle scattering on an atom in matter
or its deflection in magnetic field. The effect of particle field
suppression in this case, causing subsequent weakening of its
interaction with the surrounding matter, was predicted in [38]
and further discussed in [3,39,40]. In [38] the particle with such
incomplete field was named “half-bare” particle. The study of
the processes of this kind led to theoretical prediction and sub-
sequent experimental observation of Landau-Pomeranchuk-
Migdal [41–44] and Ternovsky-Shul’ga-Fomin [45–49] effects
of suppression of bremsstrahlung by high-energy electrons in
amorphous media. In [50,51], the observation of so-called
diffraction radiation suppression (in millimeter wavelength
range) was reported for the case when the radiating particle
preliminarily “undressed” by moving close to a conducting
screen. In [52,53], the effects associated with a particle
field suppression were considered for radiation of particles
traversing optical fibers and for Smith-Purcell radiation, while
in [54–56] for transition radiation of half-bare particles. In
[57,58], the related effects were studied for ionization loss of
electrons and electron-positron pairs with nonequilibrium field
in thin films. Further, we consider the effects of this kind for
x-ray emission in ultrathin crystals.

Let us consider the field (17) on larger distances from
the target at ω/η2

p � z � γ 2/ω. Within the distance ρ ∼
1/ηp from the electron trajectory the field is not affected by
polarization of the target and is defined by the formula (18) at
arbitrary z. Therefore, we will focus on the case ρ � 1/ηp.
In this region, the part of the expression (19) associated
with the first term of Q′

f (without ηp) is defined by the
analytical representation (20). The other part of the integral
(19), associated with the second term of Q′

f , can be calculated
with the use of stationary phase method [59]. In this case, the
Bessel function here should be presented in its asymptotic form
as J1(qρ) ≈ √

2/πqρ cos(qρ − 3π/4). The cosine, presented
as the difference of exponents, according to Euler’s formula,
together with the exponent in the integrand of (19), provide a
single stationary point q0 = ωρ/z on the integration interval.
In the result the total field (17) around the electron in this case
can be presented in the form

Eω(r) = 2e
ρ

ρ
eiωz

ω2
p

ω2
p + (ωρ/z)2

eiωρ2/2z

ρ
. (22)

In the region ρ � √
z/ω it coincides with (18) and represents

the part of the Coulomb field which the electron has already
managed to “regenerate” around itself. In the regionρ >

√
z/ω

the TR field (19) is mainly concentrated and still significantly

interferes with the electron proper field. The characteristic
angles α = ρ/z of TR concentration in this case are ∼√

1/ωz

and decrease with the increase of z reaching their far-field value
1/γ at z ∼ γ 2/ω. At ρ > zωp/ω the field (22) rapidly drops
as 1/ρ3.

At z � γ 2/ω the whole integral (19) can be calculated with
the use of stationary phase method like its single term in the
previously considered case of smaller z. This directly leads to
the following field asymptotic:

Eω(r) = 2e
ρ

ρ

{
ω

γ
K1

(
ωρ

γ

)
ei ωz

v + eiωr

r
A(α)

}
. (23)

Here, we used the approximation z + ρ2/2z ≈ r , provided
ρ � z, where r = |r|. The presented expression indicates
a complete separation of the field around the electron into
proper Coulomb field and spherically diverging waves of TR
at z � γ 2/ω. The quantity (its square)

A(α) = η2
p

ω2

α

(α2 + γ −2)(α2 + η2
p/ω2 + γ −2)

,

where α = ρ/z, defines the well-known TR angular distribu-
tion in the far-field zone [31,36].

The field inside a thin crystalline target placed downstream
with respect to the thick amorphous one can be calculated by
insertion of the field (17) into the boundary condition for the
electric field tangential component on the upstream side of the
target. Let this side be situated in the plane z = z1. The bound-
ary condition in this case reads as Ev

ω(ρ, z1) = Et
ω(ρ, z1),

where the left-hand side and right-hand side, respectively,
denote the total fields in vacuum and target. As far as Ev is
concerned, we will use the expression (17) for it. Thereby we
neglect the waves propagating opposite to the z axis due to
small reflection coefficient of the plate in x-ray region. We
make the same approximation for Et neglecting the influence
of the downstream boundary upon the field inside the plate.
The field Et consists of the electron proper field in the plate,
defined by the first term in (9), and the free field which can be
presented as [1]

Et (f )
ω (r) = 1

(2π )3

∫
d3k E′t (f )

ω,k δ(ω2ε0 − k2)eik·r,

where k = (q, kz), and integrated with respect to kz taking into
account only the root kz = +

√
ω2ε0 − q2 of the delta-function

argument. Thereby the boundary condition gives the following
form of the total field (leading-order solution) inside the target:

Et (0)
ω (r) = − ie

π

∫
d2q qeiq·ρ{

Qce
i ωz

v (24)

+ [Qf ei
ωz1
v − Q′

f eiz1

√
ω2−q2

]ei(z−z1 )
√

ω2ε0−q2}
.

Under condition (12), within the whole volume of the crystal
(z1 � z � z1 + L) it becomes close to the nonequilibrium field
(17) in vacuum at z = z1, which falls on the target. Therefore,
the evolution of the electron’s field after its exit from substance,
described in this section, should be directly manifested in the
properties of radiation emitted by the particle in sufficiently
thin downstream targets.
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B. X-ray emission from the downstream ultrathin target

Let us consider the properties of x-ray pulse which is
produced in the downstream ultrathin crystalline target in the
discussed process (Fig. 5). The field of such pulse can be
obtained by insertion of (24) into (5) and has the following
form (we consider a single term of the sum over g):

E′
ω(r) = ie

eikr

r
ngk × [k×κ⊥]

{
KcSce

i(z1+ L
2 )qc

+ Sf ei L
2 qf −iz1κz

[
Kf ei

ωz1
v − K ′

f eiz1

√
ω2−κ2

⊥
]}

,

(25)

where K ′
f equals Q′

f with substitution q2 → κ2
⊥.

The forms of the expressions for Kc, Kf , and K ′
f indicate

that the field (25) is far from zero only at small values of κ⊥
comparing to ω. This allows decomposing the square root in
the exponent and present the expression in square brackets in
the form

Kf ei
ωz1
v − K ′

f eiz1

√
ω2−κ2

⊥ ≈ ei
ωz1
v (Kf − K ′

f e−iz1/lv ).

By lv we denote here the vacuum formation length defined by
(12) with ωp = 0.

With the use of (6) the expression for radiation spectral-
angular density is obtained:

d2W

dω do
= e2ω2

4π2
|ng|2|k×κ⊥|2{K2

c S2
c + S2

f

∣∣Kf − K ′
f e−i

z1
lv

∣∣2

+ 2KcScSf Re
[
eiL(qf −qc )/2

(
Kf − K ′

f e−i
z1
lv

)]}
.

(26)

At z1 � lv , provided (12) is fulfilled, the expression in braces
is reduced to S2

c /(κ2
⊥ + η2

p + ω2/γ 2)2. In this case, (26) is
analogous to the distribution (7) and differs from it by the
substitution ωp → ηp and the presence of S2

c instead of δ

function according to the relation (14). This means that in
this case the angular width of the reflex is influenced by the
density effect even in the ultrathin target. However, the first
difference (ωp → ηp) indicates that presently such width is
defined not by the plasma frequency ωp of the crystalline target,
as in (7), but by the one ηp of the upstream target. The second
difference is caused by the small value of the crystalline target
thickness, which widens the peak, unlike the case of (7) which
corresponds to quasi-infinite target approximation.

Let us note that at γ � ω/ηp the value of lv changes
significantly within the reflex (it decreases with the increase
of the observation angle ϑ counted from the direction κ⊥ =
0, being almost the specular one). Therefore, for different
observation angles the condition z1 � lv for the similarity
between (26) and (7) is reached at different distances between
the targets. The scale of characteristic maximum width of the
considered reflexes is ∼ηp/ω (corresponding to κmax

⊥ ∼ ηp).
This allows to define the distance at which the expression (26)
tends to (7) at arbitrary ϑ as lp ∼ ω/η2

p. It, naturally, coincides
with the distance on which the field around the electron
equals the one inside the thick target and is described by the
formula (21). Under condition z1 < lp, and assuming (14), the
reflex corresponding to (26) is the same as that of PXR in a
quasi-infinite crystal (7), but with ε0 = 1 − ω2

p/ω2 replaced
by that of the amorphous target 1 − η2

p/ω2. If ηp = ωp, we

FIG. 6. Angular distributions of radiation spectral density (28)
for 2θB = π and γ = 104. Dashed line: distribution at z1 � lp of
the form ϑ2/(ϑ2 + ω2

p/ω2)2; thin solid line: z1 = lp; thick solid line:
z1 = 3lp .

have the complete equality between (26) and (7). Such case
is considered for numerical estimations, which results are
presented on figures.

With the increase of the distance between the targets, the
radiation angular distribution gradually changes. The angular
maximum of its reflex shifts to lower values, while the
differential yield in this maximum grows. Figures 6 and 7
show the evolution of such angular distribution for the values
of z1 of the order of lp and lv , respectively, for electron energy
ε = 5 GeV. They depict the simplest case of 2θB = π when
crystallographic planes are parallel to the target surface. In this
case, the corresponding constituents of the expression (26) can
be presented in the form

|k×κ⊥|2 = ω4ϑ2, κ2
⊥ = ω2ϑ2, (27)

making (26) axially symmetric with respect to z axis. It is the
case ηp = ωp that is depicted on the figures, for which the
expression (26) transforms to

d2W

dω do
= e2ω6ϑ2

4π2
|ng|2

{
K2

c S2
c + 2K2

f S2
f [1 − cos(z1/lv )]

+ 2KcKf ScSf Re
[
eiL(qf −qc )/2

(
1 − e−iz1/lv

)]}
.

(28)

FIG. 7. The same as in Fig. 6. Thin solid line: z1 = 0.1lv;
thick solid line: z1 = 0.2lv . Dashed line: distribution (13) in an
ultrathin target for impinging electron with Coulomb field of the form
ϑ2/(ϑ2 + γ −2)2.
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FIG. 8. The same as in Fig. 7. Dashed line: the same as in Fig. 7;
dotted-dashed line: mean behavior of quickly oscillating distribution
at z1 � lv; solid line: nonaveraged distribution for z1 = 2.5lv .

The figures show the angular distribution of radiation spectral
intensity (28) at frequency ωPXR corresponding to the direction
θ = 2θB . Presently, ϑ is the angle between observation direc-
tion and −v. Let us note that it is monochromatic peaks that are
presented here, not the reflexes. Nevertheless, each distribution
on Fig. 7 coincides with the corresponding reflex. The reason
for this is rather large peak width (15) at 2θB = π comparing to
characteristic width ∼γ −1 of the reflex. The situation is nearly
the same on Fig. 6 where small discrepancies appear only at
ϑ > ωp/ω (as for solid line on the right part of Fig. 3).

With the further increase of z1 beyond the lv value the
cosine and the exponent in parentheses in (28) become
quickly oscillating functions of ϑ (as well as ω). Therefore,
at z1 � lv it is reasonable to consider distribution averaged
over small intervals of ϑ , which corresponds to substitution
e−iz1/lv , cos(z1/lv ) → 0. The dotted-dashed line on Fig. 8
shows such asymptotic average distribution. It appears to have
maximum in the same direction (ϑ = γ −1) as the distribution
(13) for electron with Coulomb field in an ultrathin target
(dashed line), however, exceeds it by intensity. Such additional
intensity comes from TR, produced during the electron exit
from the upstream target [second term in (23)] and diffracted
in the downstream one. The solid line shows the example of
nonaveraged distribution for z1 = 2.5lv .

Let us now consider the evolution of the signal, integrated
with respect to frequency and observation angle, with the
increase of the distance z1 between the targets. For simplicity,
we will, as previously, focus on the axially symmetrical case
2θB = π . The results have analogous form for various other
crystal orientations (e.g., Laue geometry, which might be more
preferable for experimental study) since they primarily reflect
the evolution of the field surrounding the impinging electron
with the increase of z.

As far as frequency integration is concerned, the con-
tributing interval depends on the corresponding interval of
angular integration. From the relation (8) it follows that for a
high-energy electron under considered conditions, the change
of the ωPXR value by about 1 eV is caused by deviation of
the observation angle (from ϑ = 0) by 0.035 rad. Meanwhile,
the characteristic width of the pulse has the scale of ∼ηp/ω,
which is ∼0.01 in the considered case. Therefore, presently the
change of the resonance frequency can be neglected and the

FIG. 9. Dependence of the integrated signal on distance z1 be-
tween the targets for electron energy ε = 1 GeV and 2θB = π .
Integration over ω is made in the range ωPXR ± 2 eV. Acceptance
angle is 2/γ (lower solid line) and 4/γ (upper solid line). Dashed
lines: corresponding asymptotic values at z1 � lv .

effective region of numerical integration of (28) is defined by
the peak width (Fig. 4), which is about several eV around the
value ωPXR(0). Let us note that the situation may be different
at smaller θB values due to more rapid change of ωPXR with
the angle in this case.

Figure 9 shows the dependence of the integrated signal on z1

for the electron energy ε = 1 GeV and two values of integration
range with respect to angle ϑ . The dimensionless value Wint is
defined here as

Wint = 10−54π2

e2ω2|ng|2L2

∫
dω

∫ ϑ0

0
2πϑ dϑ

d2W

dω do
. (29)

By the acceptance angle in Fig. 9 we mean the doubled
value 2ϑ0 of the upper limit in the angle integral in (29),
i.e., the cone angle corresponding to the solid one which
comprises the considered part of the reflex. The figure shows
that with the increase of the distance between the targets up
to several values of lv , which is ≈0.23 mm for ϑ = γ −1 in
the present case, the signal monotonically increases. With the
further increase of z1 it is possible to observe the decrease
of the signal and its damping oscillatory behavior in the
vicinity of the asymptote. Such behavior is a remnant of full-
amplitude oscillations (from zero to the maximum value) of the
cosine and the exponent in (28), which is partially blurred by
angle integration (frequency integration alone does not affect
oscillations due to high degree of the pulse monochromaticity).
The discussed behavior, particularly, the signal decrease with
the increase of z1, could be observed for acceptance angles
not exceeding several γ −1 values which is a quite achievable
(experimentally) scale in the considered case.

With the increase of the electron energy the formation length
lv grows very quickly at sufficiently small values of ϑ . In
this case, the intensity of x-ray emission from the downstream
target can depend on z1 within macroscopically large values of
this distance. Such situation is depicted on Fig. 10 for the case
ε = 100 GeV. Here, we choose the acceptance angle values
to equal 200/γ and 600/γ , which are, respectively, 1 and 3
mrad in the considered case. Presently, all the oscillations are
almost removed by integration up to ϑ0 � γ −1 and we obtain

023813-9



S. V. TROFYMENKO PHYSICAL REVIEW A 98, 023813 (2018)

FIG. 10. Dependence of the integrated signal on distance z1

between the targets for electron energy ε = 100 GeV and 2θB = π .
Integration over ω is made in the range ωPXR ± 2 eV. Acceptance
angle is 200/γ = 1 mrad (lower solid line) and 600/γ = 3 mrad
(upper solid line). Dashed lines: corresponding asymptotic values at
z1 � lv .

monotone logarithmic increase of the signal within the distance
of about several meters (here, lv ≈ 230 cm at ϑ = 1/γ ).

Let us note that the considered here effect of x-ray pulse
intensity dependence on distance between the targets has
analogs in the processes of ionization loss by high-energy
electrons and electron-positron pairs in the system of two
targets [57,58].

C. On bremsstrahlung contribution

In the considered statement of the problem, which involves
two targets, the electron generates bremsstrahlung both in the
upstream and the downstream targets, which can diffract in
the downstream one and contribute to the measured x-ray
pulse. In order to roughly estimate the relative value of such
contribution, it is enough to consider bremsstrahlung from the
upstream (much thicker) target.

Due to Ter-Mikaelyan density effect [1], the characteristic
angular distribution of bremsstrahlung in this case has the
width ∼ηp/ω instead of 1/γ . It coincides (or is at least of
the same order of magnitude for a crystal with different plasma
frequency) with the corresponding angular width of PXR reflex
generated by the electron’s proper field partially screened by
polarization. Thus, the ratio of contributions of the considered
two types of radiation to the x-ray pulse in the present case can
be judged from the comparison of the spectral-angular density
of bremsstrahlung impinging upon the downstream target with
such density of the equivalent photon flux associated with the
screened Coulomb field. At γ � 1 in the considered frequency
range the discussed bremsstrahlung density can be presented
as follows [31]:

d2W

dω do
= 2ξ 2d

πγ 2X0

[
1 − 2θ2

ν ξ 2
(
ξ−1 − θ2

ν

)]
, (30)

where ξ = 1/(γ −2 + θ2
ν + η2

p/ω2), θν is the emission angle
with respect to the electron velocity, d is the upstream target
thickness, and X0 is the radiation length. The Planck constant
h̄ is put here to equal unit. The expression (30) should be
rather considered as an upper bound for d2W/dω do since it
does not take into account additional (however, much weaker

than the one by the density effect) suppression by Landau-
Pomeranchuk-Migdal effect [41–44].

The corresponding density of the equivalent photon flux is
(see, e.g., [13,20])

d2W

dω do
≈ α

π2
θ2
ν ξ 2, (31)

where α is the fine-structure constant.
In order to compare the values of (30) and (31), it is natural

to choose the maxima of these distributions corresponding to
the emission angle (with respect to the electron velocity) θν =
0 for bremsstrahlung and to θν = ηp/ω for virtual photons
(at γ � ω/ηp). Let us make estimation for a silicon target
(X0 ≈ 10 cm) of thickness d = 10 μm, electron energy ε = 1
GeV, and radiation frequency ω = 3 keV. The ratio of (30)
to (31) in this case is extremely small and amounts to about
10−3. With the increase of ε this value decreases as 1/ε2. Such
result is in accordance with the fact (see, i.e., [60]) that under
condition γ � ω/ωp (with ωp being the plasma frequency
of the crystal) the intensity of diffracted bremsstrahlung is
negligible comparing to the one of PXR produced in the same
target. The presented estimation shows that under conditions
considered in the present section, this is valid for the intensity
of bremsstrahlung from the thick upstream target as well, which
can therefore be neglected.

Let us note that the way applied here to compare PXR
and diffracted bremsstrahlung intensities via the intensities
impinging upon the crystal is valid due to sufficiently small
thickness of the crystalline target (smaller than the extinction
length).

IV. EFFECT OF THE DOWNSTREAM
TARGET FINITENESS

Previously, we studied the evolution of x-ray pulse charac-
teristics with the change of the distance between the targets
considering the radiating downstream target as infinite in
transversal (orthogonal to z axis) directions. In this case, the
asymptotic value of the reflex intensity at z1 � lv exceeds
the corresponding value (13) for an impinging electron with
Coulomb field (in the absence of the upstream target). This
happens due to the contribution of TR from the upstream target
which is diffracted by the infinite downstream target at arbitrary
z1. The situation is different for a crystalline target finite in
transversal direction, which can be partially missed by such
TR waves at rather large z1. Let us now study the process of the
reflex intensity tending (with the increase of z1) to the expected
value typical for the electron with Coulomb field, associated
with the finiteness of the crystalline target transversal size.

For the present purpose, it is convenient to write the
field (24) inside the downstream target as an explicit sum
of contributions associated with the electron proper Coulomb
field in vacuum and TR generated upon the particle exit from
the upstream target:

E(0)
ω (r) = − ie

π

∫
d2q q

{
Q′

ce
i

ωz1
v

−Q′
f eiz1

√
ω2−q2}

ei(z−z1 )
√

ω2ε0−q2+iq·ρ . (32)
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Such form of the expression (24) is valid in the crystals
satisfying the condition (12), which we presently consider.
For simplicity, we will consider a circular downstream target
with the radius R. Let us derive the expression for radiation
spectral-angular density on the basis of (5), with (32) as a
leading-order solution, for such case.

The integrand in (5), as previously, contains two exponents,
eiqf z′

and eiρ ′ ·(q−κ⊥ ), which are subject to integration with
respect to z′ and ρ ′, respectively (let us note that the quantity
qf contains here the variable q instead of κ⊥, which it had
in previous sections, since presently there is no delta function
δ(q − κ⊥) to perform immediate integration over q). Naturally,
only the second integration makes the present case different
from that of R → ∞, leading to∫

d2ρ ′eiρ ′·(q−κ⊥ ) = 2πR
J1(|q − κ⊥|R)

|q − κ⊥| (33)

instead of (2π )2δ(q − κ⊥). It is also possible to replace the
combination eiLqf /2Sf appearing in the result of integration
with respect to z′ by eiLqc/2Sc (due to condition L|qf − qc| �
1, see Sec. II), which does not depend on q. In the result for
the radiation field we obtain

E′
ω(r) = ieR

2π

eikr

r
Scnge

i(Lqc/2−z1κz )k × [k×IR], (34)

where

IR =
∫

d2q q
J1(|q − κ⊥|R)

|q − κ⊥|
{
Q′

ce
i

ωz1
v − Q′

f eiz1

√
ω2−q2}

.

(35)

The first term in (35) is associated with the Coulomb field in
vacuum (18). Thus, the value of R below which the finiteness
of the target is not negligible for this term can be defined as
R ∼ γ /ω. In x-ray region this value is rather small even at
large particle energies (i.e., for 100 GeV it reaches ∼10−3 cm
for several keV photon energies) and in practice the target size
significantly exceeds it. For z1 < lv , the same situation takes
place for the total field (34) as well. In this case, the major
part of the energy of the field around the half-bare electron
is concentrated within the distance ρ ∼ √

z/ω < γ/ω. This
makes the values of R at which the condition R → ∞ is
inapplicable even smaller than in the case of a particle with
Coulomb field. Thus, the results presented in the previous
sections remain intact for the targets of R � γ /ω and further
we will concentrate on the case z1 � lv .

For the discussed values of z1, the typical values of κ⊥
should be considered as κ⊥ ∼ ω/γ , which correspond to the
characteristic angular width ∼γ −1 of the reflex in this case. For
the targets of R � γ /ω, the expression (34) for the radiation
field can be further simplified. In this case, in the first term in
(35) the structure (33) can be replaced by delta function and
the corresponding part of (35) gains the form

2π

R

κ⊥
κ2

⊥ + η2/γ 2
ei ω

v
z. (36)

As far as the second term is concerned, let us, as previously,
expand here the square root in the exponent in small parameter
q/ω and make a substitution q = u + κ⊥. The values ueff of u

contributing to the integral here do not significantly exceed 1/R

due to the presence of J1(uR) in the integrand (they are likely

FIG. 11. Dependence (38) (solid line) and (39) (dashed line) of
|FR| on z1 in the vicinity of z1 = R/ϑ = 100 cm. Here, γ = 400,
R = 0.25 cm, ϑ = γ −1, ω ≈ 3.228 keV, 2θB = π .

to be even less due to the presence of the exponent). Under
condition R � γ /ω, this means ueff � ω/γ ∼ κ⊥. Thus, the
vector u can be neglected comparing to κ⊥ in the integrand
(excluding the exponent). This allows to calculate analytically
the integral with respect to angle between u and κ⊥ and present
the corresponding part of the radiation field (35) in the form

−2π

R

κ⊥ω2
peiωz1(1−κ2

⊥/2ω2 )

(κ2
⊥ + ω2/γ 2)(κ2

⊥ + ω2/γ 2 + ω2
p )

FR, (37)

where the function

FR = R

∫ ∞

0
du J1(uR)J0(uz1κ⊥/ω)e−iz1u

2/2ω (38)

depends on ω, R, z1, and the observation angle ϑ . Figure 11
shows (solid line) the example of z1 dependence for |FR|
for ε = 200 MeV and ϑ = γ −1 for ωPXR frequency (8). The
diameter of the target is chosen to equal 0.5 cm. As previously
we dwell on the case 2θB = π and put κ⊥ = ωϑ . The figure
shows that at z ≈ R/ϑ the contribution (37) of TR into
radiation field rapidly drops. At smaller z1, the value of |FR| is
close to unit and the finiteness of the target does not play any
role. The rapid oscillations here originate from the exponent
in the integrand of (38). Such oscillations are blurred after
integration with respect to ϑ and ω. Moreover at z1 � lv ,
which is presently the case, the value of the exponent under
discussion remains close to unit in the region of u, making the
main contribution to (38). Therefore, further we will substitute
e−iz1u

2/2ω → 1, which allows to calculate the integral in (38)
analytically and obtain

FR ≈ θ (Rω/κ⊥ − z1), (39)

where θ (x) is the Heaviside θ function which equals unit for
x > 0 and zero for x < 0. The dependence (39) is presented
on Fig. 11 by the dashed line.

With the use of (6), (34), (36), and (37) the expression for
radiation spectral-angular density from the finite target can be
obtained (z1 � lv):

d2W

dω do
= e2ω2

4π2
|ng|2|k×κ⊥|2S2

c

{
K ′2

c + K2
f |FR|2}. (40)

We neglect here the term describing the interference between
the fields (36) and (37), which at such large z1 is a rapidly
oscillating function of κ⊥ and ω and vanishes at averaging
over small intervals of these values.
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FIG. 12. Dependence of the integrated signal on distance z1

between the targets for electron energy ε = 200 MeV, R = 0.25 cm,
and 2θB = π . Integration over ω is made in the range ωPXR ± 3 eV.
Acceptance angle 2ϑ0 ≈ 6/γ ≈ 15 mrad. Dashed line: corresponding
asymptotic value at z1 � R/ϑ0.

Figure 12 shows the dependence of the yield (40) integrated
with respect to ω and ϑ for the acceptance angle 2ϑ0 ≈
6/γ . The electron energy is chosen to equal 200 MeV. The
considerations analogous to the ones presented in Sec. III B
show that presently it is enough to integrate with respect to
ω in the interval ωPXR ± 3 eV in order to take into account
almost all the radiated energy in the chosen angular region. In
the considered case, the formation length lv at ϑ = γ −1 equals
only about 10 μm. The figure shows that the finiteness of the
downstream target results in the dependence of the radiation
yield on distance between the targets for the values of this
distance of the order of lR , which is much larger than lv . This
distance can be macroscopically large even for not very high
energies of the electron (as the one chosen on Fig. 12). For a
certain value of the acceptance angle 2ϑ0 the decrease of the
signal begins at z1 = R/ϑ0. Since at the considered distances
(z1 � lv) significant amount of radiated energy is concentrated
at ϑ ∼ γ −1, the upper estimation of the distance on which the
x-ray reflex intensity decreases is lR ∼ Rγ . With the increase
of z1 within lR the yield gradually changes from the asymptotic
(z � lv) value for an infinite downstream target [obtained from
(29) and (26) with e−iz1/lv → 0] to the one typical for an
electron with Coulomb field impinging upon a single infinite
ultrathin target [obtained from (29) and (13)]. The difference
between these yields [corresponding to (13) and (26)] grows
with the increase of the electron energy.

Let us note that the sharp change of dWint/dz1 at z1 =
R/ϑ0 = 100 cm on Fig. 12 is attributed to the approximate
form (39) of the function FR , corresponding to the treatment
of TR from the upstream target in the framework of geometrical
optics. Presently, the value z1 = R/ϑ0 is the minimum one at
which the finiteness of the target begins being manifested.

V. CONCLUSIONS

In this paper we considered the process of x-ray emission
by an ultrarelativistic electron which normally crosses the
system of two targets in vacuum separated by distance z1.
The upstream target was assumed to be thick and amorphous
(having plasma frequency ηp) while the downstream one
ultrathin and crystalline (with plasma frequency ωp). It is
the radiation originated from the Bragg diffraction of the
electromagnetic field around the impinging electron in the
downstream target that was investigated (interfering sum of
PXR and DTR). Due to the electron preliminary traversal of the
upstream target, this field gradually evolves with the increase
of the distance from the target, which results in TR formation.
The stages of such evolution are described in detail.

At sufficiently high electron energies, the field evolution
takes place within macroscopically large distance lv ∼ γ 2/ω

and manifests itself in characteristics of the x-ray pulse
produced by the particle in the ultrathin downstream target.
In this case at z1 < ω/η2

p these characteristics are typical for
PXR from a thick crystal, having the same plasma frequency
ηp as the amorphous target, the characteristic width of the
reflex angular distribution being ∼ηp/ω and its yield being
independent on the electron energy. With the increase of z1

at z1 < lv , both the angular distribution and radiation yield
change and are not typical for x-ray pulse neither from thick nor
from ultrathin crystals. At z1 � lv , the angular distribution ac-
quires its final form (in the approximation of infinite transversal
size of the crystalline target) with characteristic angular width
∼γ −1 typical for ultrathin targets, however, the radiation yield
still exceeds the corresponding value for an impinging electron
with Coulomb field. It happens due to additional contribution
of TR generated upon the particle exit from the upstream target.

In Sec. IV the influence of the finiteness of the downstream
target transversal size upon radiation characteristics is studied.
It is shown that in practice in the considered process such
finiteness manifests itself on distances z1 � lv which can be
macroscopically large even at not very high electron energies.
It results in observable change of the radiation yield with
the increase of z1 at such distances, as a result of which the
mentioned additional TR contribution vanishes.
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