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Long-lived quantum coherences in a V-type system strongly driven by a thermal environment
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We explore the coherent dynamics of a three-level V-type system interacting with a thermal bath in the regime
where thermal excitation occurs much faster than spontaneous decay. We present analytic solutions of the Bloch-
Redfield quantum master equations, which show that strong incoherent pumping can generate long-lived quantum
coherences among the excited states of the V-type system in the overdamped regime defined by the condition
�/(n̄γ ) < f (p), where � is the excited-state level splitting, γ is the spontaneous decay rate, n̄ � 1 is the
effective photon occupation number proportional to the pumping intensity, and f (p) is a universal function
of the transition dipole alignment parameter p. In the limit of nearly parallel transition dipoles (p → 1) the
coherence lifetime τc = 1.34(n̄/γ )(�/γ )−2 scales linearly with n̄ and is enhanced by the factor 0.67n̄ with
respect to the weak-pumping limit [Phys. Rev. Lett. 113, 113601 (2014); J. Chem. Phys. 144, 244108 (2016)].
We also establish the existence of long-lived quasistationary states, which occur in the overdamped regime and
affect the process of thermalization of the V-type system with the bath, slowing down the approach to thermal
equilibrium. In the case of nonparallel transition dipole moments (p < 1), no quasistationary states are formed and
the coherence lifetime decreases sharply. The sharp transition between the different regimes of coherent dynamics
is due to an interplay between coherence-generating Fano interference and various coherence-destroying processes
(such as stimulated decay). Using a newly developed effective decoherence rate model, we find that in the limit
p → 1 the rates of coherence generation and decay are almost exactly balanced and the effective decoherence
rate is minimized, leading to long coherence lifetimes. Our results reveal new regimes of long-lived quantum
coherent dynamics, which could be observed in thermally driven atomic and molecular systems.
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I. INTRODUCTION

Relaxation and loss of coherence in multilevel quantum
systems caused by their interaction with a thermal environment
is a subject of paramount importance in many areas of physics
including quantum optics [1–3], quantum sensing [4], and
quantum information processing [5]. While interaction with
the environment is generally believed to destroy any quantum
coherence initially present in the system [1], recent theoret-
ical studies have challenged this point of view suggesting a
number of mechanisms for the generation of quantum (Fano)
coherences in multilevel systems driven by thermal noise
[6–16]. These mechanisms have attracted attention due to their
predicted ability to enhance the efficiency of quantum heat
engines [11,12] and as potential sources of nontrivial quantum
effects in photosynthetic light harvesting [13–15].

The noise-induced Fano coherences can be understood as
arising from quantum interference of the different incoherent
excitation pathways originating from the same initial state
[6,9]. The mathematical description of the interference effects
requires the use of nonsecular Bloch-Redfield (BR) theory,
in which populations and coherences are treated on the same
footing, leading to more complex dynamics than predicted
by the secular rate equations [13,14,17]. Such noise-induced
coherent dynamics are responsible for a number of remarkable
effects such as vacuum-induced coherence [18], enhanced
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efficiency of quantum heat engines [11,12], and long-lived
quasistationary states [13]. Note that the secular approximation
cannot be justified in systems with nearly degenerate energy
levels, where the system evolution time can be much longer
than the timescale of interest [13].

The three-level V-type system comprising a single ground
state coupled by the system-bath interaction to a pair of
excited states (see Fig. 1) serves as a minimal model of
a multilevel quantum system exhibiting nontrivial Fano co-
herence dynamics. This system has been extensively studied
in the weak-pumping limit (relevant for photosynthetic light
harvesting) where incoherent excitation occurs much more
slowly than spontaneous emission. In this limit, the coherent
dynamics of the V-type system is determined by the ratio
ζ = 1

2 (γa + γb)/�p, where �p =
√

�2 + (1 − p2)γaγb is the
renormalized excited-level splitting, γa and γb are the spon-
taneous decay rates, and p is the angle between the transition
dipole moments of the c → a and c → b transitions (see Fig. 1)
[14]. The two-photon coherences between the excited states of
the V-type system exhibit damped oscillations in the regime
where the excited levels are widely spaced (ζ � 1). In the
opposite regime of small level spacing (ζ � 1), the coherences
evolve monotonously and can survive for an arbitrarily long
time τc = 2

√
γaγb/�

2
p [13,14].

While the weak pumping regime of noise-induced coherent
dynamics is well understood [9,13–15], much less is known
about the opposite limit where incoherent excitation occurs
much faster than spontaneous decay. The strong pumping
regime is central to the theory of quantum heat engines,
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FIG. 1. A schematic depiction of the three-level V-type system
characterized by the excited-state energy splitting � = ωab, the
rates of spontaneous decay into the vacuum modes of the bath
γi (i = a,b), and the thermal pumping rates ri = γi n̄. The factor
p = �μac · �μbc/| �μac|| �μbc| quantifies the alignment of the transition
dipole moment vectors �μac and �μbc.

where quantum coherence has been predicted to enhance the
engine’s efficiency [11,12]. Accordingly, the generation and
steady-state properties of quantum coherences in this regime
have been studied in closed-cycle quantum heat engine models
[11] and in the degenerate �-type system [10]. However, these
studies did not explore the time dynamics of the coherences as
a function of the system’s excited-state splitting and radiative
decay rates. In addition, the quantum heat engine studies
[11,12] considered a more complex case of a five-level system
interacting with two baths, where the coherences emerge
as a result of nonequilibrium transport dynamics involving
both of the baths. This leaves open the question of whether
strong incoherent driving can generate coherences in mul-
tilevel quantum systems interacting with a single thermal
bath.

Here we address this question by presenting a theoretical
analysis of the quantum dynamics of a V-type system strongly
driven by a thermal bath. We derive closed-form analytic so-
lutions of the Bloch-Redfield (BR) quantum master equations,
which show that (1) quantum coherences can be generated by
strong incoherent driving provided that the transition dipole
moments of the V-type system are nearly perfectly aligned,
(2) the coherence lifetime scales linearly with the pumping
intensity n̄ and quadratically with the inverse excited-level
spacing γ /�, and (3) the long-lived coherences occur in
conjunction with quasisteady states, in which excited-state
populations deviate strongly from those in thermodynamic
equilibrium. These results suggest the possibility of observing
long-lived coherence dynamics in strongly driven Rydberg
atoms and polyatomic molecules. Significantly, we reveal
a sharp transition between the long-lived and short-lived
coherence regimes, which occurs as the transition dipole
alignment parameter p is decreased below a critical value
pc � 1. To elucidate the physical origin of our results, we
develop an effective decoherence rate model, which accounts
for the processes responsible for the formation and decay of
Fano coherences, and provides a qualitative explanation of the
observed coherent dynamics and its sharp variation with p.

This paper is structured as follows. In Sec. II we present
the theoretical formalism based on the BR master equations
and outline the procedure of their analytical solution. The
dynamical regimes of the strongly driven V-type system are
classified in Sec. II B. Section II C presents our analytical
results for noise-induced coherence lifetimes and gives a
preliminary discussion of the populations and coherences.
Section II D introduces the effective decoherence rate model,
which is then used to clarify the physical origin of the dif-
ferent dynamical regimes. Section II E compares the strongly
driven and weakly driven regimes of noise-induced coherent
dynamics. Section IV summarizes the main findings of this
work and outlines an experimental scenario for observing the
noise-induced coherences.

II. THEORY

A. Bloch-Redfield equations and their general solution

Consider a three-level V-type system weakly coupled to
a thermal environment (see Fig. 1). The system resides in
the ground state |c〉 [i.e., ρcc(0) = 1] before the system-
environment coupling is suddenly turned on at t = 0, leading
to the population transfer to the excited states |a〉 and |b〉.
To describe the time evolution of the system, we use a
quantum master equation approach based on the Liouville–von
Neumann equation for the density operator of the system+bath
complex [1,2,19]. Neglecting the system-bath correlations,
tracing over the bath modes, and adopting the Markov ap-
proximation for bath correlation functions, we arrive at the
Bloch-Redfield (BR) master equation for the reduced density
matrix of the V-type system [8,9,13,14]

ρ̇ii = −(ri + γi)ρii + riρcc − p(
√

rarb + √
γaγb)ρR

ab, (1)

ρ̇ab = −1

2
(ra + rb + γa + γb)ρab − iρab�

+ p

2

√
rarb(2ρcc − ρaa − ρbb) − p

2
√

γaγb(ρaa + ρbb),

(2)

where a, b, and c are the system’s energy eigenstates, the two-
photon coherence ρab = ρR

ab + iρI
ab is given as a sum of its

real and imaginary parts, and we have used the conservation
of probability condition to express ρcc = 1 − ρaa − ρbb.

The BR equations are parametrized by the excited-state
energy splitting � = ωab (see Fig. 1), the system-bath cou-
pling parameters γi (i = a,b) which determine the rate of
spontaneous decay into the vacuum modes of the bath, and
the (pseudo)thermal pumping rates ri = γin̄ [16], where n̄

is the effective occupation number of thermal modes at the
transition frequency ωac (see Fig. 1). In thermal equilibrium,
n̄ = (eβω0 − 1)−1, where β = 1/kBT , T is the temperature
of the bath, and kB is Boltzmann’s constant. An important
parameter p = �μac · �μbc

| �μac|| �μbc| quantifies the alignment of the tran-
sition dipole moment vectors �μac and �μbc [8,9,13,14]. We
will show that the solutions of the BR equations tend to be
extremely sensitive to the value of p. Note that for p = 0, the
BR equations reduce to the standard Pauli rate equations, which
give coherence-free dynamics [8,9,13,14]. We will therefore
focus on the nontrivial case of p 	= 0.
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The BR quantum master equations (1) generally describe
the dynamics of the V-type system weakly interacting with
stochastic bosonic fields, such as photons or phonons [2].
Here we will consider the BR equations in a quantum optical
context, relevant to the incoherent light excitation of quantum
heat engines in the strong pumping limit n̄ � 1. We can then

identify γi = ω3
ci | �μci |2

3πε0 h̄c3 with the spontaneous emission rate of
the excited level i = a,b. Furthermore, ri = BiW (ωci) are
the incoherent pumping rates of |c〉 ↔ |i〉 transitions with
Bi = π | �μci |2

3ε0 h̄
2 being the Einstein’s B coefficients and W (ωci)

is the intensity of the incident blackbody radiation at the
corresponding transition frequencies. Finally, ri = n̄γi are the
incoherent absorption rates defined in terms of the effective
photon occupation number n̄ = BiW (ωci)/γi [9,13,16], which
is proportional to the pumping intensity.

A comment is in order regarding the validity of the BR
quantum master equations in the strong-pumping limit. The
weak-coupling assumption underlying the BR equations holds
as long as the system-bath coupling (as quantified by the
incoherent pumping rates r) is much smaller than the energy
gap ωac between the ground and excited energy eigenstates
(see Fig. 1). This condition is well satisfied for typical optical
frequencies (ωac ∼ 106 GHz [2]) and incoherent pumping
rates (ri = 1–103 GHz) corresponding to the effective photon
occupation numbers n̄ = 10–103 typically used in few-level
models of quantum heat engines [11,12,20,21]. Thus, the
strong-pumping condition r � γ is consistent with the weak-
coupling limit. In contrast, the Markovian assumption is ex-
pected to break down at very large pumping rates approaching
the inverse bath correlation times 1/τc. In this limit, the BR
equations remain valid as long as ri � 1/τc. For incoherent
pumping with solar light (τc ∼ 1.3 fs), this condition implies
n̄ � 1/(τcγi) � 106, which is much larger than the effective
photon occupation numbers considered here (n̄ = 102–103).
Following previous theoretical work [11,12,20,21], we neglect
multiphoton transitions originating from the excited states of
the V-type system.

Here we consider the case of a symmetric V-type system,
where γa = γb = γ , ra = rb = r, and hence ρaa(t) = ρbb(t)
[13]. The imposed symmetry simplifies the analytical solution
of the BR equations to a great extent, while retaining the essen-
tial features of the dynamics [13,14]. The BR master equations
for the symmetric V-type system (1) can be expressed in
matrix-vector form

ẋ(t) = Ax(t) + d, (3)

where x(t) = [ρaa(t),ρR
ab(t),ρI

ab(t)]T is the state vector in the
Liouville representation, where the elements of a N × N

density matrix are represented by a vector of dimension N2

[19], and d = [r,pr,0]T is the driving vector. Note that the
state vector excludes the ground-state population and the one-
photon coherences ρac and ρbc, which evolve independently
[8]. The coefficient matrix A in Eq. (3) is given by

A =
⎡
⎣ −(3r + γ ) −p(r + γ ) 0

−p(3r + γ ) −(r + γ ) �

0 −� −(r + γ )

⎤
⎦. (4)

The general solution of the system of inhomogeneous
differential equations (3) may be obtained as [22]

x(t) = eAt x0 +
∫ t

0
dseA(t−s)d(s), (5)

where x0 specifies the initial conditions for the density matrix,
and d(s) is the driving vector defined above. Since our interest
here is in the generation of noise-induced Fano coherences
by incoherent driving, we choose a coherence-free initial state
ρcc(t = 0) = 1, or x0 = (0,0,0)T , corresponding to the V-type
system initially in the ground state. The exponent of matrix
A in Eq. (5) and the density matrix dynamics x(t) can be
evaluated analytically in the limit n̄ � 1 by expanding the
matrix elements in the small parameter x = 1/n̄ as described
in the Appendix.

B. Dynamical regimes

The behavior of the general solution of the BR equations (5)
is determined by the eigenvalue spectrum λk of the coefficient
matrix A. While the spectrum can be obtained analytically
as described below and in the Appendix, its general features
can be understood by examining the discriminant D of the
characteristic equation for A,

D = B3 + [
C − 3

2A(B + A2)
]2

, (6)

where

A = 1
3 (5r + 3γ ),

B = 1
3 [�2 + (r + γ )2 + (2 − p2)(r + γ )(3r + γ )] − A2,

C = 1
2 (3r + γ )[�2 + (1 − p2)(r + γ )2] + A3. (7)

The above expressions are valid for all p.
Depending on the sign of D, three dynamical regimes can

be distinguished:
(1) Underdamped regime (D > 0). If the discriminant (6)

is positive, one of the eigenvalues of A is real and the other two
eigenvalues are complex. The corresponding normal modes
include an exponentially decaying eigenmode and two oscillat-
ing eigenmodes. Using the analogy with the damped harmonic
oscillator [14], we will refer to this regime as underdamped.

(2) Overdamped regime (D < 0). If the discriminant (6) is
negative, all of the eigenvalues λk are real with Re(λk) < 0,
and thus all normal modes decay exponentially. Following our
previous work [14], we will refer to this regime as overdamped.

(3) Critical regime (D = 0). If the discriminant (6) van-
ishes, all of the eigenvalues λk are real with at least two of them
being equal. This is the critical regime [14], which marks a
transition between the underdamped and overdamped regimes.

To classify the dynamical regimes of the strongly driven
V-type system, we therefore need to identify the regions
of the parameter space where the discriminant (6) takes on
positive and negative values. As shown in the Appendix, the
discriminant can be expressed as a polynomial function of the
occupation number n̄ = r/γ ,

D = γ 6

108

6∑
k=0

dkn̄
k, (8)
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FIG. 2. (a) Lines of zero discriminant separating the overdamped
(D < 0) from underdamped (D > 0) regions for large �/γ and
n̄. The overdamped behavior occurs in the bottom right corner of
the plot, where �/γ � n̄. (b) A zoom into the small (�/γ , n̄)
region. Regions below the zero-D lines correspond to overdamped
dynamics; those above the zero-D lines correspond to underdamped
dynamics.

where the coefficients dk depend on the ratio �/γ of the
excited-state splitting to the radiative decay rate and the
transition dipole alignment factor p.

Figure 2 shows the lines of zero discriminant separating the
overdamped (D < 0) from underdamped (D > 0) regimes as
a function of the average photon occupation number n̄ and the
excited-state energy splitting �/γ for selected values of p. A
contour plot of the discriminant is shown in Fig. 3. We observe
that when both n̄ and �/γ are large, the solution of the equation
D = 0 is given by the straight line �/γ = f (p)n̄. It can be
shown analytically (see the Appendix) that the slope of the
line f (p) is a function of p only. While an explicit expression
for the slope function f (p) can be obtained analytically by
solving the equation D = 0 [see Eq. (A21) of the Appendix] it
is extremely cumbersome. A plot of f (p) presented in Fig. 4(a)
shows that the slope function increases monotonically from 0
to 0.6 as p is varied between 0 and 1.

As illustrated in Fig. 3(a), the discriminant is positive in
the underdamped region above the zero-D lines, where the
coherences exhibit damped oscillations. Below the D = 0
lines, the sign of D changes from positive to negative and the
V-type system enters the overdamped regime, with coherences
evolving monotonously as a function of time. Since, as shown
above, the zero-D lines are described by �/γ = f (p)n̄ at large
n̄ and �/γ , the dynamical regimes of the strongly driven V-
type system can be classified based on a single dimensionless
parameter �/(n̄γ ) = �/r . The overdamped regime is defined
by the condition �/(n̄γ ) < f (p), whereas the underdamped
regime is defined by �/(n̄γ ) > f (p). For perfectly aligned
transition dipole moments, we have f (1) = 0.6 [see Fig. 4(a)]

x
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(a) (b)

FIG. 3. (a) A contour plot of the discriminant D for large �

γ
and n̄

andp = 1.0. (b) A zoom into the region close to the origin ( �

γ
� 1 and

n̄ � 1 for p = 1.0). Regions of negative D correspond to overdamped
dynamics; those of positive D correspond to underdamped dynamics.

FIG. 4. (a) The universal function f (p) that defines the boundary
between the underdamped and overdamped regimes of the strongly
driven V-type system. (b) ε = 1 − pc (solid black line) as a function
of �/γ for n̄ = 103 with pc = √

1 − �2/r2 � 1 − 1
2

�2

r2 in the over-
damped limit. The value of ε = 1 − pc (dashed red line) predicted by
the effective decoherence rate model (Sec. II D) for the same value
of n̄.

and the overdamped regime occurs for �/(n̄γ ) < 0.6. As the
transition dipoles get out of alignment, the function f (p)
decreases, and smaller values of � are needed to reach the
overdamped regime for a given n̄. For instance, at p = 1/2
the overdamped regime is reached for �/(n̄γ ) < 0.16 as
illustrated in Fig. 2(a), which shows that the slopes of the
D = 0 lines decrease proportionally to p.

Figures 2(a) and 2(b) show that the overdamped regime
becomes progressively more widespread with increasing the
pumping intensity n̄. For large values of p � 1 and n̄ � 10
of interest here, the underdamped regime is reached only at
very large excited-state splittings (�/γ � 10). In contrast,
incoherent excitation of large molecules with dense spectra
of rovibrational levels [13] and quantum heat engines [11,12]
typically occurs in the small level spacing regime �/γ � 1.
This is the regime we will consider in the remainder of this
paper.

As shown in Fig. 2(b), the zero-D lines approach constant
values �/pγ in the weak pumping limit (n̄ → 0). This implies
that in this limit, the boundary between the overdamped and
underdamped dynamical regimes is defined by the condition
�/pγ = 1, which is consistent with our previous results
[13,14]. It is worth observing that the zero-D lines in Fig. 2(b)
curve downward as n̄ increases from zero to n̄ ∼ 0.01. The
reason for this is that the linear term (d1n̄) in Eq. (8) becomes
negligible compared to the zeroth- and second-order terms and
the discriminant is given by D = γ 6

108 (d0 + d2n̄
2). At higher

values of n̄ ∼ 0.1, the zero-D lines reach a minimum and
then start to approach their large-n̄ limiting values as discussed
above.

C. Eigenvalues and coherence lifetimes

As discussed in Sec. II A, in order to obtain the general
solution of the BR equations (5), it is necessary to find the
exponent of the coefficient matrix A. To this end, we first
diagonalize A to obtain the eigenvalues λk , which give the
inverse lifetimes (or decay rates) of the corresponding normal
modes V k [13,14]. Expanding the characteristic equation for
A in terms of the small parameter x = γ /r = 1/n̄ (see the
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FIG. 5. Relative contributions of the different terms to the eigenvalues λ1 (a), λ2 (b), and λ3 (c) plotted as a function of p for �/γ = 10−1,
n̄ = 103. The absolute values of zjkx

k are plotted because the zjk can take negative values. The nonstandard notation in (b) is used to represent
values of p very close to unity, i.e., 0.5 × 10−8 + 0.99999999 = 0.999999995.

Appendix) we obtain the eigenvalues as

λj = r

8∑
k=0

zjkx
k (j = 1,2,3). (9)

This expansion is valid for x � 0.01 and p > 0.1 (for �/γ <

1) and 0.89 < p < 1 (for �/γ > 1).
In the overdamped regime, where �

γ n̄
� f (p), the expan-

sion (9) converges rapidly. Keeping the lowest-order terms, we
find to excellent accuracy

λj = r[zj0 + zj1x + zj2x
2], (10)

where the expressions for the coefficients zjk in terms of the
system parameters p, �/γ , and n̄ are (see the Appendix)

K = 3

√
(8 + 27p2)

27
+

√
p4(1 + 3p2)

3
i,

zj0(p) = 5

3
− αj

3K

(
4

3
+ 3p2

)
− βjK,

zj1(p) = −1 − αj

3K
4p2 +

[
αj

3K

(
4

3
+ 3p2

)
− βjK

]
v1,

zj2(p) = fj1(p)

(
�

γ

)2

+ fj2(p), (11)

and the parameters K , v1, and fjk(p) are listed in Tables I,
II, and IV of the Appendix. Here αj and βj are the cube
roots of unity with values (α1,β1) = (1,1), (α2,β2) = (ω2,ω),

(α3,β3) = (ω,ω2) with ω = (−1+i
√

3)
2 and ω2 = (−1−i

√
3)

2 . Note
that since these parameters depend on p only, the coefficients
zj1 and zj0 are independent of the ratio of the excited-state
splitting to the radiative decay rate �/γ . In contrast, the
coefficient of x2 in Eq. (10) carries an explicit quadratic
dependence on �/γ .

In order to compare the relative importance of the different
terms in Eq. (10), we plot in Fig. 5 the p dependence of |zjkx

k|
for k = 0–2. Figures 5(a) and 5(c) show that z10 provides the
dominant contribution to λ1 and z30 provides the dominant
contribution to λ3 for all p, and we can thus approximate

λj = rzj0 = (γ zj0)n̄ (j = 1,3), (12)

where zj0(p) are given by Eq. (11). The scaling behavior given
by Eq. (12) is illustrated in Fig. 6(b), which shows that the
eigenvalues λ1 and λ3 are independent of �/γ regardless of
the value of p.

Remarkably, however, this is not the case for the eigenvalue
λ2: As shown in Fig. 5(b) there is a critical value of p = pc

at which the curves z20(p) and z22(p)x2 cross and the relative
contributions of the different terms to λ2 change dramatically.
At p < pc, z20(p) is the dominating term so λ2 scales in the
same way as the other eigenvalues (12). Forp > pc, the leading
term is z22x

2 and hence the scaling of λ2 with �/γ is quadratic,
the same as that of z22 [see Eq. (11)]. The critical value of
p depends on �/γ and n̄ and ranges from 0.995 to 1.0 for
n̄ = 103 and �/γ = 102–10−2 [see Fig. 4(b)]. The remarkable
sensitivity of the second eigenvalue to the transition dipole
alignment parameter p shown in Fig. 5(c) leads to qualitatively
different population and coherence dynamics for p < pc and
p > pc as shown below.

At p > pc, the quadratic contribution to the second eigen-
value is much larger than the linear and constant terms, and
hence λ2 � rzj2(γ /r)2. Combining Eqs. (10) and (11) and
noting that f22(p) → 0 for p > pc, we find

λ2 = γ

n̄
f21(p)

(
�

γ

)2

. (13)

The distinct quadratic scaling of λ2 with �/γ is illustrated in
Fig. 6(a). The function f21(p) (see the Appendix) increases
monotonously approaching the value −0.749 in the limit
p→1. As the second eigenvalue gives the decay rate of the
real part of the coherence (see Sec. II A) the coherence lifetime
τc = 1/|λ2| is given by

τc = 1.34
n̄

γ

(
�

γ

)−2

(p > pc). (14)

FIG. 6. (a) The eigenvalues λj (j = 1–3) of matrix A plotted vs
�/γ for n̄ = 103 and p = 1. (b) Same as in (a) but for n̄ = 103 and
p = 0.9.
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FIG. 7. Excited-state population [(a) and (d)] and coherence [(b), (c), (e), and (f)] dynamics of the symmetric V-type system irradiated by
incoherent light for n̄ = 102 and �/γ = 1 (solid blue line) and 10 (dashed red line). The transition dipole alignment parameter p is set to 1
[(a)–(c)] and to 0.9 [(d)–(f)]. The analytical solutions of the BR equations given by Eqs. (27)–(29) and (30)–(32) (not shown) are indistinguishable
from those shown in (a)–(c) and (d)–(f).

Mathematically, the linear scaling of the coherence life-
time is a direct consequence of the second eigenvalue being
dominated by a single z22x

2 contribution as shown in Fig. 5(b).
This characteristic scaling occurs only for p > pc with pc =
1 − ε very close to unity [typical values of ε range from
5 × 10−11 to 5 × 10−3 for n̄ = 103 as shown in Fig. 4(b)].
Thus, the V-type system with nearly parallel transition dipole
moments can exhibit very long coherence times in the strong
pumping limit.

For subcritical transition dipole alignment (p < pc), the
coherence lifetime becomes

τc = 1

γ z20(p)
n̄−1 (p < pc). (15)

The coherence lifetimes thus become shorter with increasing
the pumping intensity, in stark contrast with the situation in
the supercritical regime (p > pc), where the lifetimes increase
linearly with n̄ (14). Since z20(p) is independent of �/γ , the
coherence lifetime in the subcritical regime is insensitive to
the excited state level splitting.

Figures 7 and 8 illustrate the different regimes of strongly
driven coherent dynamics as a function of the excited-state
level splitting �/γ , the incoherent pumping rate n̄, and the
transition dipole alignment parameter p. In the supercritical
regime (p > pc) the real and imaginary coherences approach a
constant “plateau” value before decaying to zero. Figures 7(b),
7(c) and 8 show that the lifetime of the long-lived coherent
state increases with n̄ and decreases with �/γ in accordance
with Eq. (14). Remarkably, the population dynamics shown
in Fig. 7(a) reaches a long-lived quasisteady state, in which
the populations of the excited levels (ρaa = 1/4) are different
from those in thermal equilibrium (ρaa = 1/3). As discussed
in more detail in Sec. III B, the lifetime of the quasisteady state
is the same as that of the coherences in Eq. (14). Figures 7(b)
and 7(c) show that in the supercritical regime (p > pc), the

coherence lifetime τc increases linearly with n̄ and decreases
proportionally to (�/γ )2 as given by Eq. (15). The coherence
dynamics in the subcritical regime depicted in the bottom
panels of Figs. 7 and 8 is in sharp contrast with that in the
supercritical regime (top panels of Figs. 7 and 8). We observe
that the coherence lifetime calculated for p < pc actually
decreases with n̄ and becomes insensitive to �/γ as predicted
by Eq. (15). In the following, we will first analyze the physical
reason behind these surprisingly different regimes of coherent
dynamics, and then return to the discussion of populations,
coherences, and quasisteady states in Sec. III.

D. Physical basis for long-lived Fano coherences:
The effective decoherence rate model

To clarify the physical origin of the long coherence times
observed in Figs. 7 and 8, consider the competition between
the various generation and decay processes described by the
BR master equations (1). First, we note that in the strong-
pumping limit, incoherent excitation occurs much faster than
spontaneous decay (r � γ ), so we can neglect the terms
proportional to γ to obtain the following simplified system
of BR equations for the real and imaginary parts of the Fano
coherence ρab = ρR

ab + iρI
ab,

ρ̇R
ab = −rρR

ab + pr(ρcc − ρaa) + ρI
ab�, (16)

ρ̇I
ab = −rρI

ab − ρR
ab�. (17)

These equations describe the production and decay of Fano
coherences ρab due to quantum interference between the
incoherent excitation pathways c → a and c → b originating
from the ground state [23–25]. The coherence generation
rate prρcc is proportional to the transition dipole alignment
parameter p [23,24], which quantifies the extent of interference
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FIG. 8. Excited-state population [(a) and (d)] and coherence [(b), (c), (e), and (f)] dynamics of the symmetric V-type system irradiated
by incoherent light for n̄ = 103 (solid red line), n̄ = 102 (dashed blue line), and �/γ = 10. The transition dipole alignment parameter p is
set to 1 [(a)–(c)] and to 0.9 [(d)–(f)]. The analytical solutions of the BR equations given by Eqs. (27)–(29) and (30)–(32) (not shown) are
indistinguishable from those shown in (a)–(c) and (d)–(f).

between the two transitions [23,24]. Significantly, only the real
part of the coherence is generated directly via the interference
process. The imaginary coherence is decoupled from the pop-
ulation dynamics to first order, but can still exhibit nontrivial
evolution due to coupling to the real coherence through the
ρR

ab� term in Eq. (17). Once generated, the coherences evolve
unitarily in time according to the terms proportional to � and
decay via stimulated emission described by the term −rρab.
An additional interference term pr(ρcc − ρaa) in Eq. (16) is
proportional to the population difference between the ground
and excited levels.

To illustrate the interplay between the coherence-generating
and coherence-destroying mechanisms, we plot in Fig. 9 the

FIG. 9. Population and coherence dynamics of the symmetric V-
type system in the strong-pumping limit (upper panels, n̄ = 103) for
�/γ = 10 and in the weak-pumping limit (lower panels, n̄ = 10−3)
for �/γ = 10−2. The transition dipole alignment parameter p is set
to 1 [(a) and (c)] and to 0.9 [(b) and (d)].

time evolution of the populations and coherences that enter
Eq. (16). The decay of the ground-state population ρcc is
accompanied by a steady growth of excited-state populations
and coherences. In the quasisteady state that is formed on the
timescale 1/r < t < τc (see above and Sec. III B) the pop-
ulation inversion term ρcc − ρaa drives coherence generation.
From Fig. 9 we observe that in the quasisteady state (1) the time
evolution of the population difference ρcc − ρaa is identical to
that of the real part of the coherence ρR

ab and (2) the imaginary
part of the coherence remains constant in time. Setting the
left-land side of Eq. (17) to zero, we obtain the imaginary
part of the quasisteady coherence as ρI

ab = −(�/r)ρR
ab (we

verified this result numerically in the overdamped regime).
These considerations allow us to simplify Eq. (16) to yield

ρ̇R
ab = −r

(
1 − p + �2

r2

)
ρR

ab (t > 1/r), (18)

which describes coherence decay on the timescale t > 1/r

(note that coherence generation occurs on shorter timescales
given by t � 1/r). The simple form of Eq. (18) enables us to
introduce an effective decoherence rate γ eff

d (p) = r(1 − p +
�2

r2 ) and an effective coherence lifetime

τ eff
d = 1

r
(
1 − p + �2

r2

) . (19)

The effective decoherence rate model thus establishes that the
lifetime of noise-induced coherences is determined by two
mechanisms: (1) the interplay between coherence-generating
Fano interference and stimulated decay discussed above [the
term r(1 − p)] and (2) the coupling between the real and
imaginary parts of the coherence (the term �2/r). The second
mechanism is due to the unitary interconversion between the
real and imaginary parts of the coherence, which occurs at a
rate �. Because the imaginary coherence decays at a rate r
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[Eq. (17)], this unitary interconversion makes a small second-
order contribution to the overall decay rate proportional to �2.
The two mechanisms contribute equally for p = peff

c where

peff
c = 1 − �2

r2
, (20)

which is not too far from the exact result shown in Fig. 4(b).
Our expression for the effective coherence lifetime (19)

clarifies the physical origin of the different regimes of coherent
dynamics discussed in the previous section. At p > peff

c the
term r(1 − p) is small compared with �2/r , the rate of
coherence generation (via Fano interference) and decay (via
incoherent stimulated emission) are almost exactly balanced.
As a result, the effective decoherence rate is dominated by
the second-order mechanism (2) and Eq. (19) yields τ eff

d =
r/�2 = n̄γ /�2, which is identical to the exact result (14) to
within the factor 1.34. Remarkably, the effective decoherence
rate model correctly predicts the linear scaling of the coherence
lifetime with both n̄ and �/γ in the p > pc regime.

At p < peff
c , the rate of coherence decay exceeds that

of coherence generation, the term r(1 − p) dominates, and
the effective coherence time is determined by the interplay
between Fano interference and stimulated decay. From Eq. (19)
we obtain τ eff

d = 1
r(1−p) , again consistent with the exact result

(15) to within a numerical factor. As in the limit p → 1,
the effective decoherence model correctly predicts the inverse
scaling of the coherence lifetime with n̄ in the p < pc regime.

In closing, we note that in view of Eq. (19) the transition
dipole alignment parameter p can be thought of as controlling
the relative contribution of mechanisms (1) and (2) to the
overall effective decoherence rate (19). In the strong-pumping
regime of interest here, mechanism (1) is much more efficient
in destroying the coherence than mechanism (2). Fortunately,
mechanism (1) is p dependent and can be suppressed by taking
p → 1, leading to the long-lived coherent regime governed by
mechanism (2).

E. Comparison with the weak-pumping limit

It is instructive to compare the coherence time of the V-type
system in the strong-pumping and weak-pumping regimes. In
the small level spacing regime (�/γ < 1), the coherence time
under weak pumping [13,14]

τWP
c = 2

γ

(
�

γ

)−2

(21)

exhibits the same (�/γ )−2 scaling as in the strong-pumping
regime [13,14], becoming longer as the excited-state energy
gap � narrows down. The ratio of the coherence times in the
strong- and weak-pumping limits is thus, for p > pc,

τc

τWP
c

� 0.67n̄. (22)

The enhancement of the coherence lifetime under strong
pumping (n̄ > 1.5) may facilitate the experimental observation
of the noise-induced coherences in atomic systems [26].

We now apply the effective decoherence rate model in the
weak-pumping limit, where the BR equation

ρ̇ab = pγ (n̄ρcc − ρaa) − γρab + i�ρab (23)

can be simplified to give for t > 1/γ ,

ρ̇R
ab = −

[
(1 − p)γ + �2

γ

]
ρR

ab, (24)

Here we used the relation between the real and imaginary
coherences in the quasisteady state ρI

ab = −(�/γ )ρR
ab and

the relationship n̄ρcc − ρaa = ρR
ab illustrated in Fig. 9(c).

The coherence time in the weak-pumping limit immediately
follows from Eq. (24),

τWP
c = 1

γ (1 − p) + �2

γ

. (25)

The effective decoherence rate is composed of contributions
due to (1) the interplay between Fano interference and spon-
taneous decay and (2) the coupling between the real and
imaginary parts of the coherence. This is similar to the strong
pumping case considered in Sec. II D; the only difference
is that mechanism (1) is due to spontaneous, rather than
stimulated decay. The relative importance of mechanisms (1)
and (2) depends on the value of p. At p > pWP

c the second
contribution dominates, and Eq. (25) gives τc = γ /�2 in
agreement with our previous result (21) to within a factor
of 2 [13,14]. At p < pc the first contribution dominates and
the coherence time is given by 1/(1 − p)γ . The transition
between the two regimes occurs atpWP

c = 1 − �2/γ 2, which is
close to the exact value pWP

c =
√

1 − �2/γ 2 � 1 − �2

2γ 2 [14].
Note that in the overdamped regime of the weakly driven
V-type system (�/γ � 1 [13,14]) the value of pc is very
close to unity, reflecting the dominance of the spontaneous
decay mechanism represented by the term γ (1 − p) over the
second-order coherence transfer mechanism represented by the
term �2/γ over much of the p range. This is similar to the
situation encountered for the strongly driven V-type system,
where the competing mechanisms are stimulated decay and
second-order coherence transfer.

III. POPULATION AND COHERENCE DYNAMICS

A. Analytic solutions in the overdamped regime
[�/(n̄γ ) < f ( p)]

Having classified the dynamical regimes of the strongly
driven V-type system and analyzed the relevant eigenmodes,
we now turn to the time evolution of the density matrix
elements. From Eq. (5), we obtain as shown in the Appendix

ρij (t) = r

det(M)

3∑
k=1

(eλkt − 1)

λk

Vk,n(i,j )(Tk1 + pTk2), (26)

where n(i,j ) = 1 for the excited-state population (i = j = a)
and n(i,j ) = 2(3) for the real (imaginary) part of the two-
photon coherence (i = a,j = b). The density matrix elements
in Eq. (26) are expressed as a linear combination of exponen-
tially decaying terms, weighted with the components Vkj of
eigenvectors of A (which form the fundamental matrix M) and
the elements of its adjoint matrix Tkj , which depend on p only.

To express the density matrix dynamics in terms of the
physical parameters �/γ , n̄, and p, we evaluate the eigen-
vector components Vkj and Tkj in Eq. (26) as described in the
Appendix and use the resulting expressions in Eq. (5) to obtain
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for p > pc,

ρaa(t) = 1[−4 + 1.33 1
n̄2

(
�
γ

)2]
{[

−4 + 2.92
1

n̄2

(
�

γ

)2
]

(1 − e−4γ n̄t )

4
−

(
1 − e

−0.75 γ

n̄
( �

γ
)2t

)
3

+ 0.44
1

n̄2

(
�

γ

)2

(1 − e−γ n̄t )

}
,

(27)

ρR
ab(t) = 1[−4 + 1.33 1

n̄2

(
�
γ

)2]
{[

−4 + 3.249
1

n̄2

(
�

γ

)2
]

(1 − e−4γ n̄t )

4
+ (

1 − e
−0.75 γ

n̄
( �

γ
)2t

) − 0.89
1

n̄2

(
�

γ

)2

(1 − e−γ n̄t )

}
,

(28)

ρI
ab(t) = 1[−4 + 1.33 1

n̄2

(
�
γ

)2] 1

n̄

(
�

γ

){[
−1.33 + 0.99

1

n̄2

(
�

γ

)2
]

(1 − e−4γ n̄t )

4

− (
1 − e

−0.75 γ

n̄
( �

γ
)2t

) +
[

1.33 − 0.25
1

n̄2

(
�

γ

)2
]

(1 − e−γ n̄t )

}
. (29)

The second term on the right-hand-side of Eq. (28) represents the slowly decaying coherent mode, the eigenvector of the coefficient
matrix A corresponding to the eigenvalue λ2 which gives the decay rate of the real part of coherence. As discussed below, this
coherent mode also manifests itself in the time evolution of excited-state populations (27). The lifetime of the coherent mode
scales as n̄(�/γ )−2, leading to arbitrarily long coherence lifetimes for small excited-state splittings. In contrast, the first and third
terms on the right-hand side of Eqs. (27)–(29) decay much faster, with lifetimes proportional to 1/n̄.

For subcritical transition dipole alignment (p < pc) the population and coherence dynamics take the form

ρaa(t) = 1

D

{
2∑

k=1

A2k−1(p)
1 − e−γ |zk0|n̄t

|zk0| + 1

n̄2

(
�

γ

)2
[

2∑
k=1

A2k(p)
1 − e−γ |zk0|n̄t

|zk0| + A5
1 − e−γ |z30|n̄t

|z30|

]}
, (30)

ρR
ab(t) = 1

D

{
2∑

k=1

B2k−1(p)
1 − e−γ |zk0|n̄t

|zk0| + 1

n̄2

(
�

γ

)2
[

2∑
k=1

B2k(p)
1 − e−γ |zk0|n̄t

|zk0| + B5
1 − e−γ |z30|n̄t

|z30|

]}
, (31)

ρI
ab(t) = 1

D

1

n̄

(
�

γ

){
3∑

k=1

C2k−1(p)
1 − e−γ |zk0|n̄t

|zk0| + 1

n̄2

(
�

γ

)2 3∑
k=1

C2k(p)
1 − e−γ |zk0|n̄t

|zk0|

}
, (32)

where D = T1(p) + T2(p) 1
n̄2 ( �

γ
)2 and the coefficients Ai(p),

Bi(p), and Ci(p) are plotted in Fig. 10 as a function of p. Note
that, in contrast to the p > pc case considered above, all of the
exponential terms on the right-hand side of Eqs. (30)–(32) scale
linearly with n̄ and are independent of �/γ (see Sec. II B).
The coherence dynamics given by Eqs. (30)–(32) is thus much
more short lived than that observed in the case of nearly parallel
transition dipole moments.

Our analytical results (30)–(32) for the time evolution of
the populations and coherences are identical to the numerical
solutions of the BR equations (1) shown in Figs 7 and 8.
A sudden turn-on of incoherent pumping at t = 0 initiates
population transfer from the ground state to the excited
eigenstates and generates two-photon coherences among them.
The excited-state populations reach a plateau and then grow
monotonously to their equilibrium steady-state values ρaa =
ρbb = ρgg = 1/3 as discussed in detail in the following section.

The real and imaginary parts of the two-photon coherence
shown in Figs. 7(b) and 7(c) grow monotonously, reaching a
plateau on the timescale t ∼ 1/r = n̄γ and then surviving for
the duration τc of the coherence lifetime given by Eq. (14). By
comparing Figs. 7(b) and 7(e), we observe that the coherences
become much more short lived for subcritical transition dipole

alignment (p < pc) in accordance with Eqs. (14) and (15). In
the limit t � τc the coherences decay to zero and the V-type
system reaches the expected thermal equilibrium state [8].

B. Analytic solutions for closely spaced levels [�/γ � 1]

Our analytical expressions for the population and coherence
dynamics (27)–(29) and (30)–(32) are valid in the overdamped
regime defined by the condition �/(n̄γ ) < f (p). Since n̄ � 1,
the condition �/(n̄γ ) < f (p) does not necessarily imply that
the excited-state splittings should be small compared to the
radiative decay rate (i.e., �/γ � 1). As a result, the strongly
driven V-type system can exhibit overdamped coherent behav-
ior even when the excited-state level splitting is large compared
to the natural linewidth (�/γ � 1) provided that �/γ <

f (p)n̄. Nevertheless, major simplifications are possible in
the limit of closely spaced excited-state levels (�/γ � 1),
which is of special interest for incoherent excitation of large
molecules [13]. It is also in this limit that the weakly driven
V-type system exhibits long-lived coherences [13,14].

Neglecting the terms proportional to (�/γ )2 in
Eqs. (27)–(29) and replacing the p-dependent coefficients
zjk , |f21(p)|, Ai(p), Bi(p), and Ci(p) (see Fig. 10) by their
values at p = 1, we obtain for nearly parallel transition dipole
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FIG. 10. (Upper panels) Normalized contributions A2i+1/T1(p), B2i+1/T1(p), and C2i+1/T1(p) (i = 1–3) to ρaa(t) (a), ρR
ab(t) (b), and ρI

ab(t)
(c) plotted as a function of p for �

γ
� 1. (Lower panels) Normalized contributions A2i , B2i , C2i (i = 1–3) to ρaa(t) (d), ρR

ab(t) (e), and ρI
ab(t)

(f) plotted as a function of p for n̄ = 103, �

γ
= 102. The normalization factor D = [T1(p) + T2(p) 1

n̄2 ( �

γ
)2].

moments (p > pc)

ρaa(t) = 1

3
− 1

12

(
3e−4γ n̄t + e

−0.75 γ

n̄
( �

γ
)2t

)
, (33)

ρR
ab(t) = 1

4

(
e
−0.75 γ

n̄
( �

γ
)2t − e−4γ n̄t

)
, (34)

ρI
ab(t) = − 1

12

(
�

n̄γ

)(
e−4γ n̄t + 3e

−0.75 γ

n̄
( �

γ
)2t − 4e−γ n̄t

)
.

(35)

These expressions clearly establish the existence of two
vastly different timescales of coherent dynamics. As shown
in Fig. 7(b), at very short times (t < 1

4γ n̄
) the real part of the

coherence increases to its quasisteady value of 1
4 and then

survives for a long time τc (14) due to the second term on
the right-hand side of Eq. (34), which eventually decays to
zero for t � n̄

γ
(�/γ )−2. Figures 7(b) and 8(b) illustrate that

noise-induced coherences in the supercritical regime (p > pc)
become more long lived with increasing the pumping intensity
n̄ and decreasing the excited state splitting � in agreement with
Eqs. (14) and (34). As pointed out in Sec. II D, the physical
reason behind this scaling is that the decoherence mechanism
(2) involves interconversion between the real and imaginary
parts of the coherence, which slows down with decreasing �.
Figure 7(c) shows that the imaginary part of the coherence,
while also lasting for a long time, is suppressed by the factor
( �
n̄γ

� 1) as previously found in the weak-pumping limit
[13,14].

We now turn to the time evolution of excited-state pop-
ulations (35) displayed in Figs. 7(a) and 8(a), which is in
good agreement with exact numerical solutions of the BR
equations. At p > pc the populations grow monotonously on
the timescale t < 1/4(n̄γ ) to reach their plateau values ρaa =
ρbb = 1

4 . As these values are different from those expected in
thermal equilibrium (ρii = 1/3) this signals the formation of
a long-lived quasisteady state featuring significant coherences
in the energy eigenstate basis, which slows down the process
of thermalization of the V-type system with the bath. In fact,
as shown in Figs. 7(a) and 8(a) full thermalization does not
occur until after t � τc when the populations reach their
equilibrium values of 1/3 and the quasisteady state decays
into an incoherent mixture of eigenstates. This is consistent
with the previous results of Agarwal and Menon, who showed
that the long-time evolution of the BR equations always leads
to a coherence-free steady state [8].

The physical origin of the slow thermalization illustrated
in Figs. 7(a) and 8(a) is directly related to the long-lived Fano
coherences generated in the p > pc regime. Indeed, it follows
from Eq. (1) that excited-state populations decay faster in the
presence of Fano coherence due to the interference-mediated
coupling between the populations and coherences given by
the last term on the right-hand side of Eq. (1). As a result
of this additional decay channel, the values of excited-state
populations are smaller than those in thermal equilibrium as
long as ρR

ab > 0, i.e., during the lifetime of the quasisteady
state [see Eq. (14)].
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For the subcritical regime (p < pc) we find

ρaa(t) = 1

T1(p)

{
A1

(
1 − e−γ |z10|n̄t

|z10|
)

+ A3

(
1 − e−γ |z20|n̄t

|z20|
)}

, (36)

ρR
ab(t) = 1

T1(p)

{
B1

(
1 − e−γ |z10|n̄t

|z10|
)

+ B3

(
1 − e−γ |z20|n̄t

|z20|
)}

, (37)

ρI
ab(t) = 1

T1(p)

(
�

n̄γ

){
C1

(
1 − e−γ |z10|n̄t

|z10|
)

+ C3

(
1 − e−γ |z20|n̄t

|z20|
)

+ C5

(
1 − e−γ |z30|n̄t

|z30|
)}

. (38)

These analytical solutions are in excellent agreement with
numerical results shown in the lower panels of Figs. 7 and
8. The population and coherence dynamics do not exhibit
long-lived quasisteady states, and populations reach their
equilibrium values on the expected timescale given by Eq. (15).
The population and real part of the coherence are independent
of the excited state splitting � as shown in Figs. 7(d) and 7(e).

Finally, we note that our analytical solutions for the pop-
ulations (33) and (36) are manifestly positive for the initial
conditions studied in this work [ρcc(0) = 1], so the dynamics
studied here are not influenced by the artifacts due to nonpos-
itivity that are known to affect the solutions of BR equations
in certain regimes [20].

IV. SUMMARY AND CONCLUSIONS

We have studied the quantum dynamics of a three-level
V-type system interacting with a thermal environment in a pre-
viously unexplored regime, where incoherent pumping occurs
much faster than spontaneous emission. This regime is char-
acterized by a large number of thermal bath phonons (n̄ � 1)
at the excitation frequency, and it is relevant for artificial
solar light harvesting and the design of efficient quantum heat
engines [11,12,20,21], of which the V-type system is a key
building block.

As a primary tool to study the dynamics of the strongly
driven V-type system, we use nonsecular BR equations, which
provide a unified description of time-evolving populations and
coherences in multilevel quantum systems weakly interacting
with a thermal bath. The nonsecular description retains the
population-to-coherence coupling terms proportional to the
transition dipole alignment factor p, which are essential for
a proper description of noise-induced coherences [13]. By ex-
amining the discriminant of the characteristic polynomial, we
classify the dynamical regimes of the strongly driven V-type
system into underdamped, overdamped, and critical (Sec. II A).
For large excited-state splittings such that �/(n̄γ ) > f (p),
where f (p) is a universal function of p plotted in Fig. 4,
the two-photon coherences show underdamped oscillations. In
the overdamped regime of small level spacing [�/(n̄γ ) < 1],
the coherences evolve monotonously as a function of time. A
remarkable dynamical effect which occurs in this regime is
the formation of long-lived, coherent quasisteady states with
lifetimes τc = 1.34(n̄/γ )(�/γ )−2 that can be arbitrarily long
in V-type systems with vanishingly small level splittings. As
illustrated in Figs. 7 and 8, the quasisteady states strongly affect
the time evolution of the density matrix elements, enhancing
the lifetime of two-photon coherences and slowing down the

approach of excited-state populations to thermodynamic equi-
librium. The quasisteady states only form when the transition
dipole moments of the V-type system are nearly perfectly
aligned.

We further show that in the overdamped regime, the solu-
tions of the BR equations can be represented analytically as a
sum of three exponentially decaying terms [see, e.g., Eqs. (27)–
(29)]. The behavior of the solutions depends strongly on the
transition dipole alignment factor p. For p > pc, the long-lived
coherent mode emerges, whereas for p < pc all modes have
comparable lifetimes, which scale as 1/n̄. Particularly simple
expressions (35) are obtained in the limit of small level spacing
�/γ � 1. All of the expressions are in excellent agreement
with numerical solutions of the BR equations (Figs. 7 and 8).

To clarify the physical origin of the different regimes of
noise-induced coherent dynamics, we have developed an effec-
tive decoherence rate model, which accounts for the most im-
portant coherence-generating and coherence-destroying mech-
anisms in a V-type system driven by a thermal environment,
including Fano interference (which generates the coherences),
the decay processes due to stimulated and spontaneous emis-
sion, and the interconversion between the real and imaginary
part of the coherence followed by an irreversible decay of the
latter. In the limit p → 1 the rate of coherence generation via
Fano interference is maximized, approaching that of coherence
decay via stimulated and spontaneous emission, so the overall
decay is determined by a slow interconversion between the
real and imaginary parts of the coherence as described above.
This process is suppressed at small � leading to very long
coherence lifetimes described by the effective decoherence rate
model [see Eqs. (19) and (25)]. At p < 1 the rate of stimulated
and spontaneous decays rapidly exceeds that of coherence
generation via Fano interference, and thus the lifetime of the
coherences decreases sharply. The nearly perfect alignment
of transition dipole moments (p > pc) is thus an essential
condition for the longevity of noise-induced coherences in both
the weak-pumping and strong-pumping regimes.

Finally, we consider the question of how the long-lived
noise-induced coherent effects predicted here could be ob-
served in the laboratory. Such an observation would require
an atomic or molecular V-type system with nearly parallel
transition dipole moments (p > pc) driven by a bright (n̄ � 1)
source of incoherent radiation. For the latter, one can use
concentrated solar light (for which n̄ � 104 can be achieved
at typical optical frequencies [11,12,21]) or broadband laser
radiation [8].

The requirement of nearly perfectly aligned transition
dipoles (p > pc) is more restrictive, since the overwhelming
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majority of electric dipole transitions to nearly degenerate
(V-type systemlike) excited atomic states tend to have p < 1
[6,8,13].

To bypass this requirement, we consider incoherent excita-
tion by a linearly polarized blackbody radiation, for which
transitions to nearly degenerate upper levels with different
projections mJ of the total electronic angular momentum J

exhibit Fano interference [8,26].
In future work, we intend to explore the possibility for

experimental observation of Fano coherences with highly
excited Rydberg atoms. As a consequence of their exaggerated
transition dipole moments, Rydberg atoms couple strongly to
blackbody radiation, and can therefore be used as an attrac-
tive experimental platform to study noise-induced coherence
effects [27,28]. Consider, e.g., the 65s Rydberg state of atomic
Rb interacting with thermal blackbody radiation at T = 300 K
[28]. The energy splitting ωac between the initial 65s state
and the nearby mJ components of the 65p state (forming the
Rydberg V-type system) is 0.44 cm−1. The average number of
thermal photons at this transition frequency is n̄ ∼ 400 [27],
putting the Rydberg V-type system in the strong pumping
regime. The splitting between the different mJ components
of the 65p state can be tuned by an external magnetic field to
vary the ratio �/n̄γ , providing access to the different regimes
of noise-induced coherent dynamics studied in this work.

Note added in proof. Recent theoretical work has considered
quantum coherences in an incoherently driven system of two-
level atoms coupled by the dipole-dipole interaction [29,30].

APPENDIX: ANALYTIC EXPRESSIONS

In this Appendix we present a detailed derivation of the
analytic expressions for the discriminantD and the eigenvalues
and eigenvectors of the coefficient matrix A given by Eq. (4)
of the main text as a function of the V-type system parameters
γ , r , and �

γ
. We also derive the analytic expressions for

the populations and coherence dynamics which appear in

Eqs. (27)–(29) and (33)–(35) of the main text. The solutions
are expressed in terms of the p-dependent coefficients listed
in Tables I–XII.

1. Discriminant of the coefficient matrix A

The general expression of the discriminant of the coefficient
matrix is

D = B3 + [
C − 3

2A(B + A2)
]2

, (A1)
where

A = 1
3 (5r + 3γ ), (A2)

B = �2

3
− γ 2p2

3
+ γ 2 − 4

3
γp2r + 10

3
γ r − p2r2 + 7

3
r2

− 1

9
(5r + 3γ )2, (A3)

C = 1

2
�2γ + 3

2
�2r − 1

2
γ 3p2 + 1

2
γ 3 − 5

2
rγ 2 − 7

2
γp2r2

+ 7

2
γ r2 − 3

2
p2r3 + 3

2
r3 + 1

27
(5r + 3γ )3. (A4)

It is convenient to express the terms A, B, C as a function of
the occupation number n̄,

A = γ

3
(3 + 5n̄), (A5)

B = γ 2

3

[
�2

γ 2
− p2 − 4p2n̄ −

(
4

3
+ 3p2

)
n̄2

]
, (A6)

C = γ 3

2

[
�2

γ 2
+ (3 − p2) +

(
15 − 5p2 + 3

�2

γ 2

)
n̄

+
(

71

3
− 7p2

)
n̄2 +

(
331

27
− 3p2

)
n̄3

]
, (A7)

C − 3

2
A(B + A2)

= γ 3

6

[(
4
�2

γ 2
+ 2p2

)
n̄ + 8p2n̄2 + (16 + 54p2)

9
n̄3

]
. (A8)

TABLE I. The expansion coefficients ck , dk , and bk for D, E, and β(x).

ci di bi

0 d0 = 4
(

�2

γ 2 − p2
)3

K = 3

√
c3
6 +

√
d6

108

c1 = 4
(

�

γ

)2 + 2p2 d1 = −48p2
(

�2

γ 2 − p2
)2

b1 =
c2
6 +

√
d6
108 u1

3
√

c3
6 +

√
d6
108

c2 = 8p2 d2 = 12
(
2 �2

γ 2 + p2
)2 + 192p4

(
�2

γ 2 − p2
) − 4(4 + 9p2)

(
�2

γ 2 − p2
)2

b2 =
c1
6 +

√
d6
108 u2

3
√

c3
6 +

√
d6
108

c3 = (16+54p2)
9 d3 = 96p2

(
2 �2

γ 2 + p2
) + 32p2(4 + 9p2)

(
�2

γ 2 − p2
) − 256p6 b3 =

√
d6
108 u3

3
√

c3
6 +

√
d6
108

0 d4 = 8
3 (8 + 27p2)

(
2 �2

γ 2 + p2
) + 4

3 (4 + 9p2)2
(

�2

γ 2 − p2
) − 64p4(1 + 9p2) b4 =

√
d6
108 u4

3
√

c3
6 +

√
d6
108

0 d5 = −16p4(6 + 27p2) b5 =
√

d6
108 u5

3
√

c3
6 +

√
d6
108

0 d6 = −36p4(1 + 3p2) b6 =
√

d6
108 u6

3
√

c3
6 +

√
d6
108
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TABLE II. The expansion coefficients uk and vk in the expressions for
√
D and �(x).

ui vi

u1 = 1
2

d5
d6

v1 = b1
3

u2 = 1
2

d4
d6

− 1
8

(
d5
d6

)2
v2 = b2

3 − b2
1
9

u3 = 1
2

d3
d6

− 1
8 2 d4d5

d2
6

+ 3
48

(
d5
d6

)3
v3 = b3

3 − 2b1b2
9 + 5b3

1
81

u4 = 1
2

d2
d6

− 1
8

[
2 d3d5

d2
6

+ (
d4
d6

)2] + 3
48

(
3

d4d2
5

d3
6

) − 15
384

(
d5
d6

)4
v4 = b4

3 − (2b1b3+b2
2)

9 + 5(3b2
1b2)

81

u5 = 1
2

d1
d6

− 1
8

(
2 d2d5

d2
6

+ 2 d3d4
d2

6

) + 3
48

(
3

d3d2
5

d3
6

+ 3
d2

4 d5

d3
6

) − 15
384

(
4

d4d3
5

d4
6

)
v5 = b5

3 − (2b1b4+2b2b3)
9 + 5(3b2

1b3+3b1b2
2)

81

u6 = 1
2

d0
d6

− 1
8

[
2 d1d5

d2
6

+ 2 d2d4
d2

6
+ (

d3
d6

)3] + 3
48

[
3

d2d2
5

d3
6

+ 6 d3d4d5
d3

6
+ (

d4
d6

)3] − 15
384

(
4

d3d3
5

d4
6

+ 6
d2

4 d2
5

d4
6

)
v6 = b6

3 − (2b1b5+2b2b4+b2
3)

9 + 5(3b2
1b4+6b1b2b3+b3

2)
81

Substituting Eqs. (A6) and (A8) into Eq. (A1) we obtain
the general expression of the discriminant as the polynomial
function of the occupation number (i.e., n̄ = r

γ
),

D = γ 6

108

6∑
k=0

dkn̄
k, (A9)

where the expansion coefficients dk are listed in Table I.
For large �

γ
and n̄, the significant terms in Eq. (9) are the

sixth order terms d0, d4n̄
4, and d6n̄

6,

D = γ 6

108
(d0 + d4n̄

4 + d6n̄
6). (A10)

To solve the equation D = 0, we take �
γ

= y, n̄ = x and
simplify as

4(y2 − p2)3 + [
8
3 (8 + 27p2)(2y2 + p2)

+ 4
3 (4 + 9p2)2(y2 − p2) − 64p4(1 + 9p2)

]
x4

− 36p4(1 + 3p2)x6 = 0,

4y6 + [
8
3 (8 + 27p2)2y2 + 4

3 (4 + 9p2)2y2

− 64p4(1 + 9p2)
]
x4 − 36p4(1 + 3p2)x6 = 0.

Dividing on both sides by x6, we get

4

(
y

x

)6

+
[

16

3
(8 + 27p2) + 4

3

(
4 + 9p2)2

](
y

x

)2

− 64p4(1 + 9p2)
1

x2
− 36p4

(
1 + 3p2

) = 0.

Neglecting the term proportional to 1
x2 for large n̄ = x and

defining ( y

x
)2 = z, the above equation reduces to the form of a

depressed cubic

z3 + Pz + Q = 0, (A11)

where

P = (16 + 60p2 + 27p4), (A12)

Q = −9p4(1 + 3p2). (A13)

To solve the depressed cubic equation, we substitute z = u + v

into Eq. (11) which becomes

u3 + v3 + (u + v)(3uv + P ) + Q = 0. (A14)

The arbitrary variables u, v are chosen in such a way that

(3uv + P ) = 0, uv = −P

3
. (A15)

TABLE III. The expansion coefficients Wk and zjk in the expression of 1
T in Eq. (A40) and λj in Eq. (A43).

Wi zji

0 zj0 = − 5
3 − αj

3K

(
4
3 + 3p2

) − βjK

W1 = −v1 zj1 = −1 − αj

3K

[
4p2 + (

4
3 + 3p2

)
W1

] − βjKv1

W2 = −v2 + v2
1 zj2 = αj

3K

[(
�2

γ 2 − p2
) − 4p2W1 − (

4
3 + 3p2

)
W2

] − βjKv2

W3 = −v3 + 2v1v2 − v3
1 zj3 = αj

3K

[(
�2

γ 2 − p2
)
W1 − 4p2W2 − (

4
3 + 3p2

)
W3

] − βjKv3

W4 = −v4 + (
2v1v3 + v2

2

) − 3v2
1v2 + v4

1 zj4 = αj

3K

[(
�2

γ 2 − p2
)
W2 − 4p2W3 − (

4
3 + 3p2

)
W4

] − βjKv4

W5 = −v5 + (2v1v4 + 2v2v3) − (
3v2

1v3 + 3v1v
2
2

) + 4v3
1v2 − v5

1 zj5 = αj

3K

[(
�2

γ 2 − p2
)
W3 − 4p2W4 − (

4
3 + 3p2

)
W5

] − βjKv5

W6 = −v6 + (
2v1v5 + 2v2v4 + v2

3

) − (
3v2

1v4 + 6v1v2v3 + v2
3

)
zj6 = αj

3K

[(
�2

γ 2 − p2
)
W4 − 4p2W5 − (

4
3 + 3p2

)
W6

] − βjKv6

+ (
4v3

1v3 + 6v2
1v

2
2

) + v6
1

0 zj7 = αj

3K

[(
�2

γ 2 − p2
)
W5 − 4p2W6

]
0 zj8 = αj

3K

[(
�2

γ 2 − p2
)
W6

]
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TABLE IV. Coefficients zj2 and v2.

zj2 v2

fj1(p) = αj

3K
+ [ αj

3K

(
4
3 + 3p2

) − βjK
]
s1(p) s1(p) = l1(p)

3

fj2(p) = − αj

3K
p2 + 4p2

( αj

3K

)
v1 + [ αj

3K

(
4
3 + 3p2

) − βjK
]
s2(p) − αj

3K

(
4
3 + 3p2

)
v2

1 s2(p) = l2(p)
3 − [

1
3K

( 4p2

3 + 2
9

p2(6+27p2)
(1+3p2)

√
(1+3p2)

3 i
)]2

Cubing Eq. (A15) on both sides and expressing v3 in terms of
u3, we get

v3 = −P 3

27

1

u3
. (A16)

Using Eqs. (A15) and (A16) into Eq. (A14), we rearrange terms
to get a quadratic equation in u3 = t ,

t2 + Qt − 4P 3

27
= 0. (A17)

The two roots of the above equation are

t1 = −Q

2
+

√
Q2

4
+ P 3

27
, (A18)

t2 = −Q

2
−

√
Q2

4
+ P 3

27
. (A19)

We set u3 = t1, v3 = t2 which satisfy the required conditions
u3 + v3 = −Q, u3v3 = −P 3

27 . This shows that u = 3
√

t1 and
v = 3

√
t2 are solutions to Eq. (A14). As z = ( y

x
)2 cannot be

complex valued and 3
√

t1, 3
√

t1 are real and positive for all p

values, the real solution for z is

z = u + v,(
y

x

)2

= 3
√

t1 + 3
√

t2,

�

γ
=

√
3
√

t1 + 3
√

t2 n̄,

�

γ
= f (p) n̄, (A20)

where

f (p) =
√

3
√

t1 + 3
√

t2, (A21)

with t1 and t2 given by Eqs. (A18) and (A19). This shows that
in the strong pumping limit and when �

γ
and n̄ are large, the

critical D = 0 line behaves as a straight line with slope given
by m = f (p), a function of p only. A plot of f (p) is shown in
Fig. 4(a) of the main text.

2. Eigenvalues of matrix A

The eigenvalues λk of the coefficient matrix A are given by
Cardano’s solution of the characteristic equation

λj = −A + αj

B

T − βjT (j = 1 − 3), (A22)

where

T = 3

√
E +

√
D, (A23)

E =
[
C − 3

2
A(B + A2)

]
, (A24)

D = B3 +
[
C − 3

2
A(B + A2)

]2

, (A25)

ω = −1 + i
√

3

2
, (A26)

ω2 = −1 − i
√

3

2
, (A27)

and (α1,β1) = (1,1), (α2,β2) = (ω2,ω), (α3,β3) = (ω,ω2).
In the strong pumping limit where n̄ � 1, we define a new

variable x = 1/n̄ � 1 and express the terms D and E in the
polynomial form of x = 1/n̄ = γ /r . We find the expression
for E by rearranging Eq. (A8) as

E = r3

6

3∑
k=1

ckx
3−k, (A28)

where the p-dependent expansion coefficients ck (k = 1, 2, 3)
are listed in Table I.

In order to simplify the term T in the eigenvalue expression,
we first express

√
D [with D given by Eq. (A9)] in the

following form:

√
D = r3

√
d6

108

√
[1 + α(x)], (A29)

where

α(x) = 1

d6

6∑
k=1

d6−kx
k. (A30)

TABLE V. Coefficients d4, u2, and b2 in the expansion of zj2.

b2 u2 d4

l1(p) = 2
3K

+ p2

K

√
(1+3p2)

3 g1(p)i g1(p) = − h1(p)
72p4(1+3p2)

h1(p) = 4(16 + 60p2 + 27p4)

l2(p) = p2

3K
+ p2

K

√
(1+3p2)

3 g2(p)i g2(p) = − h2(p)
72p4(1+3p2)

− 2
81

( 6+27p2

1+3p2

)2
h2(p) = −4p4(22 + 171p2)
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TABLE VI. Coefficients for the eigenvectors Vj , j = 1,2 in Eq. (A44).

Ljk,j = 1,2,3 kjk,j = 1,2 ajk,j = 1,2 bjk,j = 1,2

Lj0 = z2
j0 + 4zj0 + 3(1 − p2) 0 aj0 = 1 bj0 = 3 + zj0

Lj1 = 2zj0zj1 + 2zj0 + 4zj1 + 4(1 − p2) kj1 = −Lj3

Lj2
aj1 = 1 + kj1 bj1 = (1 + zj1) + (3 + zj0)kj1

Lj2 = z2
j1 + 2zj0zj2 + 2zj1 + 4zj2 + (1 − p2) kj2 = −Lj4

Lj2
+ (Lj3

Lj2

)2
aj2 = kj1 + kj2 bj2 = (1 + zj1)kj1 + (3 + zj0)kj2 + zj2

Lj3 = 2zj1zj2 + 2zj2 kj3 = 2Lj3Lj4

L2
j2

− (Lj3

Lj2

)3
aj3 = kj2 + kj3 bj3 = (1 + zj1)kj2 + (3 + zj0)kj3 + zj2kj1

Lj4 = z2
j2 kj4 = (Lj4

Lj2

)2 − 3L2
j3Lj4

L3
j2

aj4 = kj3 + kj4 bj4 = (1 + zj1)kj3 + (3 + zj0)kj4 + zj2kj2

0 kj5 = − 3Lj3L2
j4

L3
j2

aj5 = kj4 + kj5 bj5 = (1 + zj1)kj4 + (3 + zj0)kj5 + zj2kj3

0 kj6 = −(
Lj4

Lj2
)2 aj6 = kj5 + kj6 bj6 = (1 + zj1)kj5 + (3 + zj0)kj6 + zj2kj4

0 0 aj7 = kj6 bj7 = (1 + zj1)kj6 + zj2kj5

0 0 0 bj8 = zj2kj6

In the strong pumping limit (x = 1/n̄ � 1) the terms d6−k

d6
xk , k � 1 are all negligible compared to 1 and thus |α(x)| � 1.

The binomial expansion presented here and all the succeeding expansions are valid for n̄�102 and p>0.1 (for �/γ<1) and
0.89 < p < 1 (for �/γ > 1). Taking the binomial expansion of

√
1 + α(x),

(1 + α)1/2 = 1 + 1
2α − 1

8α2 + 3
48α3 − 15

384α4 + 105
3840α5 − · · · , (A31)

we find the terms αk with k � 4 by using a multinomial expansion

α2 =
(

d5

d6

)2

x2 +
(

2
d4d5

d2
6

)
x3 +

[
2
d3d5

d2
6

+
(

d4

d6

)2
]
x4 +

(
2
d2d5

d2
6

+ 2
d3d4

d2
6

)
x5 +

[
2
d1d5

d2
6

+ 2
d2d4

d2
6

+
(

d4

d6

)3
]
x6,

α3 =
(

d5

d6

)3

x3 +
(

3
d4d

2
5

d3
6

)
x4 +

(
3
d3d

2
5

d3
6

+ 3
d2

4 d5

d3
6

)
x5 +

[
3
d2d

2
5

d3
6

+ 6
d3d4d5

d3
6

+
(

d4

d6

)3
]
x6,

α4 =
(

d5

d6

)4

x4 +
(

4
d4d

3
5

d4
6

)
x5 +

(
4
d3d

3
5

d4
6

+ 6
d2

4 d2
5

d4
6

)
x6.

Substituting Eq. (A30) and the above expressions into Eq. (A29) we get

√
D = r3

√
d6

108

[
1 +

6∑
k=1

ukx
k

]
, (A32)

TABLE VII. Coefficients for the eigenvector Vj , j = 3 in Eq. (A44).

kjk,j = 3 ajk,j = 3 bjk,j = 3

0 a30 = 1 b30 = 3 + z30

k31 = −L31
L30

a31 = 1 + k31 b31 = (1 + z31) + (3 + z30)k31

k32 = −L32
L30

+ (
L31
L30

)2
a32 = k31 + k32 b32 = (1 + z31)k31 + (3 + z30)k32 + z32

k33 = −L33
L30

+ 2L31L32
L2

30
− (

L31
L30

)3
a33 = k32 + k33 b33 = (1 + z31)k32 + (3 + z30)k33 + z32k31

k34 = −L34
L30

+ [ 2L31L33
L2

30
+ (

L32
L30

)2] − ( 3L2
31L32

L3
30

+ 3L31L2
32

L3
30

) + (
L31
L30

)4
a34 = k33 + k34 b34 = (1 + z31)k33 + (3 + z30)k34 + z32k32

k35 = ( 2L31L34
L2

30
+ 2L32L33

L2
30

) − 3L2
31L33

L3
30

+ ( 4L3
31L32

L4
30

− (
L31
L30

)5)
a35 = k34 + k35 b35 = (1 + z31)k34 + (3 + z30)k35 + z32k33
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TABLE VIII. Coefficients for Lj2, j = 1,2 and the determinant of the eigenvector matrix M.

Lj2, j = 1,2 det(M)

Fj1(p) = [4 + 2zj0(p)]fj1(p) T1(p) = p
(− m1

F11
− m5

F21

)
Fj2(p) = [4 + 2zj0(p)]fj2(p) + [zj1(p)2 + 2zj1(p) + (1 − p2)] T2(p) = p

(− m2
F11

+ f11
F11

1
(2z10+4) − m6

F21
− m11

L30

)

where the expansion coefficients uk are listed in Table II. Now, using Eqs. (A28) and (A32) in Eq. (A23) the term T can be
expanded as

T =
[

r3

6

3∑
k=1

ckx
3−k + r3

√
d6

108

(
1 +

6∑
k=1

ukx
k

)]1/3

= r
3

√
c3

6
+

√
d6

108

⎡
⎢⎢⎣1 +

∑2
k=1

(
c3−k

6 +
√

d6
108uk

)
3

√
c3
6 +

√
d6

108

xk +
∑6

k=3

√
d6

108uk

3

√
c3
6 +

√
d6

108

xk

⎤
⎥⎥⎦

1/3

= rK

[
1 +

6∑
k=1

bkx
k

]1/3

, (A33)

where the term K and the coefficients bk are listed in Table I.
Equation (A33) can be rewritten as

T = rK[1 + β(x)]1/3, (A34)

where

β(x) =
6∑

k=1

bkx
k.

In the strong pumping limit (x = 1/n̄ � 1), the terms bkx
k , k � 1 are all negligible compared to 1 and thus |β(x)| � 1. Taking

the binomial expansion of 3
√

1 + β,

(1 + β)1/3 = 1 + 1
3β − 1

9β2 + 5
81β3 − 10

243β4 + · · · , (A35)

evaluating the terms βk with k � 3 using the multinomial expansion

β2 = b2
1x

2 + 2b1b2x
3 + (

2b1b3 + b2
2

)
x4 + (2b1b4 + 2b2b3)x5 + (2b1b5 + 2b2b4 + b2

3)x6 + · · · ,

β3 = b3
1x

3 + (
3b2

1b2
)
x4 + (

3b2
1b3 + 3b1b

2
2

)
x5 + (

3b2
1b4 + 6b1b2b3 + b3

2

)
x6 + · · · ,

and substituting the result in Eq. (A34), we get

T = rK

[
1 +

6∑
k=1

vkx
k

]
, (A36)

where the expansion coefficients vk are listed in Table II. The second term in the eigenvalue expression contains the fraction 1
T ,

which we simplify to obtain

1

T = 1

rK

[
1 +

6∑
k=1

vkx
k

]−1

= 1

rK
[1 + �(x)]−1, (A37)

TABLE IX. Components Vij , i,j = 1,2,3 of the eigenvector matrix M in Eq. (A71).

V1i V2i V3i

V11 = p
[− 1

F11
+ f11

F11

1
(2z10+4)

1
n̄2

(
�

γ

)2
]n̄

(
�

γ

)−1
V21 = − p

F21
n̄
(

�

γ

)−1
V31 = − p

L30

(
1
n̄

)(
�

γ

)
V12 = [ (3+z10)

F11
+ (

f11
F11

) (1+z10)
(4+2z10)

(
1
n̄

)2(�

γ

)2]
n̄
(

�

γ

)−1
V22 = (3+z20)

F21
n̄
(

�

γ

)−1
V32 = (3+z30)

L30

(
1
n̄

)(
�

γ

)
V13 = 1 V23 = 1 V33 = 1
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TABLE X. Cofactors Tij , i,j = 1,2,3 of the eigenvector matrix M in Eq. (A71).

T1i T2i T3i

T11 = [
m1(p) + m2(p) 1

n̄2

(
�

γ

)2]
n̄
(

�

γ

)−1
T21 = [

m5(p) + m6(p) 1
n̄2

(
�

γ

)2]
n̄
(

�

γ

)−1
T31 = [

m11(p) + m12(p) 1
n̄2

(
�

γ

)2]
n̄
(

�

γ

)−1

T12 = [
m3(p) + m4(p) 1

n̄2

(
�

γ

)2]
n̄
(

�

γ

)−1
T22 = [

m7(p) + m8(p) 1
n̄2

(
�

γ

)2]
n̄
(

�

γ

)−1
T32 = [

m13(p) + m14(p) 1
n̄2

(
�

γ

)2]
n̄
(

�

γ

)−1

T13 = p

F21L30
(z20 − z30) T23 = [

m9(p) + m10(p) 1
n̄2

(
�

γ

)2]
T33 = [

m15(p) + m16(p) 1
n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2

where

�(x) =
6∑

k=1

vkx
k. (A38)

In the strong pumping limit (x = 1/n̄ � 1) the terms vkx
k , k � 1 are all negligible compared to 1 and thus |�(x)| � 1. Taking

the binomial expansion of (1 + �)−1,

(1 + �)−1 = 1 − � + �2 − �3 + �4 − �5 + · · · , (A39)

we find the terms �k with k � 4 by using the multinomial expansion

�2 = v2
1x

2 + 2v1v2x
3 + (

2v1v3+v2
2

)
x4 + (2v1v4+2v2v3)x5 + (2v1v5 + 2v2v4 + v2

3)x6,

�3 = v3
1x

3 + 3v2
1v2x

4 + (
3v2

1v3 + 3v1v
2
2

)
x5 + (

3v2
1v4 + 6v1v2v3 + v2

3

)
x6,

�4 = v4
1x

4 + 4v3
1v2x

5 + (
4v3

1v3 + 6v2
1v

2
2

)
x6.

Substituting the above expressions into Eq. (A37), we obtain

1

T = 1

rK

[
1 +

6∑
k=1

Wkx
k

]
, (A40)

where the expansion coefficients Wk are listed in Table III. Now we evaluate the second term B
T of the eigenvalue expression

given by Eq. (A22). In the polynomial form of x = 1/n̄, we have

B = r2

3

[(
�2

γ 2
− p2

)
x2 − 4p2x −

(
4

3
+ 3p2

)]
. (A41)

Multiplying Eqs. (A40) and (A41) we get

B

T = r2

3

[(
�2

γ 2
− p2

)
x2 − 4p2x −

(
4

3
+ 3p2

)]
1

rK

[
1 +

6∑
k=1

Wkx
k

]

= r

3K

{
−

(
4

3
+ 3p2

)
−

[(
4

3
+ 3p2

)
W1 + 4p2

]
x +

[(
�2

γ 2
− p2

)
− 4p2W1 −

(
4

3
+ 3p2

)
W2

]
x2

+
[(

�2

γ 2
− p2

)
W1 − 4p2W2 −

(
4

3
+ 3p2

)
W3

]
x3 +

[(
�2

γ 2
− p2

)
W2 − 4p2W3 −

(
4

3
+ 3p2

)
W4

]
x4

+
[(

�2

γ 2
− p2

)
W3 − 4p2W4 −

(
4

3
+ 3p2

)
W5

]
x5 +

[(
�2

γ 2
− p2

)
W4 − 4p2W5 −

(
4

3
+ 3p2

)
W6

]
x6

+
[(

�2

γ 2
− p2

)
W5 − 4p2W6

]
x7 +

(
�2

γ 2
− p2

)
W6x

8

}
. (A42)

TABLE XI. Coefficients mi(p) for the cofactors Tij of the eigenvector matrix M.

m1(p) = (3+z20)
F21

m5(p) = − (3+z10)
F11

m9(p) = p

F11L30
(z10 + z30 + 6) m13(p) = p

(
1

F11
− 1

F21

)
m2(p) = − (3+z30)

F31
m6(p) = −(

f11
F11

(1+z10)
(4+2z10) − (3+z30)

L30

)
m10(p) = p

(
f11

F11L30

) (z10−z30−2)
(2z10+4) m14(p) = −(

f11
F11

1
(2z10+4)

)
m3(p) = p

F21
m7(p) = − p

F11
m11(p) = ( (3+z10)

F11
− (3+z20)

F21

)
m15(p) = p

( (z10−z20)
F11F21

)
m4(p) = − p

L30
m8(p) = p

(
f11
F11

1
(2z10+4) + 1

L30

)
m12(p) = (

f11
F11

) (1+z10)
(4+2z10) m16(p) = p

(
f11

F11F21

(z10+z20+4)
(2z10+4)

)
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TABLE XII. Coefficients Ai(p), Bi(p), and Ci(p) for the population and coherence terms in Eqs. (A99) to (A101).

Ai Bi Ci

A1 = − P

F11
(m1 + pm3) B1 = (3+z10)

F11
(m1 + pm3) C1 = (m1 + pm3)

A2 = p
[

f11
F11

1
(2z10+4) (m1 + pm3) − 1

F11
(m2 + pm4)

]
B2 = [

f11
F11

1
(2z10+4) (m1 + pm3) + (3+z10)

F11
(m2 + pm4)

]
C2 = (m2 + pm4)

A3 = − p

F21
(m5 + pm7) B3 = (3+z20)

F21
(m5 + pm7) C3 = (m5 + pm7)

A4 = − p

F21
(m6 + pm8) B4 = (3+z20)

F21
(m6 + pm8) C4 = (m6 + pm8)

A5 = − p

L30
(m11 + pm13) B5 = (3+z30)

L30
(m11 + pm13) C5 = (m11 + pm13)

A6 = − p

L30
(m12 + pm14) B6 = (3+z30)

L30
(m12 + pm14) C6 = (m12 + pm14)

Substituting the expressions of A, B
T , and T in Eq. (A22) and

simplifying, we get Eq. (9) of the main text for the eigenvalues
of the coefficient matrix

λj = r

8∑
k=0

zjkx
k (j = 1–3), (A43)

where the expansion coefficients zjk are listed in Table III.

3. Eigenvectors of matrix A

The general expression for the eigenvectors of the coef-
ficient matrix A is obtained by solving the system of linear
equations (A − λj )Vj = 0 to yield

Vj =

⎡
⎢⎣

�p(r+γ )
Dj

−�(3r+γ+λj )
Dj

1.0

⎤
⎥⎦ (j = 1–3), (A44)

where

Dj = −λ2
j − 2(γ + 2r)λj − (1 − p2)γ 2

− 4γ r(1 − p2) + 3r2(1 − p2). (A45)

a. Eigenvectors in the overdamped regime [�/(n̄γ ) < f ( p)]

In the strong pumping regime (x � 1), the terms xn with
n � 3 in Eq. (A43) can be neglected and the eigenvalues are
given by

λj = r[zj0 + zj1x + zj2x
2]. (A46)

To evaluate the term Dj , we evaluate the square of λj as

λ2
j = r2

[
z2
j0 + 2zj0zj1x + (

z2
j1 + 2zj0zj2

)
x2

+ 2zj1zj2x
3 + z2

j2x
4
]
. (A47)

Substituting Eqs. (A46) and (A47) into Eq. (A45) we obtain

Dj = −r2
4∑

k=0

Ljkx
k, (A48)

where the expansion coefficients Ljk are listed in Table VI. For
the first eigenvector �V1, we find

D1 = −r2
4∑

k=0

L1kx
k. (A49)

In particular, the terms L10, L11x are negligible compared to
other terms in Eq. (A49) and are dropped. To find 1

D1
required

to evaluate Eq. (A44), we proceed as follows:

1

D1
= − 1

r2L12x2
[
1 + L13

L12
x + L14

L12
x2

]
= − 1

r2L12x2
[1 + α(x)]−1, (A50)

where

α(x) = L13

L12
x + L14

L12
x2. (A51)

For x � 1, α(x) = ( L13
L12

x + L14
L12

x2) � 1 and we can use the
binomial expansion to get

(1 + α)−1 = 1 − α + α2 − α3 + · · · . (A52)

Evaluating the terms up to the third order in α,

α2 =
(

L13

L12

)2

x2 + 2L13L14

L2
12

x3 +
(

L14

L12

)2

x4, (A53)

α3 =
(

L13

L12

)3

x3 + 3L2
13L14

L3
12

x4 + 3L13L
2
14

L3
12

x5 +
(

L14

L12

)3

x6,

(A54)

and using Eqs. (A51) to (A54) in Eq. (A50) we get

1

D1
= − 1

r2L12x2

[
1 +

6∑
m=1

k1mxm

]
, (A55)

where the expansion coefficients k1m are listed in Table VI.
We can now evaluate the first component of the eigenvector

�V1 as follows:

V11 = �p(γ + r)

D1

= − p

L12

�r
(
1 + γ

r

)
r2

(
γ

r

)2

[
1 +

6∑
m=1

k1mxm

]

= − p

L12

(
�

γ

)
n̄

7∑
m=0

a1mxm, (A56)

where the expansion coefficients a1m are listed in Table VI.
Proceeding in a similar way, we find the second component of
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the eigenvector �V1 as

V12 = 1

L12

(
�

γ

)
n̄

8∑
m=0

b1mxm, (A57)

where the expansion coefficients b1m are listed in Table VI.
The third component of the eigenvector �V1 is V13 = 1.

Combining the expressions for V11, V12, and V13, we obtain
the first eigenvector as

�V1 =

⎡
⎢⎣− p

L12

(
�
γ

)
n̄

∑7
m=0 a1mxm

1
L12

(
�
γ

)
n̄

∑8
m=0 b1mxm

1

⎤
⎥⎦. (A58)

Proceeding in a similar way as for the first eigenvector �V1, we
evaluate D2 and the components of the second eigenvector �V2,

�V2 =

⎡
⎢⎣− p

L22

(
�
γ

)
n̄

∑7
m=0 a2mxm

1
L22

(
�
γ

)
n̄

∑8
m=0 b2mxm

1

⎤
⎥⎦, (A59)

where the coefficients L2k , k2m, a2m, b2m are listed in Table VI
and z2k (k = 0–2) are evaluated with α2 = ω2, β2 = ω.

For the third eigenvector �V3, the term D3 is given by

D3 = −r2
4∑

k=0

L3kx
k, (A60)

where the coefficients L3k are listed in Table VI and z3k (k =
0–2) are evaluated with α3 = ω, β3 = ω2.

Unlike in the case of the first and second eigenvectors, the
terms L30 and L31x are not negligible compared to other L3kx

k

terms. To find 1
D3

, we proceed as follows:

1

D3
= − 1

r2L30
[
1 + 1

L30

∑4
k=1 L3kxk

]
= − 1

r2L30
[1 + α(x)]−1, (A61)

where

α(x) = 1

L30

4∑
k=1

L3kx
k. (A62)

For x � 1, α(x) = 1
L30

∑4
k=1 L3kx

k � 1. Taking the binomial
expansion Eq. (A52) and evaluating the terms up to the fifth
order in α and x we find

α2 =
(

L2
31

L2
30

)
x2 + 2L31L32

L2
30

x3 +
(

2L31L33

L2
30

+ L2
32

L2
30

)
x4

+
(

2L31L34

L2
30

+ 2L32L33

L2
30

)
x5 + · · · , (A63)

α3 = L3
31

L3
30

x3 +
(

3L2
31L32

L3
30

+ 3L31L
2
32

L3
30

)
x4

+ 3L2
31L33

L3
30

x5 + · · · , (A64)

α4 = L4
31

L4
30

x4 + 4L3
31L32

L4
30

x5 + · · · , (A65)

α5 = L5
31

L5
30

x5 + · · · . (A66)

Substituting Eqs. (A62) to (A66) into Eq. (A61) we get

1

D3
= − 1

r2L30

[
1 +

5∑
m=1

k3mxm

]
, (A67)

where the expansion coefficients k3m are listed in Table VII.
The first component of the eigenvector �V3 is computed as

V31 = �p(γ + r)

D3

= − p

L30

�r(1 + x)

r2

[
1 +

5∑
m=1

k3mxm

]

= − p

L30

(
�

γ

)
1

n̄

5∑
m=0

a3mxm, (A68)

where the coefficients a3m are listed in Table VII. Proceeding
in the same way, the second component of the eigenvector
�V3 is evaluated as

V32 = 1

L30

(
�

γ

)
1

n̄

8∑
m=0

b3mxm, (A69)

where the expansion coefficients b3m are listed in Table VII.
The third component of the eigenvector �V3 is V33 = 1. The
third eigenvector is thus

�V3 =

⎡
⎢⎢⎣

− p

L30

(
�
γ

)
1
n̄

∑5
m=0 a3mxm

1
L30

(
�
γ

)
1
n̄

∑5
m=0 b3mxm

1

⎤
⎥⎥⎦. (A70)

Combining the expressions for the eigenvectors �V1, �V2, and �V3

we obtain the matrix of eigenvectors of A as

M =

⎡
⎢⎣

− p

L12

(
�
γ

)
n̄

∑7
m=0 a1mxm − p

L22

(
�
γ

)
n̄

∑7
m=0 a2mxm − p

L30

(
�
γ

)
1
n̄

∑5
m=0 a3mxm

1
L12

(
�
γ

)
n̄

∑8
m=0 b1mxm 1

L22

(
�
γ

)
n̄

∑8
m=0 b2mxm 1

L30

(
�
γ

)
1
n̄

∑5
m=0 b3mxm

1 1 1

⎤
⎥⎦. (A71)
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b. The determinant and the inverse of the eigenvector matrix M

Expanding Eq. (A71) through second order in x � 1 and neglecting the insignificant terms, we get

M =

⎡
⎢⎣

− p

L12

(
�
γ

)
n̄(a10 + a12x

2) − p

L22

(
�
γ

)
n̄a20 − p

L30

(
�
γ

)(
1
n̄

)
a30

1
L12

(
�
γ

)
n̄(b10 + b12x

2) 1
L22

(
�
γ

)
n̄b20

1
L30

(
�
γ

)(
1
n̄

)
b30

1 1 1

⎤
⎥⎦. (A72)

We take

M =
⎡
⎣V11 V21 V31

V12 V22 V32

V13 V23 V33

⎤
⎦, (A73)

where the components Vij , i,j = 1,2,3 are listed in Table IX.
To simplify the expression for V11 in Eq. (A72), we begin

with the L12 term in the denominator

L12 = z2
11 + 2z10z12 + 2z11 + 4z12 + (1 − p2)

= F11(p)

(
�

γ

)2

+ F12(p), (A74)

where the terms F11(p), F12(p) are listed in Table VIII.
We find that F11(p) � F12(p) for all p and hence

L12 ≈ F11

(
�

γ

)2

. (A75)

To further simplify Eq. (A72) we substitute the expressions for
a10 and a12 from Table VI to the expression for V11 in Eq. (A72)
and use Eq. (A75) to get

a10 = 1, (A76)

a12 = k11 + k12

= −L13

L12
− L14

L12
+

(
L13

L12

)2

≈ −L14

L12

= − f11

(4 + 2z10)

(
�

γ

)2

. (A77)

Using

a10 + a12x
2

L2
=

1 − f11

(4+2z10)

(
�
γ

)2 1
n̄2

F11(p)
(

�
γ

)2 (A78)

we finally obtain a simplified expression for V11,

V11 = −pn̄

(
�

γ

)[1 − f11

(4+2z10)

(
�
γ

)2( 1
n̄

)2

F11(p)
(

�
γ

)2

]

= p

[
− 1

F11
+ f11

F11

1

(2z10 + 4)

1

n̄2

(
�

γ

)2]
n̄

(
�

γ

)−1

.

(A79)

Proceeding in a similar way we obtain analytic expressions for
the other matrix elements Vij listed in Table IX.

Now that we found the analytic expression for the elements
of matrix M, we need to find its inverse:

M−1 = 1

det(M)
adj(M), (A80)

where det(M) is the determinant of M and adj(M) is the adjoint
of M.

Using the expressions of Vij in Table IX, we evaluate the
minors of M Tij in order to find its adjoint

T11 = V22V33 − V23V32

= (3 + z20)

F21
n̄

(
�

γ

)−1

− (3 + z30)

L30

1

n̄

(
�

γ

)

=
[

(3 + z20)

F21
− (3 + z30)

F31

1

n̄2

(
�

γ

)2]
n̄

(
�

γ

)−1

=
[
m1(p) + m2(p)

1

n̄2

(
�

γ

)2]
n̄

(
�

γ

)−1

, (A81)

where the coefficients m1(p), m2(p) are listed in Table XI.
Proceeding in the same way, we evaluate the remaining

minors of M, i.e., Tij , which are listed in Table X. The
coefficients mi(p) that define Tij are listed in Table XI. All
of the coefficients mi(p) (i = 1 to 16) are functions of p only.
The adjoint of M is given by

adj(M) = MT =
⎡
⎣T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎦, (A82)

and the determinant of M is

det(M) = V11T11 + V21T21 + V31T31. (A83)

4. Density matrix evolution: Analytical expressions
in the overdamped regime [�/(n̄γ ) < f ( p)]

In this section we derive analytic expressions for the time
evolution of the density matrix. The general solution of the
Bloch-Redfield equations [Eq. (3) of the main text] can be
obtained from Duhamel’s formula (Ref. [22] of the main text)

�x(t) = eAt �x0 +
∫ t

0
eA(t−s)�d ds, (A84)

where

�x(t) = [
ρaa ρR

ab ρI
ab

]T
, (A85)

�x0 = [0 0 0]T (A86)
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is the initial vector, and

�d = [r pr 0]T (A87)

is the driving vector. To solve Eq. (A84) we need the exponen-
tial of the coefficient matrix A,

etA = Met�M−1

= 1

det(M)

⎡
⎣V11 V21 V31

V12 V22 V32

V13 V23 V33

⎤
⎦

⎡
⎣eλ1t 0 0

0 eλ2t 0
0 0 eλ3t

⎤
⎦

×
⎡
⎣T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎦

= 1

det(M)

⎡
⎣φ11 φ21 φ31

φ12 φ22 φ32

φ13 φ23 φ33

⎤
⎦, (A88)

where M is the eigenvector matrix found in the previous

section, � = [
λ1 0 0
0 λ2 0
0 0 λ3

] is the eigenvalue matrix, and

φij =
3∑

k=1

eλktVkjTki, i,j = 1–3. (A89)

Using Eqs. (A85) to (A88) in Eq. (A84) we get

�x(t) = 1

det(M)

∫ t

0

⎡
⎢⎣

φ11 φ21 φ31

φ12 φ22 φ32

φ13 φ23 φ33

⎤
⎥⎦

⎡
⎣ r

pr

0

⎤
⎦ds

= r

det(M)

∫ t

0

⎡
⎢⎣

φ11 + pφ21

φ12 + pφ22

φ13 + pφ23

⎤
⎥⎦ds. (A90)

Evaluating the integrals of �x(t) from Eq. (A90), we find the
expressions for ρaa(t), ρR

ab(t), and ρI
ab(t),

ρaa(t) = r

det(M)

3∑
k=1

(1 − eλkt )

−λk

Vk1(Tk1 + pTk2), (A91)

ρR
ab(t) = r

det(M)

3∑
k=1

(1 − eλkt )

−λk

Vk2(Tk1 + pTk2), (A92)

ρI
ab(t) = r

det(M)

3∑
k=1

(1 − eλkt )

−λk

Vk3(Tk1 + pTk2). (A93)

To express these general solutions in terms of the physical
parameters, we use Eq. (A83) for the determinant of matrix
M and the coefficients Vij , Tij listed in Tables IX and X. The
determinant of matrix M is obtained from Eq. (A83) using

det(M) =
{
p

[
− m1

F11
+

(
− m2

F11
+ f11

F11

1

(2z10 + 4)

)
1

n̄2

(
�

γ

)2]
+ p

[
− m5

F21
− m6

F21

1

n̄2

(
�

γ

)2]

+p

[
−m11

L30

1

n̄2

(
�

γ

)2

− m12

L30

1

n̄4

(
�

γ

)4]}
n̄2

(
�

γ

)−2

. (A94)

The term proportional to 1
n̄4 ( �

γ
)4 can be neglected for large n̄ and we find

det(M) = p

[(
− m1

F11
− m5

F21

)
+

(
− m2

F11
+ f11

F11

1

(2z10 + 4)
− m6

F21
− m11

L30

)
1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2

=
[
T1(p) + T2(p)

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2

, (A95)

where the coefficients T1(p), T2(p) are listed in Table VIII.
To find the expression for ρaa(t), we calculate the following terms in Eq. (A91):

V11(T11 + pT12) =
[
A1 + A2

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2

, (A96)

V21(T21 + pT22) =
[
A3 + A4

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2

, (A97)

V31(T31 + pT32) =
[
A5 + A6

1

n̄2

(
�

γ

)2]
, (A98)

where the coefficients Ai(p) (i = 1–6) are listed in Table XII. All the terms Ai(p) depend on p only. Using Eqs. (96) to (98) in
Eq. (91) the general expression of ρaa(t) can be recast in the form

ρaa(t) = r

det(M)

{[
A1 + A2

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2(1 − eλ1t

−λ1

)

+
[
A3 + A4

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2(1 − eλ2t

−λ2

)
+

[
A5 + A6

1

n̄2

(
�

γ

)2](
1 − eλ3t

−λ3

)}
. (A99)
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Proceeding in the same way as for ρaa(t), we find the expressions for ρR
ab(t) and ρI

ab(t) as

ρR
ab(t) = r

det(M)

{[
B1 + B2

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2(1 − eλ1t

−λ1

)

+
[
B3 + B4

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2(1 − eλ2t

−λ2

)
+

[
B5 + B6

1

n̄2

(
�

γ

)2](
1 − eλ3t

−λ3

)}
, (A100)

ρI
ab(t) = r

det(M)

{[
C1 + C2

1

n̄2

(
�

γ

)2](
1 − eλ1t

−λ1

)

+
[
C3 + C4

1

n̄2

(
�

γ

)2](
1 − eλ2t

−λ2

)
+

[
C5 + C6

1

n̄2

(
�

γ

)2](
1 − eλ3t

−λ3

)}
n̄

(
�

γ

)−1

, (A101)

where the coefficients Bi(p), Ci(p) (i = 1–6) are listed in Table XII. All the terms Bi(p) and Ci(p) depend on p only.
The general expressions for ρaa(t), ρR

ab(t), and ρI
ab(t) can take two explicit forms depending on the value of the alignment

factor p. If the alignment factor is greater than the critical value, i.e., p > pc, then

λj = γ zj0n̄ = −r|zj0|, j = 1,3. (A102)

However, the second eigenvalue has a different scaling relation as shown in Sec II C of the main text:

λ2 = −γ |f21|1

n̄

(
�

γ

)2

. (A103)

Substituting the eigenvalues from Eqs. (A102) and (A103) into Eqs. (A99) to (A101), using Eq. (A95) for det(M) and neglecting
the small term proportional to 1

n̄4 ( �
γ

)4 for large n̄, we get

ρaa(t) = 1[
T1(p) + T2(p) 1

n̄2

(
�
γ

)2]
{[

A1 + A2
1

n̄2

(
�

γ

)2](
1 − e−γ |z10|n̄t

|z10|
)

+
[
A3 + A4

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2
(

1 − e
−γ |f21| 1

n̄
( �

γ
)2t

|f21|

)
+ A5

1

n̄2

(
�

γ

)2(1 − e−γ |z30|n̄t

|z30|
)}

, (A104)

ρR
ab(t) = 1[

T1(p) + T2(p) 1
n̄2

(
�
γ

)2]
{[

B1 + B2
1

n̄2

(
�

γ

)2](
1 − e−γ |z10|n̄t

|z10|
)

+
[
B3 + B4

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2
(

1 − e
−γ |f21| 1

n̄
( �

γ
)2t

|f21|

)
+ B5

1

n̄2

(
�

γ

)2(1 − e−γ |z30|n̄t

|z30|
)}

, (A105)

ρI
ab(t) = 1[

T1(p) + T2(p) 1
n̄2

(
�
γ

)2] 1

n̄

(
�

γ

){[
C1 + C2

1

n̄2

(
�

γ

)2](
1 − e−γ |z10|n̄t

|z10|
)

+
[
C3 + C4

1

n̄2

(
�

γ

)2]
n̄2

(
�

γ

)−2(1 − e
−γ |f21| 1

n̄
( �

γ
)2t

|f21|
)

+
[
C5 + C6

1

n̄2

(
�

γ

)2](
1 − e−γ |z30|n̄t

|z30|
)}

. (A106)

To further simplify our analytic solutions (A104)–(A106), we note that the coefficients Ai , Bi , and Ci plotted in Fig. 10 do
not vary strongly with p in the vicinity of p = 1. We can thus replace the coefficients by their limiting values at p → 1 to yield

ρaa(t) = 1[−4 + 1.33 1
n̄2

(
�
γ

)2]
{[

−4 + 2.92
1

n̄2

(
�

γ

)2] (1 − e−4γ n̄t )

4
−

(
1 − e

−0.75 γ

n̄
( �

γ
)2t

)
3

+ 0.44
1

n̄2

(
�

γ

)2

(1 − e−γ n̄t )

}
,

(A107)

ρR
ab(t) = 1[−4 + 1.33 1

n̄2

(
�
γ

)2]
{[

− 4 + 3.249
1

n̄2

(
�

γ

)2] (1 − e−4γ n̄t )

4
+ (

1 − e
−0.75 γ

n̄
( �

γ
)2t

) − 0.89
1

n̄2

(
�

γ

)2

(1 − e−γ n̄t )

}
,

(A108)
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ρI
ab(t) = 1[−4 + 1.33 1

n̄2

(
�
γ

)2] 1

n̄

(
�

γ

){[
−1.33 + 0.99

1

n̄2

(
�

γ

)2] (1 − e−4γ n̄t )

4

− (
1 − e

−0.75 γ

n̄
( �

γ
)2t

) +
[

1.33 − 0.25
1

n̄2

(
�

γ

)2]
(1 − e−γ n̄t )

}
. (A109)

These are Eqs. (27)–(29) of the main text.
If the alignment factor is less than the critical value (p < pc), then

λj = γ zj0n̄ = −r|zj0|, j = 1,2,3. (A110)

Substituting the eigenvalues from Eq. (A110) into Eqs. (A99) to (A101), using Eq. (A95) for det(M) and neglecting the small
term proportional to 1

n̄4 ( �
γ

)4 for large n̄, we get

ρaa(t) = 1[
T1(p) + T2(p) 1

n̄2

(
�
γ

)2]
{[

A1 + A2
1

n̄2

(
�

γ

)2](
1 − e−γ |z10|n̄t

|z10|
)

+
[
A3 + A4

1

n̄2

(
�

γ

)2](
1 − e−γ |z20|n̄t

|z20|
)

+ A5
1

n̄2

(
�

γ

)2(1 − e−γ |z30|n̄t

|z30|
)}

, (A111)

ρR
ab(t) = 1[

T1(p) + T2(p) 1
n̄2

(
�
γ

)2]
{[

B1 + B2
1

n̄2

(
�

γ

)2](
1 − e−γ |z10|n̄t

|z10|
)

+
[
B3 + B4

1

n̄2

(
�

γ

)2](
1 − e−γ |z20|n̄t

|z20|
)

+ B5
1

n̄2

(
�

γ

)2(1 − e−γ |z30|n̄t

|z30|
)}

, (A112)

ρI
ab(t) = 1[

T1(p) + T2(p) 1
n̄2

(
�
γ

)2] 1

n̄

(
�

γ

){[
C1 + C2

1

n̄2

(
�

γ

)2](
1 − e−γ |z10|n̄t

|z10|
)

+
[
C3 + C4

1

n̄2

(
�

γ

)2](
1 − e−γ |z20|n̄t

|z20|
)

+
[
C5 + C6

1

n̄2

(
�

γ

)2](
1 − e−γ |z30|n̄t

|z30|
)}

. (A113)

Equations (A111)–(A113) are identical to Eqs. (30)–(32) of the main text.
In the limit of small energy level spacing (�

γ
� 1) and large n̄, we can neglect the terms proportional to 1

n̄2 ( �
γ

)−2 in the above
equations and the general solution further simplifies. For p > pc, we obtain

ρaa(t) = 1

T1(p)

[
A1

(
1 − e−γ |z10|n̄t

|z10|
)

+ A4

(
1 − e

−γ |f21| 1
n̄

( �
γ

)2t

|f21|
)]

, (A114)

ρR
ab(t) = 1

T1(p)

[
B1

(
1 − e−γ |z10|n̄t

|z10|
)

+ B4

(
1 − e

−γ |f21| 1
n̄

( �
γ

)2t

|f21|
)]

, (A115)

ρI
ab(t) = 1

T1(p)

(
�

n̄γ

)[
C1

(
1 − e−γ |z10|n̄t

|z10|
)

+ C4

(
1 − e

−γ |f21| 1
n̄

( �
γ

)2t

|f21|
)

+ C5

(
1 − e−γ |z30|n̄t

|z30|
)]

. (A116)

Equations (A114)–(A116) are the same as Eqs. (33)–(35) of the main text.
For p < pc we find

ρaa(t) = 1

T1(p)

[
A1

(
1 − e−γ |z10|n̄t

|z10|
)

+ A3

(
1 − e−γ |z20|n̄t

|z20|
)]

, (A117)

ρR
ab(t) = 1

T1(p)

[
B1

(
1 − e−γ |z10|n̄t

|z10|
)

+ B3

(
1 − e−γ |z20|n̄t

|z20|
)]

, (A118)

ρI
ab(t) = 1

T1(p)

(
�

n̄γ

)[
C1

(
1 − e−γ |z10|n̄t

|z10|
)

+ C3

(
1 − e−γ |z20|n̄t

|z20|
)

+ C5

(
1 − e−γ |z30|n̄t

|z30|
)]

. (A119)

The above equations are the same as Eqs. (36)–(38) of the main text.
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