
PHYSICAL REVIEW A 98, 023805 (2018)

No exceptional precision of exceptional-point sensors
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Recently, sensors with resonances at exceptional points (EPs) have been suggested to have a vastly improved
sensitivity due to the extraordinary scaling of the complex frequency splitting of the n initially degenerate modes
with the nth root of the perturbation. We show here that the resulting quantum-limited signal to noise at EPs is
proportional to the perturbation, and comparable to other sensors, thus providing the same precision. The complex
frequency splitting close to EPs is therefore not suited to estimate the precision of EP sensors. The underlying
reason for this counterintuitive result is that the mode fields, described by the eigenvectors, are equal for all modes
at the EP, and are strongly changing with the perturbation.
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I. INTRODUCTION

In recent literature, following a first proposal [1], opti-
cal sensors operating at exceptional points (EPs) have been
discussed both theoretically [2–4] and experimentally [5,6].
The main attraction of EP sensors is that the splitting of the
complex eigenfrequencies of the n initially degenerate modes
is scaling with the nth root of the perturbation strength ε,
which is extraordinary compared to the linear scaling with
ε for other sensors. As a result, the rate of change of the
complex frequency splitting with ε can be arbitrarily large
for small perturbations, and is proportional to 1/

√
ε in the

most studied case with n = 2. The resulting enhanced complex
frequency splitting for a given perturbation was claimed be
exploitable for ultrasensitive mass sensing [1], and to pave
the way for sensors with unprecedented sensitivity [5]. In this
respect, it is important to note that the term “sensitivity” is an
ambiguous quantity, as it can either refer to a transduction
coefficient of the sensor from the quantity to be measured
to some intermediate output quantity (such as the frequency
splitting in the present case), or to the smallest measurable
change of the input quantity given by the noise of the sensor
output. The latter is the precision of the measurement and is
well defined, independent of sensor specifics. Surprisingly, the
precision was not evaluated for EP sensors in all these works.

Now, considering that the actual physical mechanism of the
perturbation for the optical sensors considered in [1–6] is the
field change created by the interaction of the mode field with
the polarizability of the perturbation, one would expect [7] that
in the limit of small perturbations, the resulting measurable
effect, the change of the field, is linear with the perturbation
strength ε, which is proportional to the change of the permittiv-
ity by the perturbation. It is therefore worthwhile to investigate
the significance of the complex frequency splitting in terms of
the measurable quantities which have a defined noise limit.
While we might think that the measurable quantities would be
proportional to the frequency splitting, based on our experience
with well-separated resonances having a linewidth smaller
than the splitting, the situation is less clear for overlapping
resonances with a linewidth larger than the splitting, which is
the case for the EP sensors.

The paper is organized as follows. In Sec. II we introduce
the mathematical description of the sensor in terms of its
Hamiltonian and its eigenstates, and calculate its response in
Sec. III, giving general expressions in Sec. III A. The signals
of EP and DP sensors when perturbed from their degeneracy
point are discussed in Sec. III B, and the precision at finite
perturbation is shown in Sec. III C. In the Appendix we analyze
published data from an EP sensor to determine its precision.

II. HAMILTONIAN AND EIGENSTATES

To discuss the aforementioned conflicting expectations for
the scaling of the signal field with the perturbation, let us use
the simple case of two degenerate states at the EP, as discussed
in the literature [1,5,8]. The corresponding 2×2 Hamiltonian
can be written as

H0 =
(

E0 A0

0 E0

)
(1)

with the degenerate state frequencies E0 and the off-diagonal
coupling frequency A0. For A0 �= 0, this matrix has only
one eigenvalue E0 and right eigenvector (1, 0)�, i.e., its two
eigenvalues are degenerate with equal eigenvectors. For A0 =
0 instead, a case known [1] as a diabolic point (DP), the
two degenerate eigenvalues have orthogonal right eigenvectors
(1, 0)� and (0, 1)�. This observation gives us already a clue
of the difference of the response to a perturbation between
EP and DP—the degeneracy of the eigenvectors at the EP
is lifted together with the degeneracy of the eigenvalues,
leading to a quadratic behavior of the measurable signal in the
energy splitting, thus recovering the linearity with perturbation
strength. But let us see this via a mathematical derivation,
where we introduce the perturbed Hamiltonian as

H = H0 + εH1, with H1 =
(

0 A1

B1 0

)
, (2)

with the perturbation strength ε > 0, and the perturbation
matrix H1 given by generally complex coupling frequencies
A1 �= 0 and B1 �= 0. For simplicity, following [3], we have
set the diagonal elements of H1 to zero as they suppress
the square-root frequency splitting at the EP. The resulting
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eigenvalues are

e± = E0 ±
√

εA0B1 + ε2A1B1 = E0 ± �, (3)

having the left (e<
±) and right (e>

±) eigenvectors

e<
± = 1√

2

(
1

v
,±1

)
, e>

± = 1√
2

(
v

±1

)
, (4)

where v = �/(εB1). They are normalized according to
e<
±e>

± = 1 suited for modal decomposition. We see that for
an EP, the eigenvectors depend on ε, becoming parallel for
vanishing ε.

III. HAMILTONIAN DYNAMICS AND SENSING SIGNALS

Measuring the system involves exciting the system and
detecting its response. Changes in the response with the
perturbation are then used to determine the perturbation. In
[1,5] the basis of the Hamiltonian are the clockwise and
counterclockwise propagating optical modes of a microtoroid,
which can be separately excited and detected by evanescent
coupling to a single-mode fiber in the two propagation di-
rections in the fiber. These modes correspond to the first and
second element of the eigenvectors, respectively, in the above
formulation.

Detecting the field, for example, using heterodyne detection
[9], the noise in the detection is quantum-noise limited to a
given field uncertainty, which is due to a Heisenberg uncer-
tainty relation between the real and imaginary parts of the field
in the rotating wave picture. This limit is called the standard
quantum limit and is discussed for example in [10]. It is con-
sistent with the shot-noise limit for intensity measurements. In
the experiments reported in [5,6], a tuneable single-frequency
laser was used as the excitation source and the transmitted
and reflected power was measured using photodetectors. This
measurement is quantum limited by the photon shot noise,
which is equivalent to the standard quantum limit for the
measurement of the optical electric field.

Therefore, we can evaluate the quantum-limited precision
using the change of the detected field due to the perturbation.
The absolute sensitivity will depend on the excitation field
amplitude and calculating it is not required for the comparison
of the EP and DP sensors. We will work in the rotating
wave picture and omit the complex conjugate part required
to describe real fields, for brevity.

A. Sensor signal

The Hamiltonian dynamics of the field S(t ) of the system
with an excitation x(t ) is given by

∂tS(t ) = iHS(t ) + x(t ) , (5)

which for an initially unexcited system yields

S(t ) =
∫ t

−∞
exp[iH (t − t ′)]x(t ′) dt ′ . (6)

Using the modal decomposition of H , this simplifies to

S(t ) =
∑
±

e>
±e<

±

∫ t

−∞
exp[ie±(t − t ′)]x(t ′) dt ′, (7)

which for x(t ) = δ(t )x0 yields

S(t ) = θ (t )Ŝx0 = θ (t )
∑
±

e>
± exp (ie±t )e<

±x0, (8)

with the Heaviside function θ (t ). Using the expressions for the
eigenvalues in Eq. (3) and the eigenvectors in Eq. (4), we find

Ŝ = exp (iE0t )

(
cos(�t ) i sin(�t )v

i sin(�t )/v cos(�t )

)
. (9)

To evaluate the frequency-domain response, we Fourier
transform the time-domain response Eq. (9) into the angular
frequency domain using S̃(ω) = ∫

S(t ) exp(−iωt )dt , and find

˜̂S = 1

2

(
p+ + p− (p+ − p−)v

(p+ − p−)/v p+ + p−

)
, (10)

with p± = i/(� ± �), and � = E0 − ω.

B. Sensor precision at an EP or a DP

At an EP, subtracting the response for ε = 0 yields

ŜE
ε = exp (iE0t )

(
cos(�t ) − 1 i[v sin(�t ) − A0t]
i sin(�t )/v cos(�t ) − 1

)
. (11)

Now, developing in orders of α = √
εB1/A0, we have

� = αA0 + O(α3),
1

v
= α + O(α3), and

v sin(�t ) = A0t +
(

A0A1

B1
t − A3

0

6
t3

)
α2 + O(α4),

and we find using τ = A0t

ŜE
ε = α2 exp (iE0t )

(
−τ 2/2 i

(
A1
B1

τ − τ 3

6

)
iτ −τ 2/2

)
+ O(α4), (12)

which in lowest order in α is

ŜE
ε ≈ εt exp (iE0t )

(−τB1/2 iA1 − iB1τ
2/6

iB1 −τB1/2

)
, (13)

a signal proportional to the perturbation ε, as expected from
the initial physical argument.

The frequency-domain response corresponding to Eq. (11)
is given by

˜̂SE
ε = 1

2

(
p+ + p− − 2p0 (p+ − p−)v − 2iA0p

2
0

(p+ − p−)/v p+ + p− − 2p0

)
, (14)

with p0 = i/�. Developing in α yields in lowest order

˜̂SE
ε ≈ ε

�2

(
A0B1/� −i

(
A1 + A2

0B1/�
2
)

−iB1 A0B1/�

)
, (15)

again scaling proportional to the perturbation ε.
We thus note that for all excitation-detection cases and small

perturbations, the measurable signal field from the EP sensor is
proportional to the perturbation, despite the complex frequency
difference scaling with the square root of the perturbation.

Now, for comparison, let us consider the situation for a DP
sensor, given byA0 = 0. The eigenvectors, given by Eq. (4), are
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now independent of the perturbation strength ε, and subtracting
the signal for ε = 0 we have

ŜD
ε = exp (iE0t )

(
cos(�t ) − 1 i sin(�t )v
i sin(�t )/v cos(�t ) − 1

)
, (16)

and developing in � = ε
√

A1B1 yields in lowest order

ŜD
ε ≈ exp (iE0t )

(−�2t2/2 i�tv

i�t/v −�2t2/2

)
, (17)

which written in ε becomes

ŜD
ε ≈ εt exp (iE0t )

(−εA1B1t/2 iA1

iB1 −εA1B1t/2

)
, (18)

again proportional to ε in lowest order. Notably, the off-
diagonal elements linear in t are equal to the EP result, while
the diagonal elements are in lowest order proportional to ε2,
different from the EP result in Eq. (13). In spectral domain, we
find

˜̂SD
ε = 1

2

(
p+ + p− − 2p0 (p+ − p−)v

(p+ − p−)/v p+ + p− − 2p0

)
, (19)

and developing in � yields in lowest order

˜̂SD
ε ≈ �

�2

(
i�/� −iv

−i/v i�/�

)

= ε

�2

(
iεA1B1/� −iA1

−iB1 iεA1B1/�

)
. (20)

Also here, the off-diagonal elements are equal to each other and
identical to the EP result apart from the �−4 term in Eq. (15).

Note that the response of the system to an arbitrary excita-
tion pulse in time domain is given by the convolution of the
response for delta excitation, the Green’s function, given by
Eq. (8), with the excitation pulse. Furthermore, in the spectral
domain, the response is given by the product of the spectral
response function, Eq. (14), and the excitation spectrum.
The peak of the spectral response function therefore gives
the highest achievable spectral response for any excitation
spectrum.

For illustration, we show the time-domain signals in Fig. 1,
for sensors at an EP, given by Eq. (11), or a DP, given by
Eq. (16), using perturbation strengths ε = 5, 1, 0.1, and 0.01.
The corresponding frequency-domain signals are given in
Fig. 2, according to Eq. (14) for an EP and Eq. (19) for a
DP sensor.

We split the complex frequency E0 = ω0 + iγ0 into the
real frequency ω0 and the damping γ0, take A0 = γ0/2, which
is the maximum possible due to the physical constraint of a
dissipative system [3], and use A1 = B1 = γ0, which provides
a lossless scattering between the two modes.

The off-diagonal signal |S10
ε | (row 1, column 0 of Sε) shown

in the top panels, is equal for EP and DP apart from the slightly
larger frequency splitting � for the EP [see Eq. (3)], which is
directly observable in Fig. 2, and results in a faster temporal
beating period seen in Fig. 1.

The off-diagonal signal |S01
ε | shown in the middle panels is

the same as |S10
ε | for the DP but is different for the EP, which

has a finite Ŝ10 at zero ε, i.e. it is not background free. It shows
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FIG. 1. Time-domain sensing signal amplitudes for sensors at an
EP [solid lines, A0 = γ0/2, Eq. (11)] or DP [dashed lines, A0 = 0,
Eq. (16)] for different perturbation strengths ε as labeled and color
coded, using A1 = B1 = γ0. Top: |S10

ε |, middle: |S01
ε |; bottom: |S00

ε |
and |S11

ε |.

an additional contribution around zero detuning in frequency
domain, which interferes destructively with the main signal,
leading to a strong suppression for ε = 1 at zero detuning.

The diagonal signals |S00
ε | and |S11

ε | are equal and shown in
the bottom panels, and are not background free for both EP and
DP. They are created by the changing temporal dynamics of
the signal, providing an initial quadratic rise. However, since
� is scaling for ε � 1 with

√
ε for the EP, and with ε for the

DP, the resulting signal is scaling for ε � 1 as ε for the EP,
and as ε2 for the DP.

We note that for the off-diagonal signals, the time-domain
peak is scaling as γ −1

0 , and thus with the quality factor of
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FIG. 2. As in Fig. 1, but in the frequency domain, using Eqs. (14)
and (19).

the modes given by ω0/(2γ0). The frequency-domain scaling
acquires an additional factor γ −1

0 due to the changing time
duration, for all signals. The EP off-diagonal signal SE,10

ε has
a component scaling as γ −3

0 in the time domain, which is
interfering with the main component, giving rise to additional
structure. For the diagonal signals the time-domain peak is
scaling as γ −2

0 . Therefore, for all signal components, smaller
damping results in higher signals. In this respect, we note that
in the graphs presented we used the same loss rate γ0 for both
EP and DP sensors. However, due to the physical constraint [3]
2γ0 � |A0| for a passive EP sensor, the loss rate is typically
higher for an EP sensor than for a DP sensor, which is also
observed in simulations [3] and experiment [5]. Introducing
optical gain into the system to reduce the loss can be done
in EP and DP systems, and can enhance the signal of both.
However, one has to keep in mind that gain processes introduce
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FIG. 3. Frequency-domain sensing signal amplitudes and com-
plex frequency splitting � for sensors at an EP (solid lines) or DP
(dashed lines) at resonance (ω = ω0), as function of the perturbation
strength ε. Other parameters as in Fig. 1.

additional noise in the signal, and will not be further discussed
here.

The dependence of the complex frequency splitting and the
frequency-domain signals on the perturbation is shown in Fig. 3
for both EP and DP sensors, at resonance i.e., ω = ω0. We
find that all signals are scaling for small perturbations linear
with the perturbation, except |S00

ε | and |S11
ε | for the DP sensor,

which scales quadratically. The highest signal is provided by
|S10

ε | of the DP sensor, nearly matched by |S10
ε | of the EP

sensor. Importantly, while for the DP sensor the frequency
splitting � is scaling proportional to the signal, for the EP
sensor this splitting is scaling differently than the signal, being
proportional to

√
ε for small ε. This clearly shows that for

EP sensors the complex frequency splitting is not suited to
estimate the precision.

This finding is consistent with an analysis of the sensing
precision in the data provided in [5] (see the Appendix), which
shows that the data taken for the EP have higher noise in
measuring the perturbation than the data taken for the DP.

C. Sensor precision at finite perturbations

To determine the sensor precision at finite perturbation, we
analyze here the change of the signal due to a change of ε

at finite values of ε, i.e., detuned from the EP or DP. This
change is given by the responsivity of the sensor, defined as
the derivative of Ŝ [see Eq. (9)] with respect to ε,

D̂ε = dŜ

dε
= exp (iE0t )

(
d00 d10

d01 d11

)
, (21)

where

d00 = d11 = −B1t

(
A0

2
+ εA1

)
sin(�t )

�
, (22)

d01 = i

(
A0

2ε
+ A1

)(
t cos(�t ) + sin(�t )

�

)
− i� sin(�t )

ε2B1
,

(23)
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FIG. 4. Responsivities according to Eq. (21) at finite ε for sensors
at an EP (solid lines, A0 = γ0/2) or DP (dashed lines, A0 = 0) for
different perturbation strengths ε as labeled and color coded, using
A1 = B1 = γ0. Top: |D10

ε |, middle: |D01
ε |; bottom: |D00

ε | and |D11
ε |.

d10 = i

(
A0

2
+ εA1

)(
t cos(�t ) − sin(�t )

�

)
εB2

1

�2

+ iB1
sin(�t )

�
. (24)

A quantum-limited noise σS of the signal then results in
a quantum-limited precision of the sensor for changes in ε

given by

σnm
ε = σS/

∣∣Dnm
ε

∣∣, (25)

with the indices n,m ∈ {0, 1} selecting the detected signal
component. Examples of the responsivities |Dnm

ε | are given

-10 -5 0 5 10
0

1
0

1
0

1

~~|D00
ε
|, |D11

ε
|

ε=5
ε=1

ε=0.1

EP
DP

frequency (ω-ω0)/γ0

ε=0.01

~|D01
ε
|

re
sp
on
si
vi
ty
(γ
-1 0
)

~
|D10

ε
|

FIG. 5. As in Fig. 4, but in the frequency domain, using Eq. (26).

in Fig. 4 using parameters as in Fig. 1. We find that for
ε � 1, the responsivities have a stable amplitude versus ε, as
expected for a signal scaling linear with ε. An exception are the
diagonal components for the DP, which scale quadratic with ε,
thus showing a responsivity proportional to ε in this regime.
For larger ε, oscillations versus time are present, reflecting
the significant frequency splitting. Notably the maximum
responsivities are similar to ones in the ε � 1 regime.

For detection in frequency domain, we determine equiva-
lently the derivative of ˜̂S [see Eq. (10)] versus ε,

˜̂Dε = d ˜̂S

dε
= 1

2

(
d̃00 d̃10

d̃01 d̃11

)
, (26)
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FIG. 6. Measured frequency splitting�ω and linewidth difference
�γ for a sensor close to the EP or DP, as labeled, as function of the
position of a target scatterer. Data digitized from Fig. 2(a) in [5]. The
green lines are 10-point averages.

where

d̃00 = d̃11 = i
B1

�

(
A0

2
+ εA1

)
(p2

+ − p2
−), (27)

d̃01 =
(

A0

2ε
+ A1

)(
i(p2

+ + p2
−) + p+ − p−

�

)
− �

p+ − p−
ε2B1

,

(28)

d̃10 =
(

A0

2
+ εA1

)(
i(p2

+ + p2
−) − p+ − p−

�

)
εB2

1

�2

+B1
p+ − p−

�
. (29)

The resulting frequency-domain responsivities |D̃nm
ε | for

the parameters as in Fig. 2 are given in Fig. 5. As expected,
the responsivity is maximum when exciting the sensor on
resonance. It is noticeable that, at resonance, the off-diagonal
responsivity is twice as large for ε � 1 than for ε 
 1,
corresponding to cases of overlapping or separated resonances,
respectively. The quantum-limited precision is still given by
Eq. (25), using the quantum-limited noise in the frequency
domain. The highest precision (i.e., the smallest σnm

ε ) in the
frequency domain is achieved by detecting the off-diagonal of
a DP sensor, close to degeneracy (i.e., at ε � 1). Increasing
ε, the highest precision reduces, by a factor of 2 for ε 
 1,
for probing one of the resonances; see, for example, ε = 5 in
Fig. 5 at e± ≈ ω0 ± 5γ0.

Note that we evaluate the absolute value of the responsivity,
which takes into account both amplitude and phase changes
of the signal. The latter are dominating the sensor response
at resonance for ε 
 1, reflecting changes in the resonance
frequency.

We emphasize that resonance frequencies cannot be mea-
sured directly, but are deduced by fitting models of the response
to measured fields or intensities. For example, for pulsed
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15
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FIG. 7. Square deviation between 10-point average and data for
the measured frequency splitting �ω linewidth difference �γ for a
sensor close to the EP or DP, as labeled, as function of the position
of a target scatterer in arbitrary units p. The green lines are 20-point
averages.

excitation, the time-dependent signal can be measured, and
fitted with Eq. (9). Exciting instead with a field of given
frequency, the amplitude and phase of the signal at that
frequency can be measured and fitted with Eq. (10).

IV. CONCLUSIONS

In conclusion, we have demonstrated that the frequency
splitting of the complex eigenfrequencies is not a suited
measure for determining the precision of an EP sensor. Rather,
the resulting detected signal has to be compared with the
quantum noise limit of the detection, and with any additional
technical noise. From the analysis presented in the present
work, it emerges that EP sensors do not provide the exceptional
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FIG. 8. Standard deviationσ (a) and magnitude (b) of the complex
frequency splitting �, for DP and EP sensors, as labeled.

precision suggested by the frequency splitting scaling with the
nth root of the perturbation, but rather are comparable to other
sensors, providing a signal field proportional to the perturba-
tion strength, in agreement with expectations from first-order
perturbation theory. We also provide explicit expressions for
the sensor responsivity in time and frequency domain, which
might prove helpful for sensor design.
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APPENDIX: ANALYSIS OF DATA PRESENTED
BY CHEN et al. [5]

In the two experimental works on EP sensors [5,6], the
precision of the investigated sensors was not reported. In
order to investigate the precision, we therefore analyze the
experimental data shown in [5], to extract the precision of
the investigated sensor at the EP and DP point. The relevant
data are shown in Fig. 2(a) of [5], and a graph with the data
digitized from this figure is shown in Fig. 6. The difference in
linewidth �γ and the difference in frequency �ω of the two
modes are given as functions of the position of a target scatter
in arbitrary units. It is unclear in [5] how this position relates
to the distance of the fiber tip from the toroidal resonator used
in the experiment. We will call this position p in the following
and treat it as unitless.
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FIG. 9. (a) d�/dp, the change of the complex frequency splitting
with p. (b) Calculated error σp of the scatterer position measurement,
for DP and EP sensors.

To determine the precision of the sensing, we first have to
determine the noise in the measurements, and then translate this
to the corresponding noise in p. To determine the noise in the
measured �ω and �γ , we calculate a 10-point adjacent average
of the data points (see green lines in Fig. 6), and determine the
square deviation of the data from this average, as shown in
Fig. 7.

We then average the square deviation using a 20-point
adjacent averaging, to obtain the mean-square deviation σ 2

γ

and σ 2
ω , as function of p, for �γ and �ω, respectively. We then

calculate the complex frequency splitting magnitude

� =
√

�2
ω + �2

γ (A1)

and its mean square deviation

σ =
√(

σω�ω

�

)2

+
(

σγ �γ

�

)2

, (A2)

which are shown in Fig. 8. We can see that for the DP
sensor, σ is rather independent of p, indicating that for the
DP sensor the frequency splitting is a good measure for the
sensor precision. For the EP sensor instead, σ significantly
increases with decreasing splitting, indicating that for EP
sensors the frequency splitting is not a good measure for the
sensor precision.
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To calculate the rms error of the position σp, determined by
�, we use

σp = dp

d�
σ, (A3)

and show the results in Fig. 9. The derivative was smoothed
using the Savatski-Golay method with first order and 100
points to reduce its noise.

We see that the error in determining the position of the
target scatterer for the EP sensor is a factor of 1.8 to 10 larger
than for the DP sensor. We can therefore conclude that the
data presented in Fig. 2(a) of [5] show a lower precision of
the EP sensor as compared with the DP sensor. Importantly,
the precision reduces for smaller perturbations, opposite to the
behavior expected from the scaling of the complex frequency
splitting. For the data analysis the program ORIGIN 2016
(OriginLab) was used.
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