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Dissipative quantum phase transitions of light in a generalized Jaynes-Cummings-Rabi model

R. Gutiérrez-Jáuregui* and H. J. Carmichael†

The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics,
University of Auckland, Private Bag 92019, Auckland, New Zealand

(Received 6 June 2018; published 3 August 2018)

The mean-field steady states of a generalized model of N two-state systems interacting with one mode of
the radiation field in the presence of external driving and dissipation are surveyed as a function of three control
parameters: one governs the interaction strength relative to the resonance frequency, thus accessing the Dicke
quantum phase transition, a second the relative strength of counter-rotating to rotating-wave interactions, and a
third the amplitude of an external field driving the cavity mode. We unify the dissipative extension of the Dicke
quantum phase transition with the recently reported breakdown of photon blockade [H. J. Carmichael, Phys.
Rev. X 5, 031028 (2015)]; key to the unification is a previously unreported phase of the Dicke model and a
renormalized critical drive strength in the breakdown of photon blockade. For the simplest case of one two-state
system, we complement mean-field results with a full quantum treatment: we derive quasienergies to recover the
renormalized critical drive strength, extend the multiphoton resonances of a photon blockade to a counter-rotating
interaction, and explore quantum fluctuations through quantum trajectory simulations.
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I. INTRODUCTION

The relationship between phase transitions away from
thermal equilibrium and open systems in quantum optics was
first addressed in early laser days [1–3]. The theme was
then carried forward by work on optical bistability [4–7],
the degenerate parametric oscillator [8]—with loss added
to the quantum theory of parametric amplification [9]—and
collective radiative phenomena like cooperative fluorescence
[10,11], to name just a few of the examples. As a counterpoint
to these phase transitions of light away from equilibrium and
contemporary with the early laser work, Hepp and Lieb intro-
duced the celebrated Dicke-model phase transition [12,13]—a
phase transition for photons in thermal equilibrium.

While the dissipative platforms provided by the laser,
optical bistability, and parametric oscillator encouraged wide
experimental activity, Hepp and Lieb’s proposal lay dormant
on the experimental front. Its call for a dipole coupling
strength between light and matter in excess of atomic tran-
sition frequencies posed an extreme technical challenge, and
also undermined approximations adopted in the Dicke model
[14–17]. The long wait ended in 2010, however, with the
experimental work of Baumann et al. [18,19], who realized the
T = 0 phase transition of Hepp and Lieb with a superfluid gas
in an optical cavity. The key to success was their engineering
of the Dicke-model Hamiltonian as an effective Hamiltonian
by employing an external Raman drive to realize the phase
transition in a dissipative setting [20,21].

In a separate development rooted in research on open
systems in quantum optics, cavity and circuit QED have
shown that where many material particles and photons might
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traditionally be required for the strong interaction of matter
and light, it is now possible to achieve strong interactions,
sufficient to access nonlinearities, with one particle (e.g., one
two-state system) and photon numbers that range from just one
to the relatively low tens, hundreds, or thousands. Thus, with
regard to the laser and optical bistability, there are cavity QED
versions of both [22,23], and even realizations of the parametric
oscillator where single photons are enough to access the nonlin-
earity [24]. Although the thermodynamic limit of equilibrium
phase transitions does not apply under these conditions, it
still remains that a mean-field treatment and phase-transition
perspective can guide much of the phenomenology, albeit with
the caveat that fluctuations might add more than just minor
corrections.

In this paper we unify the dissipative extension of the Dicke-
model quantum phase transition [18–21] with the recently
reported breakdown of photon blockade [25,26]. The former
is addressed by Hepp and Lieb through the thermodynamic
limit (N → ∞ two-state systems), while the latter has been
approached in a cavity or circuit QED setting [25–29] (one two-
state system). Both phenomena may be engineered, however,
in either of the two ways, and we therefore first consider
mean-field results for both (Sec. III) before turning to results
specific to one two-state system (Sec. IV).

We achieve the proposed unification within the frame-
work of a generalized Dicke-model Hamiltonian, where two
extensions of the analysis in Ref. [20] are made: first, we
allow for rotating and counter-rotating interactions each of
independently adjustable coupling strength [see Ref. [20], Eq.
(12)], and second, we add external coherent driving of the field
mode. The first extension was made by Hepp and Lieb [30],
in a quick followup to their original paper; the generalized
interaction Hamiltonian is also featured in a number of recent
publications [31–38]. A key link in our unification is a phase
that went unreported by Hepp and Lieb. Beyond this, though,
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the added coherent drive is also key, since the breakdown of
photon blockade is organized around a critical drive strength,
identified, to date, in the driven Jaynes-Cummings model (no
counter-rotating interaction) alone [25,27,39]. We show that
the critical drive is a feature of the generalized Hamiltonian,
rotating and counter-rotating interactions included, and thus
links the Dicke-model quantum phase transition to the break-
down of photon blockade.

We begin in Sec. II with a detailed review, building up
our generalized Jaynes-Cummings-Rabi model while making
connections to prior work. We then survey the mean-field
steady states of the model in Sec. III and show how a common
critical drive strength links the dissipative extension of the
Dicke-model quantum phase transition to the breakdown of
photon blockade. Finally, in Sec. IV, we turn from the mean-
field treatment to full quantum-mechanical calculations for the
special case of one two-state system. We recover the critical
drive strength from the quasienergy spectrum of the model
Hamiltonian and show how mean-field predictions can still
provide a guide to the physics in the presence of quantum
fluctuations. Conclusions are presented in Sec. V.

II. BACKGROUND

A. The Dicke quantum phase transition
in the rotating-wave approximation

In their original paper [12] “On the Superradiant Phase
Transition for Molecules in a Quantized Radiation Field:
The Dicke Maser Model,” Hepp and Lieb first introduce
an “interesting caricature...invented by Dicke” [13] of the
interaction between quantized radiation in a box and a system
of N molecules. The caricature assumes single-mode radiation,
two-state molecules, and the rotating-wave approximation;
it generalizes the Tavis-Cummings model [40] to nonzero
detuning, and, adopting natural units with h̄ = 1, is defined
by the Hamiltonian

H0 = ωa†a + ω0Jz + λ√
N

(aJ+ + a†J−), (1)

where ω is the frequency of the field, ω0 the resonance
frequency of the two-state molecules, and λ is a coupling
strength; annihilation and creation operators for the field mode
obey the boson commutation relation, [a, a†] = 1; and the
collective operators for N two-state systems obey angular mo-
mentum commutation relations, [J−, J+] = −2Jz, [J∓, Jz] =
±J∓. Hepp and Lieb exactly compute thermodynamic func-
tions in the limit N → ∞ and find a critical temperature,
Tc > 0, for any coupling strength above

λ0 = √
ωω0. (2)

Considering zero temperature, as we do in this paper, λ0 has the
significance of a critical coupling strength, where for λ � λ0

the photon number is zero in the ground state, while it follows
the formula

〈a†a〉0

N
= ω0

4ω

λ4 − λ4
0

λ2λ2
0

(3)

when λ > λ0. Soon after the rigorous calculation of Hepp and
Lieb, the same result was derived by Wang and Hioe [41] using
a simpler method [see their Eq. (40)].

B. Counter-rotating terms

The method of Wang and Hioe readily generalizes to an
interaction without the rotating-wave approximation: aJ+ +
a†J− → (a + a†)(J− + J+). The calculation, made by Hepp
and Lieb [30] and Carmichael et al. [42], retains the phase
transition and the form of Eq. (3), but unlike in the rotating-
wave approximation, the state of nonzero photon number now
assigns a definite phase to the field, and the critical coupling
is changed to

√
ωω0/2. In fact, Hepp and Lieb [30] consider a

Hamiltonian generalized in the form

Hη = ωa†a + ω0Jz + λ√
N

(aJ+ + a†J−)

+ η
λ√
N

(a†J+ + aJ−), (4)

with η a parameter. We let η vary from 0 to 1 and show
(Sec. III A) that there are actually two critical coupling
strengths marking transitions to states of definite phase:

λ±
η = 1

1 ± η

√
ωω0. (5)

Moreover, photon numbers for solutions bifurcating from both
critical points, λ+

η and λ−
η , follow the same form, that of Eq. (3):

〈a†a〉±η
N

= ω0

4ω

λ4 − (λ±
η )4

λ2(λ±
η )2

. (6)

The transition at λ+
η corresponds to the extension of the Dicke

phase transition of Ref. [12] discussed in Refs. [30,42]: the zero
photon state becomes unstable and is replaced by a stable state
of nonzero photon number. The transition at λ−

η , not identified
before to our knowledge, marks a restabilization of the zero
photon state and the birth of an unstable state of nonzero photon
number. It provides the fulcrum upon which the unification of
the coherently driven extension of the Dicke phase transition
and the breakdown of photon blockade turns.

C. Dissipative realization

While Dicke’s paper [13] generated enormous interest in
superradiance as a transient, away-from-equilibrium process
[43], the Dicke quantum phase transition of Hepp and Lieb
was, for many years, largely seen as academic—beyond the
reach of experiments due to a needed coupling strength on
the order of the transition frequency, and, on the theory side,
suspect because of approximations used in the Dicke model
[14–17]. Dissipative realizations of the Dicke Hamiltonian
as an effective Hamiltonian overcome these obstacles by
replacing a transition from a ground to an excited state by
one between a pair of ground states. Specifically, we have the
scheme introduced by Dimer et al. [20,21] in mind, although
there are essentially parallel setups, where internal states are
replaced by momentum states of a Bose-Einstein condensate
[18,19].

We consider a pair of Raman transitions between states |1〉
and |2〉—the two-state system—as sketched in Fig. 1, where
one leg of each transition is driven by a laser field, with
amplitudes and frequencies �1,2 and ω1,2, and the other creates
and annihilates cavity photons of frequency ω, with coupling
strength to the cavity mode g. Adopting this configuration, with
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FIG. 1. Schematic of the open system realization of the model
Hamiltonian, Eq. (7). A pair of ground states, denoted |1〉 and |2〉,
are coupled to an optical cavity mode, frequency ω, via far-from-
resonance Raman transitions, where bold dashed arrows represent
external laser drives while the transfer of photons to and from the
cavity mode, coupling strength g, is represented by bold solid arrows.
�1,2 and ω1,2 are drive amplitudes and frequencies, and δ1,2 are
detunings; excited states are assumed far from resonance and not
shown.

the excited states (not shown) adiabatically eliminated, and
in an interaction picture—free Hamiltonian ω+a†a + ω−Jz,
ω± = (ω1 ± ω2)/2—an effective Hamiltonian is realized in
the form of Eq. (4):

H ′
η = �a†a + �0Jz + λ√

N
(aJ+ + a†J−)

+ η
λ√
N

(a†J+ + aJ−), (7)

with effective frequencies

� = ω − ω+ = δ1 + δ2

2
, (8)

�0 = ω0 − ω− = δ1 − δ2

2
, (9)

where δ1 and δ2 are Raman detunings (Fig. 1), and the coupling
constants λ and ηλ follow from the strength of the Raman
coupling (see Ref. [20]). We consider an initial state |0〉|1〉,
with |0〉 the cavity mode vacuum, in which case the Raman
driving is a source of photons through the counter-rotating
interaction, an external drive that is offset by the cavity
loss; thus, the dissipative realization of the generalized Dicke
Hamiltonian, Eq. (4), is modeled by the master equation

dρ

dt
= −i[H ′

η, ρ] + κL[a]ρ, (10)

where κ is the loss rate and L[ξ ] · = 2ξ · ξ † − ξ †ξ · − · ξ †ξ .
We show (Sec. III A) that in the presence of dissipation,

for η < ηκ ,

ηκ ≡ κ

|�|

[
1 +

√
1 + κ2

�2

]−1

, (11)

there is no critical coupling strength, while for η � ηκ , there
are two that for κ → 0 reduce to Eq. (5):

λ±
η ≡

√|��0|
1 − η2

⎡
⎣1 + η2 ∓ 2η

√
1 − (1 − η2)2

4η2

κ2

�2

⎤
⎦

1/2

.

(12)

Photon numbers generalizing Eq. (6) are recovered from the
mean-field steady state in Sec. III A [Eq. (30)].

D. Extended model with coherent drive

Equations (7) and (10) set out a driven and dissipative model
where the driving of the field mode is mediated by externally
driven Raman transitions; the dissipative realization of the
effective rotating and counter-rotating interactions amounts
to a nonlinear driving of the field mode. In studies of the
so-called breakdown of photon blockade [25–27,29], the mode
is subject to a coherent drive, i.e., linear driving by an external
field. We now extend our model by adding a coherent drive
of amplitude

√
Nε and frequency ωd—a detuning ωd − ω+ in

the interaction picture of Eq. (7). Choosing ω1 and ω2 so that
ω+ = ωd , the master equation then becomes

dρ

dt
= −i[H ′

η, ρ] − i
√

Nε[a† + a, ρ] + κL[a]ρ, (13)

where, from Eq. (9), � = ω − ωd is now the detuning of the
field mode from the drive.

The next section explores the parameter dependence of
the mean-field steady states of Eq. (13). In particular, we
connect the breakdown of photon blockade, realized for η = 0,
to the coherently driven extension of the Dicke quantum
phase transition. We show that an η-dependent critical point
organizes behavior as a function of drive strength; we then
establish a link through the previously unreported phase of
the generalized model presented in Ref. [30], i.e., the second
critical coupling strength λ−

η .

III. MEAN-FIELD STEADY STATES

The mean-field Maxwell-Bloch equations derived from the
master equation, Eq. (13), are

dα

dt
= −(κ + i�)α − i

λ√
N

1

2
(β + ηβ∗) − i

√
Nε, (14)

dβ

dt
= −i�0β + 2i

λ√
N

(α + ηα∗)ζ, (15)

dζ

dt
= −i

λ√
N

[(αβ∗ − α∗β ) − η(αβ − α∗β∗)], (16)

with α ≡ 〈a〉, β ≡ 2〈J−〉, and ζ ≡ 2〈Jz〉. We first outline
a general approach to their steady-state solution, where,
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introducing intensive variables

ᾱ ≡ α/
√

N, β̄ ≡ β/N, ζ̄ ≡ ζ/N, (17)

Eqs. (14) and (15) require

β̄x = 2λ
1 + η

�0
ᾱx ζ̄ , (18)

β̄y = 2λ
1 − η

�0
ᾱy ζ̄ , (19)

with ᾱx and ᾱy satisfying the simultaneous equations:

κᾱx −
[
� + λ2 (1 − η)2

�0
ζ̄

]
ᾱy = 0, (20)

κᾱy +
[
� + λ2 (1 + η)2

�0
ζ̄

]
ᾱx = −ε. (21)

We may then solve Eqs. (18)–(21) for |β̄|2 in terms of ζ̄ and
impose the conservation law ζ̄ 2 + |β̄|2 = 1; hence we find an
autonomous equation satisfied by ζ̄ ,

(1 − ζ̄ 2)[P (ζ̄ )]2 = 4ε2

λ2(1 + η)2
ζ̄ 2Q(ζ̄ ), (22)

with P (ζ̄ ) and Q(ζ̄ ) both quadratic:

P (ζ̄ ) = ζ̄ 2 + 2
��0(1 + η2)

λ2(1 − η2)2
ζ̄ + �2

0(κ2 + �2)

λ4(1 − η2)2
(23)

and

Q(ζ̄ ) = ζ̄ 2 + 2
��0

λ2(1 − η)2
ζ̄ + �2

0κ
2

λ4(1 − η2)2
+ �2�2

0

λ4(1 − η)4
.

(24)

Steady-state solutions for ζ̄ are seen to be roots of a sixth-order
polynomial, with a possible six distinct solutions for any setting
of the parameters: η, �, �0, λ, ε, and κ . In the following, for the
most part, we set �0 = � and keep κ/λ fixed; we then explore
the parameter dependence in the (�/λ, ε/λ) plane for different
choices of η. To start, we recover the results summarized in
Secs. II A and II B from our general solution scheme.

A. Zero drive: ε = 0

In the absence of a coherent drive, the right-hand side of
Eq. (22) is zero, and the sixth-order polynomial satisfied by ζ̄

reduces to

(1 − ζ̄ 2)[P (ζ̄ )]2 = 0. (25)

Equations (20) and (21) are replaced by the homogeneous
system(

�0κ −��0 − λ2(1 − η)2ζ̄

��0 + λ2(1 + η)2ζ̄ �0κ

)(
ᾱx

ᾱy

)
= 0.

(26)

Noting then that the determinant of this homogeneous system
is λ4(1 − λ2)2P (ζ̄ ), the condition for nontrivial solutions for
ᾱ is P (ζ̄ ) = 0. Thus, the roots ζ̄ = ±1 of Eq. (25) correspond

to the trivial solution, ᾱ = 0, while the roots of P (ζ̄ ) = 0,

ζ̄± = − ��0

λ2(1 − η2)2

⎡
⎣1 + η2 ∓ 2η

√
1 − (1 − η2)2

4η2

κ2

�2

⎤
⎦,

(27)

yield nontrivial solutions for ᾱ. The latter are physically
acceptable if ζ̄± are real and |ζ̄±| � 1; the first condition is
satisfied if η � ηκ , ηκ defined in Eq. (11), and the second
gives the critical coupling strengths λ±

η , defined in Eq. (12);
for η � ηκ and λ+

η � λ � λ−
η , ζ̄+ is the only acceptable root,

while ζ̄+ and ζ̄− are both acceptable if λ � λ−
η .

Note that � and �0 are detunings and therefore two cases
arise, one with ��0 positive and ζ̄± < 0, and the other with
��0 negative and ζ̄± > 0. Considering steady states only,
there is no physical difference between the cases as a quick
inspection of Eqs. (14)–(16) shows—simply reverse the signs
of �0 and ζ̄ in Eq. (15); steady-state stability can change,
though. We always illustrate results with �0 = �, whence
��0 is positive.

By eliminating �0κ from the homogeneous system,
Eq. (26), we may solve for

(ᾱ±
x )2 = −|ᾱ±|2 ��0 + λ2(1 − η)2ζ̄±

4λ2ηζ̄±
, (28)

(ᾱ±
y )2 = +|ᾱ±|2 ��0 + λ2(1 + η)2ζ̄±

4λ2ηζ̄±
, (29)

and hence, using Eqs. (18) and (19), and the conservation law
ζ̄ 2 + |β̄|2 = 1, find

|ᾱ±|2 = − �0

4�

1 − ζ̄ 2
±

ζ̄±
. (30)

This result gives back Eq. (6), with ω → � and ω0 → �0,
when κ = 0.

Figure 2 displays four cross sections of the parameter space
for ε = 0 and �0 = �, each subdivided according to the num-
ber of distinct steady-state solutions. Frames (a) and (c) apply
to the nondissipative model (κ = 0), while frames (b) and (d)
include cavity-mode loss. Two complementary perspectives
are provided: first, in frames (a) and (b), where the cut is the
(λ/�, η) plane, and then, in frames (c) and (d), where the
(�/λ, η) plane is shown. The first view envisages the coupling
strength λ, at fixed detuning �, as the control parameter, the
historical view suggested by Refs. [12,30,41,42]; the second
envisages � as the control parameter, with λ fixed, which is
more natural for experiments in optics and the perspective
carried through the remainder of the paper. To connect with
Secs. II A and II B, we note the following points:

(i) The Dicke quantum phase transition in the rotating-
wave approximation, originally proposed by Hepp and Lieb
[12], maps to the line η = 0 in frames (a) and (c). The critical
point λ/� = �/λ = 1 marks a transition from the trivial so-
lution to one with photon number |α±|2 = (�4 − λ4)/4λ2�2

[Eqs. (3) and (30)], where ζ̄± = −�2/λ2 is a double root of
P (ζ̄ ) = 0; β̄/ᾱ = −2�/λ, but there is no preferred phase for
β̄, since Eqs. (28) and (29) reduce to the tautology 0 = 0.
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FIG. 2. Mean-field phase diagram for zero drive and �0 = �: (a)
κ/� = 0, (b) κ/� = 0.7, (c) κ/λ = 0, and (d) κ/λ = 0.1. The cut
through parameter space is the (η, λ/�) plane in (a) and (b), and the
(η,�/λ) plane in (c) and (d).

(ii) The η = 0 transition does not occur in the presence of
dissipation, as in frames (b) and (d) the η = 0 axis bounds only
the R2 region.

(iii) The critical point on the line η = 0 [frames (a) and
(c)] splits into a pair of critical points when η > 0, subdividing
the plane into regions of two, three, and four distinct solutions
(two, four, and six solutions when double roots of [P (ζ̄ )]2 = 0
are considered). The transition at λ+

η=1 = �/2 from region R2

to R3 recovers the renormalized critical point [42] when the
rotating-wave approximation is lifted—the R2/R3 boundary
carries that renormalization through as a function of η. To our
knowledge, the critical point defining the R3/R4 boundary
has not been reported before, although Hepp and Lieb do
discuss a model that embraces our inclusion of the parameter
η [30]. The transition between regions R3 and R4 is central
to the unification we present with a coherent drive included
(Sec. III E).

(iv) Contrasting the situation in (i), nontrivial solutions in
regions R3 and R4 assign β̄ and ᾱ a definite phase, through
Eqs. (18), (19), (28), and (29).

(v) While the map from frame (b) to frame (d) appears
straightforward, the map from frame (c) to frame (d) is not:
a diagram with two boundaries at fixed η now acquires three,
as the R2/R4 boundary bends up to meet η = 1. This follows
from the term κ2/�2 under the square root in Eq. (27): when
κ �= 0, ζ̄± are complex for η > ηκ , a �-dependent condition
at fixed κ [Eq. (11)].

Figure 3 further illustrates the parameter dependence of
the mean-field steady states in the absence of a drive. The
symmetrical presentation of the phase diagram in frame (a) is
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FIG. 3. Mean-field steady states for zero drive and �0 = �:
κ/λ = 0.1 and η = 0.2 [(b),(c)] and η = 0.6 [(d),(e)]. The two sweeps
through the phase diagram are indicated by dashed lines in (a); solid
red (dashed blue) lines indicate locally stable (unstable) steady states
in (b)–(e).

modeled after Ref. [25] (Figs. 1 and 2) and carried through in
Figs. 4, 5, and 7. Frames (b)-(e) show steady states and their
stability as a function of detuning for η = 0.2 and η = 0.6; they
illustrate how the regions in frame (a) interconnect as solutions
track smoothly with the changing detuning and bifurcate at the
boundaries:

Region R2: Solutions ζ̄ = ±1 only; the solution ζ̄ = −1
(+1) is stable (unstable). Two solutions in total.

Region R3: Solutions ζ̄ = ±1 and the root ζ̄+ of P (ζ̄ ) = 0;
the solutions ζ̄ = ±1 are both unstable and ζ̄+ is stable. Three
solutions in total.

Region R4: Solutions ζ̄ = ±1 and the roots ζ̄+ and ζ̄− of
P (ζ̄ ) = 0; the solutions ζ̄ = −1 (+1) and ζ̄+ (ζ̄−) are stable
(unstable). Four solutions in total.

B. Critical drive strength: �0 = 0

We turn now to the dependence on the coherent drive
strength, where we begin by identifying the critical point that
organizes behavior as function of ε. To this end, we must
first give special consideration to �0 = 0, a limit not readily
recovered from our general solution scheme, due to the �0 in
the denominator of Eqs. (18) and (19); we essentially review
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FIG. 4. Mean-field steady states for η = 0 and �0 = �: κ/λ =
0.02 and ε/εcrit = 0.6 [(b),(c)], ε/εcrit =1.0 [(d),(e)], and ε/εcrit =1.2
[(f),(g)]. The three sweeps through the phase diagram are indicated
by dashed lines in (a); solid red (dashed blue) lines indicate stable
(unstable) steady states in (b)–(g); and dashed black lines demark the
range of bistability in (c).

an analysis presented by Alsing and Carmichael [27], but
extended here to arbitrary η.

From Eqs. (23) and (24), when �0 = 0, P (ζ̄ ) = Q(ζ̄ ) =
ζ̄ 2, and the sixth-order polynomial satisfied by ζ̄ becomes

(1 − ζ̄ 2)ζ̄ 4 = (ε/εcrit )
2ζ̄ 4, (31)

with

εcrit ≡ 1
2λ(1 + η), (32)

where the significance of εcrit as a critical drive strength is
elaborated below. Equations (18) and (19) carry over in the
form

ᾱx ζ̄ = ᾱy ζ̄ = 0, (33)
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FIG. 5. Mean-field steady states for η = 1 and �0 = �: κ/λ =
0.02 and ε/εcrit = 0.6 [(b),(c)], ε/εcrit =1.0 [(d),(e)], and ε/εcrit =1.2
[(f),(g)]. The three sweeps through the phase diagram are indicated
by dashed lines in (a); solid red (dashed blue) lines indicate stable
(unstable) steady states in (b)–(g); and dashed black lines demark the
range of bistability in (c).

and Eqs. (20) and (21) as

κᾱx − �ᾱy − λ 1
2 (1 − η)β̄y = 0, (34)

κᾱy + �ᾱx + λ 1
2 (1 + η)β̄x = −ε. (35)

Working then from Eq. (33), we can identify two distinct
classes of solutions, one holding below εcrit and the other above.

1. Solutions with ᾱx = ᾱ y = 0 (ε � εcrit)

Equation (33) may be satisfied with ᾱx = ᾱy = 0, which,
from Eqs. (34) and (35), requires

β̄x = −ε/εcrit, β̄y = 0, (36)
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and hence, from the conservation law ζ̄ 2 + |β̄|2 = 1,

ζ̄ = ±
√

1 − (ε/εcrit )2. (37)

The same result follows directly from Eq. (31) under the
assumption ζ̄ �= 0. This solution is physically acceptable for
ε � εcrit , though larger drives require Eq. (33) to be satisfied
in another way.

2. Solutions with ζ̄ = 0 (ε � εcrit)

Equation (33) may also be satisfied with ζ̄ = 0, which
leaves only the phase of β̄ to be determined:

β̄ = eiφ. (38)

From Eq. (16), the phase of ᾱ must satisfy

Im[ᾱ(e−iφ − ηeiφ )] = 0, (39)

and also, from Eq. (14),

ᾱ = −i
ε + εcrit (eiφ + ηe−iφ )/(1 + η)

κ + i�
. (40)

The phase φ is therefore a solution of the transcendental
equation

ε cos φ + εcrit = � sin φ

κ (1 − η2)
[ε(1 + η)2 + εcrit4η cos φ]. (41)

If we then take � = 0 as well as �0 = 0 (and η �= 1), we arrive
at the much simpler equation

φ = cos−1(−εcrit/ε), (42)

with solution φ = π for ε = εcrit and two solutions for the
phase of β̄ above εcrit . This prediction of a bistability in phase
above εcrit recovers the so-called spontaneous dressed-state
polarization of Alsing and Carmichael [27] (see also [28]) but
generalized to η �= 0.

C. Rotating-wave approximation with coherent drive: η = 0

We now begin to lay out the connection between the break-
down of photon blockade and the coherently driven extension
of the Dicke quantum phase transition. In this section, we
introduce the breakdown of photon blockade as the coherently
driven extension of Sec. III A in the limit η = 0. In so doing, we
introduce a completely new region of nontrivial steady states,
one disconnected and distinct from regions R3 and R4 of Figs. 2
and 3. What follows recovers results from Ref. [25].

Returning to the sixth-order polynomial satisfied by ζ̄ ,
Eq. (22), with η zero, Q(ζ̄ ) = P (ζ̄ ), and the polynomial takes
the simpler form

(1 − ζ̄ 2)[P (ζ̄ )]2 = ε̄2ζ̄ 2P (ζ̄ ), (43)

with

P (ζ̄ ) = (�̄0κ̄ )2 + (�̄0�̄ + ζ̄ )2, (44)

where we have introduced parameters scaled by εcrit:

ε̄ ≡ ε/εcrit, (κ̄, �̄, �̄0) ≡ (κ,�,�0)/2εcrit. (45)

The roots of P (ζ̄ ) = 0 are nonphysical (complex) when η = 0
[Eq. (27)] and therefore P (ζ̄ ) may be canceled on both sides of
Eq. (43), which means there are at most four distinct solutions.

Turning then to the field, the homogeneous system, Eq. (26),
is replaced by(

κ̄ −�̄ − �̄−1
0 ζ̄

�̄ + �̄−1
0 ζ̄ κ̄

)(
ᾱx

ᾱy

)
=

(
0

−ε̄/2

)
(46)

with a solution for the field amplitude (�̄0 �= 0)

ᾱ = −i
ε̄/2

κ̄ + i
(
�̄ + �̄−1

0 ζ̄
) . (47)

Thus, the field mode responds to coherent driving as a resonator
in the presence of a nonlinear dispersion, where the dispersion
is defined by solutions to Eq. (43). If we then note that P (ζ̄ ) =
�̄2

0ε̄
2/4|ᾱ|2 [Eqs. (44) and (47)], whence, from Eq. (43),

ζ̄ = ± |�̄0|(
�̄2

0 + 4|ᾱ|2)1/2 , (48)

we recover the autonomous equation of state for the field mode
[25]:

ᾱ = −i
ε̄/2

κ̄ + i
[
�̄ ± sgn(�̄0)

(
�̄2

0 + 4|ᾱ|2)−1/2] . (49)

Figure 4 illustrates the results for mean-field steady states
obtained from Eqs. (43) and (49) when �0 = �. The phe-
nomenology follows that mapped out in Fig. 4 of Ref. [25],
where regions of two and four distinct solutions [frame (a)]
interconnect through the frequency pulling of vacuum Rabi
resonances located at �/2εcrit = ±1 for ε/εcrit → 0:

Region Ra
2 : Two solutions that approach ζ̄ = ±1 in the limit

of zero drive; the solution approaching ζ̄ = −1 (+1) is stable
(unstable). Two solutions in total.

Region R4: Two solutions that approach ζ̄ = ±1 in the limit
of zero drive and two additional solutions that arise from the
bistable folding of the solution that approaches ζ̄ = −1; the
solution approaching ζ̄ = −1 (+1) is stable (unstable), and the
two additional solutions are stable and unstable. Four solutions
in total.

Region Rb
2 : Two solutions that approach ζ̄ = ±1 in the

limit of large detuning; the solution approaching ζ̄ = −1 (+1)
is stable (unstable). Two solutions in total.

We emphasize that regions Ra
2 and Rb

2 comprise a single
connected region of two distinct solutions in frame (a) of
Fig. 4; region R4 does not touch the �/2εcrit axis, although
it comes close when κ/λ is small. We note also that regions
R4 of Fig. 3 and R4 of Fig. 4 are distinct and do not share
a common boundary; their interface occurs away from η = 0
and is discussed in Sec. III E.

D. The quantum Rabi Hamiltonian with coherent drive: η = 1

Taking now the opposite limit, η = 1, we meet with a region
of nontrivial steady states that is contiguous with R3 of Figs. 2
and 3. The new region supports four distinct solutions, while
R3 supports only three. Nonetheless, the boundary forms a
continuous interface since one solution in R3 corresponds to a
double root of Eq. (25)—a root of [P (ζ̄ )]2 = 0; the coherent
drive lifts this degeneracy and splits one distinct solution into
two.
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In order to avoid the divergence of P (ζ̄ ) and Q(ζ̄ ) as η → 1,
we take Eqs. (23) and (24) over in the form

(1 − η)2P (ζ̄ ) = 4�̄�̄0ζ̄ + 4�̄2
0(κ̄2 + �̄2) (50)

and

(1 − η)4Q(ζ̄ ) = 16�̄2�̄2
0, (51)

in which case the sixth-order polynomial in ζ̄ , Eq. (22),
simplifies as

(1 − ζ̄ 2)

[
ζ̄ + �̄0

�̄
(κ̄2 + �̄2)

]2

= ε̄2ζ̄ 2, (52)

again a fourth-order polynomial with two or four physically
acceptable solutions. In the ε̄ → 0 limit, the range of four
solutions is confined by the inequality

|�̄0|
|�̄| (κ̄2 + �̄2) � 1, (53)

which recovers the λ+
η→1 threshold of Eq. (12). Note also that,

as advertised, the root ζ̄ = −(�̄0/�̄)(κ̄2 + �̄2) on the ε̄ = 0
boundary is a double root; thus the region R4 of Fig. 5—four
distinct roots in the interior—interfaces continuously with the
three distinct roots of region R3 in Figs. 2 and 3.

Turning to the field, from Eqs. (20) and (21), Eq. (46) (η =
0) is replaced by(

κ̄ −�̄

�̄ + �̄−1
0 ζ̄ κ̄

)(
ᾱx

ᾱy

)
=

(
0

−ε̄/2

)
, (54)

where the coupling through ζ̄ is no longer symmetrical in
the off-diagonals of the matrix on the left-hand side, and is
therefore not serving the function of a nonlinear dispersion.
Indeed, the physical interpretation for η = 1 says the coupling
through ζ̄ belongs on the right-hand side of Eq. (54) where it
acts as a nonlinear drive. The interpretation is made particularly
clear if we write

β̄ = �̄−1
0 2ᾱx ζ̄ , (55)

Eqs. (18) and (19), and then, from ζ̄ 2 + |β̄|2 = 1,

ζ̄ = ±|�̄0|
(
�̄2

0 + 4ᾱ2
x

)−1/2
. (56)

Now, moving the term �̄−1
0 ᾱx ζ̄ to the right-hand side of

Eq. (54), the equation is rewritten as(
κ̄ −�̄

�̄ κ̄

)(
ᾱx

ᾱy

)
=

(
0

−ε̄/2 ∓ ᾱx

(
�̄2

0 + 4ᾱ2
x

)−1/2

)
, (57)

where, if we can assume 4ᾱ2
x � �̄2

0, we find two solutions with
the amplitude of the coherent drive simply changed from ε̄ to
ε̄ ± 1:

ᾱ = −i
(ε̄ ± 1)/2

κ̄ + i�̄
, (58)

and ζ̄ = ±|�̄0|/|ᾱx |, β̄ = ±sgn(�̄0)sgn(ᾱx ).
More generally, Fig. 5 shows the dependence of mean-field

steady states on drive amplitude and detuning for η = 1 and
�̄0 = �̄; frames (b)–(g) illustrate results for three sweeps
through a parameter space that divides into just two separate
regions [frame (a)]:

Region R4: Two solutions that approach ζ̄ = ±1 in the limit
of zero drive and two that approach the root ζ̄+ = −κ̄2 − �̄2

of [P (ζ̄ )]2 = 0; the solutions that approach ζ̄ = ζ̄+ (±1) are
stable (unstable); the solution that approaches ζ̄ = −1 links
in a closed loop to one of the solutions approaching ζ̄+. Four
solutions in total.

Region Rb
2 : Two solutions that approach ζ̄ = ±1 in the

limit of large detuning; the solution approaching ζ̄ = −1 (+1)
is stable (unstable). Two solutions in total.

We note the following additional points:
(i) Two of the four solutions in regionR4 are consistent with

the assumption adopted above Eq. (58) [frame (c) of Fig. 5]
so long as κ̄  1; the remaining two solutions satisfy Eq. (57)
but do not admit the approximation leading to Eq. (58).

(ii) The boundary between regions R4 and Rb
2 in frame (a)

of Fig. 5 follows the curve

ε̄ =
{

1 −
[ |�̄0|

|�̄| (κ̄2 + �̄2)

]2/3
}3/2

. (59)

The boundary is a line of double roots of Eq. (52), and the
curve may be found by equating derivatives on the left- and
right-hand sides of this equation.

(iii) The critical point εcrit [Eq. (32)] organizes behavior as
a function of drive strength and detuning in much the same
way as it does for η = 0.

(iv) The closed loop in frame (b) of Fig. 5 is similar to the
loop in frame (b) of Fig. 4; both shrink with increasing drive
strength to eventually vanish at the critical point—frames (d) of
Figs. 4 and 5. Note, though, that the stabilities are interchanged;
this change is clearly reflected in the accompanying plots of
|ᾱ|2 [frames (c) of Figs. 4 and 5].

(v) The stable solutions displayed in frames (c), (e), and (g)
of Fig. 5 are all single nearly Lorentzian peaks; the splitting in
the corresponding frames of Fig. 4 does not occur.

E. Intermediate regime: 0 < η < 1

Summarizing what we have learned: with no counter-
rotating interaction, the dissipative Dicke system shows no
phase transition as a function of coupling strength [η = 0 in
frames (b) and (d) of Fig. 1], although the breakdown of photon
blockade takes place in the presence of a coherent drive (Fig. 4);
the dissipative system does, however, show the standard phase
transition when η = 1, where it is deformed by a coherent drive
and vanishes with increasing drive strength at a renormalized
photon-blockade-breakdown critical point (Fig. 5).

In this section we unify these limiting cases by letting η vary
continuously between 0 and 1. We show how the previously
unreported phase of the Dicke system, i.e., region R4 of Figs. 2
and 3, underlies this unification.

We begin with the interface between frame (a) of Fig. 3
and frame (a) of Fig. 5, where regions of three and four
distinct solutions connect on the boundary ε̄ = 0, η = 1:
moving off the boundary with a perturbation ε̄ → δε̄ lifts the
degeneracy of a double root of Eq. (25) and thus provides
the link between regions. Something similar is encountered
on the ε̄ = 0 boundary with ηκ < η < 1 (e.g., along the lines
η = 0.6 and η = 0.2 in Fig. 3); however, now two regions,
R3 and R4, link to contiguous regions under the perturbation
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FIG. 6. The square root of the left-hand side of Eq. (25) as a func-
tion of ζ̄ for η = 0.2 and �0 = �: κ/2εcrit = 1/12 and |�|/2εcrit =
1.0, 0.7, 0.5, 0.15 [(a)-(d)]. Zeros of this function (crossings of the
black dashed lines) are roots of Eq. (25).

ε̄ → δε̄. Since R4 accommodates two double roots of Eq. (25),
we predict its linkage to a contiguous region of six distinct
solutions in the presence of a coherent drive.

We illustrate this situation in Fig. 6, where we plot the
function

√
1 − ζ̄ 2P (ζ̄ )—the square root of the left-hand side

of Eq. (25)—for four detunings along the η = 0.2 sweep of
Fig. 3: frames (a), (b), (c), (d) refer, in sequence, to points in
regions R2, R3, R4, R2 along the sweep—moving inwards from
either end; they show examples of two, three, four, and again
two distinct roots. The trivial roots, ζ̄ = ±1, appear in every
plot, while the additional roots [frames (b) and (c)] are double
roots of [P (ζ̄ )]2 = 0. The perturbation ε̄ → δε̄ replaces each
dashed line in the figure by a pair of curves ±δε̄|ζ̄ |

√
Q(ζ̄ ),

and thus lifts the degeneracy of each double root. [It is readily
shown that Q(ζ̄ ) > 0.]

Figure 7 shows how the results displayed in Figs. 3–5 are
generalized for η = 0.2 and �̄0 = �̄. The parameter space is
now divided into a larger number of regions, integrating those
already met in the three limiting cases:

Region Ra
2 : Two solutions that approach ζ̄ = ±1 in the limit

of zero drive; the solution approaching ζ̄ = −1 (+1) is stable
(unstable). Two solutions in total.

Region R6: Two solutions that approach ζ̄ = ±1 in the limit
of zero drive and four additional solutions—two that approach
each of the double roots ζ̄± of [P (ζ̄ )]2 = 0. The solutions
approaching ζ̄ = −1 and ζ̄+ (+1 and ζ̄−) are stable (unstable).
Six solutions in total.

Region Ra
4 : Two solutions that approach ζ̄ = ±1 in the

limit of zero drive and two that approach the double root ζ̄+

× 10-1

10-1

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5
(a)

ε2 critΔ/

cr
it

ε/
ε

2
bR 2

bR2
bR2
bR2
bR2
bR2
bR

2
aR

6R 6R

4Rb
4Rb

4Ra
4Ra

-1 0 1

-1

0

1

−

(b)

ζ

ε2 critΔ/
-0.5 0.0 0.5

0

1

2

3
(c)

ε2 critΔ/

− |
2

|α

×100

-0.875 -0.625 -0.375

-1.0

-0.5
− ζ

(d)

ε2 critΔ/
-0.75 -0.50 -0.25

(e)
1

ε2 critΔ/

− |
2

|α

0

FIG. 7. Mean-field steady states for η = 0.2 and �0 = �: κ/λ =
0.02 and ε/εcrit = 0.2; [(d),(e)] expands the view in [(b),(c)]. The
sweep through the phase diagram is indicated by the dashed line
in (a); solid red (dashed blue and magenta) lines indicate stable
(unstable) steady states in (b)–(e); dashed black lines demark the
range of bistability or tristability in (c).

of [P (ζ̄ )]2 = 0; the solutions approaching ζ̄+ (±1) are stable
(unstable). Four solutions in total.

Region Rb
4 : Two solutions that approach ζ̄ = ±1 in the limit

of zero drive and two additional solutions that arise from the
bistable folding of the solution that approaches ζ̄ = −1; the
solution approaching ζ̄ = −1 (+1) is stable (unstable), and
the two additional solutions are one stable and one unstable.
Four solutions in total.

Region Rb
2 : Two solutions that approach ζ̄ = ±1 in the

limit of large detuning; the solution approaching ζ̄ = −1 (+1)
is stable (unstable). Two solutions in total.

Frames (b)–(e) of Fig. 7 show how the corresponding plots
in Fig. 3 change when the degeneracy of the double roots
(ε̄ = 0) is lifted (ε̄ �= 0) to link regions R3 and R4 of Fig. 3 to
regions Ra

4 and R6, respectively, of Fig. 7. (Note, however, that
κ/λ takes different values in the figures, so region boundaries
do not line up.) The change is clearly seen, for example,
comparing frame (b) of Fig. 3 with frames (b) and (d) of
Fig. 7: a single stable upper branch, Fig. 3, is split into two
stable upper branches, Fig. 7; and a single unstable branch
connecting upper and lower stable branches in Fig. 3 splits
into two unstable branches in Fig. 7 [near overlapping dashed
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lines in frame (d)]. In this way features met separately in the
limiting cases of Figs. 4 and 5 are linked together.

Finally, for larger amplitudes of the drive—e.g., adding
sweeps at ε̄ = 0.6, 1.0, and 1.2 in frame (a) of Fig. 7—mean-
field steady states follow the breakdown of photon blockade,
as in frames (b)–(g) of Fig. 4.

IV. QUANTUM FLUCTUATIONS:
ONE TWO-STATE SYSTEM

While the mean-field analysis may be highly suggestive
of what to expect from an experimental realization of our
generalized Jaynes-Cummings-Rabi model, an account in
these terms is incomplete—fluctuations are neglected. We
encounter coexisting steady states, for example, and although
both are stable under small perturbations when Maxwell-Bloch
equations are solved, what of the stability once quantum
fluctuations are introduced?

It is beyond the scope of this work to address questions like
this in any detail. We limit ourselves here to a few observations
about the full quantum treatment for the case N = 1, where a
number of calculations are feasible, some analytical and some
numerical, to parallel results for the breakdown of photon
blockade [25]. While it may seem that N = 1 takes us very
far from a many-particle limit where contact with mean-field
results may be made, this is not generally the case: it is shown
in Ref. [25] that the many-photon limit is a strong-coupling
limit, and many of the figures from Sec. III have photon
numbers ranging in the hundreds for N = 1—after the scaling
of Eq. (17) is undone.

In this section, we show that the η dependence of the
critical drive strength (Sec. III B) follows from the quasienergy
spectrum, extending the previous calculation of the spectrum
for η = 0 [39] to the general case. We then address the role
of multiphoton resonances in the limit of small η, where we
uncover behavior similar to a multiphoton blockade [44] under
weak coherent driving but only for even numbers of photons
absorbed. Finally, we use quantum trajectories to explore
the accessibility of coexisting mean-field steady states in the
presence of fluctuations.

A. Quasienergies for �0 = � = 0

Ever since the seminal work of Jaynes and Cummings
[45] (see also [46]), the energy spectrum of a single two-
state system interacting with one mode of the radiation field
has been a fundamental element of quantum optics models
and physical understanding. The level scheme is remarkably
simple when compared with extensions to the quantum Rabi
model [47] and generalizations to include a counter-rotating
interaction after the manner of Sec. II B [33]. Alsing et al.
[39] showed that the simplicity carries over to the driven
Jaynes-Cummings Hamiltonian when the two-state system and
radiation mode are resonant with the drive. In this case, a
Bogoliubov transformation diagonalizes the interaction picture
Hamiltonian, so that quasienergies are recovered. The critical
drive εcrit is then the point at which all quasienergies collapse
to zero. In this section we show that the method employed by
Alsing et al. carries through for arbitrary η, and the collapse
to zero reproduces Eq. (32).

We consider the Hamiltonian H ′′
η = H ′

η + √
Nε(a† + a),

where H ′
η is given by Eq. (7). Taking the coherent drive

on resonance and considering just one two-state system, the
Hamiltonian is

H ′′
η = λ(aσ+ + a†σ−) + ηλ(a†σ+ + aσ−) + ε(a† + a). (60)

We seek solutions to the eigenvalue problem H ′′
η |ψE〉 =

E|ψE〉, where E is a quasienergy and

|ψE〉 = ∣∣ψ (1)
E

〉|1〉 + ∣∣ψ (2)
E

〉|2〉, (61)

with the kets |ψ (1,2)
E 〉 expanded over the Fock states, |n〉, n =

1, 2, . . ., of the field mode; we must find allowed values of E

and the corresponding field kets.
It is straightforward to show that the field kets satisfy the

homogeneous system of equations,(
ε(a† + a) − E λ(a† + ηa)

λ(ηa† + a) ε(a† + a) − E

)(∣∣ψ (1)
E

〉
∣∣ψ (2)

E

〉
)

= 0, (62)

whence multiplication on the left by diag(ηa† + a, a† + ηa)
takes us to the coupled equations:

−ε(1 − η)
∣∣ψ (1)

E

〉 = [ε(a† + a) − E](ηa† + a)
∣∣ψ (1)

E

〉
+ λ[aa† + η(a†2 + a2) + η2a†a]

∣∣ψ (2)
E

〉
,

(63)

ε(1 − η)
∣∣ψ (2)

E

〉 = [ε(a† + a) − E](a† + ηa)
∣∣ψ (2)

E

〉
+ λ[a†a + η(a†2 + a2) + η2aa†]

∣∣ψ (1)
E

〉
.

(64)

We then use Eq. (62) to substitute for (ηa† + a)|ψ (1)
E 〉 and

(a† + ηa)|ψ (2)
E 〉, respectively, on the right-hand sides of

Eqs. (63) and (64), and thus obtain the more compact form(
O(E) − λ2 1 − η2

2

)∣∣ψ (1)
E

〉 − ελ(1 − η)
∣∣ψ (2)

E

〉 = 0, (65)(
O(E) + λ2 1 − η2

2

)∣∣ψ (2)
E

〉 + ελ(1 − η)
∣∣ψ (1)

E

〉 = 0, (66)

with

O(E) = λ2(1 + η2)
a†a + aa†

2
+ λ2η(a†2 + a2)

− [ε(a† + a) − E]2. (67)

Since the coefficients of the second terms on the left-hand side
are constants, Eqs. (65) and (66) can now be readily uncoupled
and yield the autonomous equation

O+(E)O−(E)
∣∣ψ (1,2)

E

〉 = 0, (68)

where

O±(E) = O(E) ± λ2 1 − η2

2
�1/2, (69)

with

� = 1 − 1

(1 + η)2

4ε2

λ2
. (70)
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Note now that O+(E) and O−(E) commute, and so the
general solution to Eq. (68) expands as∣∣ψ (1,2)

E

〉 = c
(1,2)
+ |ψ (+)

E 〉 + c
(1,2)
− |ψ (−)

E 〉, (71)

where |ψ (+)
E 〉 and |ψ (−)

E 〉 satisfy

O±(E)|ψ (±)
E 〉 = 0. (72)

Moreover, the operators O±(E) are quadratic in creation and
annihilation operators, so the diagonalization may be com-
pleted by a Bogoliubov transformation: introduce parameters
ν, ξ , α(E), and μ±(E) such that

O±(E) = νU †[ξ, α(E)]
a†a + aa†

2
U [ξ, α(E)] + μ±(E),

(73)

where the unitary U [ξ, α(E)] ≡ D[α(E)]S(ξ ) executes a
displacement and then a squeeze,

a
U→ [a + α(E)] cosh ξ + [a† + α(E)] sinh ξ, (74)

whence, from Eq. (72),(
a†a + aa†

2
+ μ±(E)

ν

)
{U [ξ, α(E)]|ψ (±)

E 〉} = 0. (75)

The number operator now acts on the left-hand side, and |ψ (+)
E 〉

and |ψ (−)
E 〉 are displaced and squeezed Fock states:

|ψ (±)
En±

〉 = U †[ξ, α(En± )]|n±〉, (76)

n± = 0, 1, 2, . . ., where allowed quasienergies are indexed by
the integers n± and must satisfy

n± + 1

2
+ μ±(En± )

ν
= 0. (77)

It remains to equate terms on both sides of Eq. (73) to fix the
parameters of the Bogoliubov transformation, which yields

ν = λ2(1 − η2)�1/2, ξ = 1

2
ln

(
1 + η

1 − η
�1/2

)
, (78)

and

α(E) = 2εE

λ2(1 + η)2
�−1, (79)

μ±(E) = ±ν

2
− E2�−1, (80)

and thus the allowed quasienergies follow from

n± + 1

2
± 1

2
− E2

n±
1

λ2(1 − η2)
�−3/2 = 0. (81)

Equation (81) is the targeted result, which reveals the
generalized critical drive strength. It is helpful, however, for
clarity, to recognize that n+ and n− provide a double coverage
of the non-negative integers—traced to the two components
on the right-hand side of Eq. (71)—and to replace n± by a
single index n: first, associate n = 0 with n− = 0, from which
Eq. (81) yields the quasienergy

E0 = 0, (82)

with corresponding ket

|ψ (−)
E0

〉 = U †[ξ, α(E0)]|0〉; (83)

and second, associate n = 1, 2, . . . with both n+ = n − 1 and
n− = n, both of which, when substituted in Eq. (81), yield the
quasienergy doublet

En,± = ±λ
√

n
√

1 − η2�3/4, (84)

although with distinct corresponding kets:

|ψ (+)
En,±〉 = U †[ξ, α(En,±)]|n − 1〉, (85)

|ψ (−)
En,±〉 = U †[ξ, α(En,±)]|n〉. (86)

It is clear from Eq. (84) that all quasienergies collapse to
zero for n finite and � = 0, a condition that returns, from
Eq. (70), the critical drive strength εcrit [Eq. (32)]. From this
fully quantum-mechanical point of view, εcrit marks a transition
from a discrete quasienergy spectrum to a continuous one; the
continuous side is recovered from the limit � → 0, n → ∞,√

n�3/4 constant. Note that a continuous spectrum is also
recovered in the limit η → 1, n → ∞,

√
n
√

1 − η2 constant.
A continuous spectrum is expected for η = 1, since if we set
η = 1 in Eq. (62), E is an eigenvalue of the quadrature operator
a† + a.

The coefficients c
(1,2)
± [Eq. (71)] follow from Eqs. (62) and

(65), and normalization (see Ref. [39]).

B. Multiphoton resonance

With the focus on just one two-state system, Figs. 4, 5,
and 7 show photon numbers ranging from zero to a few
thousand, and although numbers are smaller in Fig. 3, the
range is similar when κ/λ is set to 0.02 instead of 0.1. While
we might expect mean-field theory to be broadly reliable
for thousands, even hundreds of photons, it will surely miss
important features when photon numbers are small. Indeed, a
photon blockade is a photon-by-photon effect, underpinned,
not by a mean-field nonlinearity, but by a strongly anharmonic
ladder of few-photon excited states; it breaks down through
multiphoton absorption, where, in Fig. 4 of Ref. [25], for
example, multiphoton resonances dominate the response to
weak driving and the mean-field story of dispersive bistability
is not picked up until ε/εcrit ∼ 0.4.

Recall now that in its dissipate realization (Sec. II C) our
generalized model involves not one, but two external drives—
a linear drive of strength ε and a second, nonlinear drive of
strength η. We show now that the multiphoton response to weak
driving carries over, with minor modification, from linear to
nonlinear driving.

Reinstating detuning and setting �0 = �, we consider the
Hamiltonian H ′′′

η = �a†a + �σz + H ′′
η , where H ′′

η is given
by Eq. (60). It is convenient for clarity, however, to adopt an
interaction picture, where we define

H ′′
η (t ) ≡ U

†
0 (t )H ′′

η U0(t )

= HJC + Hε (t ) + Hη(t ), (87)
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U0(t ) ≡ exp[−i�(a†a + σz)t], and thus isolate the Jaynes-
Cummings interaction,

HJC = λ(aσ+ + a†σ−), (88)

which is perturbed by the linear drive

Hε (t ) = ε(a†ei�t + ae−i�t ), (89)

and the nonlinear drive

Hη(t ) = ηλ(a†σ+e2i�t + aσ−e−2i�t ). (90)

We also recall the eigenvalues and eigenkets of HJC:

EJC
0 = 0, EJC

n,± = ±λ
√

n, (91)

n = 1, 2, . . ., and

∣∣EJC
0

〉 = |0〉|1〉, (92)

∣∣EJC
n,±

〉 = 1√
2

(|n〉|1〉 ± |n − 1〉|2〉), (93)

where the first (second) ket refers to the field mode (two-state
system) in each product on the right-hand side.

Note now that the perturbation Hε (t ) has nonzero matrix
elements between neighboring pairs of kets in the n-step
sequence∣∣EJC

0

〉 → ∣∣EJC
1,±

〉 → · · · → ∣∣EJC
n−1,±

〉 → ∣∣EJC
n,±

〉
, (94)

n = 1, 2, . . ., while Hη(t ) has nonzero matrix elements be-
tween pairs of kets in the n/2-step sequence∣∣EJC

0

〉 → ∣∣EJC
2,±

〉 → · · · → ∣∣EJC
n−2,±

〉 → ∣∣EJC
n,±

〉
, (95)

n = 2, 4, . . .. There are thus matrix elements to mediate
multi-photon transitions from |EJC

0 〉 to |EJC
n,±〉 driven by either

perturbation, but with the qualification that Hη(t ) can only
drive those with even n; resonance is achieved under the
condition

� = ±λ/
√

n, (96)

which is met either by n steps of � offsetting ±λ
√

n, or n/2
steps of 2�.

Frame (a) of Fig. 8 illustrates the breakdown of photon
blockade from a fully quantum-mechanical point of view;
we identify up to six multiphoton resonances before they
begin to merge and wash out due to power broadening at
higher drives. This figure displays quantum corrections, for
N = 1, to the mean-field results of Fig. 4, where at high
drives—ε/εcrit = 0.40 and 0.48—the layout of frame (a) of
Fig. 4 begins to appear with the photon number averaged over
fluctuation-driven switching between the pair of coexisting
mean-field steady states.

Frame (b) of Fig. 8 shows the similar figure for driving
through the nonlinear perturbation Hη(t ). Once again multi-
photon resonances are seen, but only three of the previous
six—those corresponding to the absorption of two, four, and
six photons. The figure in this case adds quantum corrections
to the mean-field results of Fig. 3 (but note that κ/λ is 0.02 in
Fig. 8 and 0.1 in Fig. 3).
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FIG. 8. Steady-state photon number expectation computed from
the master equation, Eq. (13), for N = 1, �0 = �, and κ/λ = 0.02:
(a) η = 0 and ε/εcrit = 0.08, 0.16, 0.24, 0.32, 0.40, 0.48 (lower to
upper) and (b) ε/εcrit = 0 and η = 0.04, 0.08, 0.12, 0.16, 0.20, 0.24
(lower to upper); successive curves are displace upwards by 0.2 and
0.3 in (a) and (b), respectively.

C. Quantum induced switching between mean-field steady states

While multiphoton resonances are completely beyond the
scope of mean-field results, Fig. 8 does provide a hint of mean-
field predictions once photon numbers rise above 2 or 3, where,
in the vicinity of zero detuning, we see clear evidence of regions
Ra

2 in Fig. 4 and R2 in Fig. 3. In this section, we use quantum
trajectory simulations to further trace connections between the
mean-field theory and a full quantum treatment.

Note, first, that unlike the common situation for phase
transitions of light, where the many-photon limit is a weak-
coupling limit (Secs. IVA and IVC of Ref. [25]), the photon
number for our generalized Jaynes-Cummings-Rabi model
scales with N (λ/κ )2—i.e., the many-photon limit is a strong-
coupling limit; this is seen, for example, from Eq. (58), which,
undoing the scaling of Eqs. (17) and (45), reads

|α|2 = N

(
λ

κ

)2 (1 + η)2

4

(ε̄ ± 1)2

1 + (�/κ )2
. (97)

The scaling is also apparent from a comparison between frames
(c) and (e) of Fig. 3, and frames (c), (e), and (f) of Figs. 4
and 5, and frame (c) of Fig. 7. With λ/κ = 10 in Fig. 3,
photon numbers range from 4 to 40, while with 5 times larger
coupling in Figs. 4, 5, and 7 they range in the hundreds and
thousands. Indeed, frames (c), (e), and (f) of Fig. 5 rise to reach
photon numbers of 6.4×103, 104, and 1.21×104, respectively,
at zero detuning [Eq. (97)]. Such high numbers can be reached
with just one two-state system, since when the coupling is
strong, there is no need for a large value of N to offset a weak
nonlinearity per photon.
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FIG. 9. Sample quantum trajectories as a function of scanned
detuning and steady-state Q functions for N = 1, �0 = �, ε/εcrit =
0.2, κ/λ = 0.1, and η = 1, 0.8, 0.6 (top to bottom); in all frames the
detuning is scanned from �/λ = −1 to +1 in a time κT = 6×104.
Two sample scans are plotted in each frame [solid yellow (light) and
cyan (dark) lines] against the background of mean-field steady states
(thick red and dashed blue curves). The inset Q functions are for
detunings �/2εcrit = 0 (left) and �/2εcrit = 0.04, 0.015, 0.04 (top to
bottom) (right).

Among the many effects of quantum fluctuations, in the
following we target just two: first, mean-field steady states
that are stable under Maxwell-Bloch equations are expected
to be metastable in the presence of quantum fluctuations; and,
second, isolated stable steady states—e.g., the lower state in
frames (b) and (c) of Fig. 5 [the minus sign in Eq. (97)]—
might be accessed via quantum fluctuations. These effects are
illustrated in Figs. 9 and 10, where we plot quantum trajectories
of the photon number expectation while the detuning is slowly
swept from negative to positive. The coupling λ/κ = 10 is
used in Fig. 9 in order to keep the maximum photon number
relatively low, while the larger value in Fig. 10 maps to the
mean-field results of Fig. 7.

Figure 9 presents a sequence of plots illustrating the role of
quantum fluctuations as we move away from the limit of the
coherently driven extension of the Dicke phase transition of
Sec. III D into the intermediate regime of Sec. III E. Beginning
with η = 1, the upper frame shows quantum trajectories
tracking the two mean-field curves plotted from Eq. (97).
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FIG. 10. As in Fig. 9 but for κ/λ = 0.02 and η = 0.2, and with
the detuning scanned from �/λ = −0.6 to +0.6 in a time κT =
6×104. The inset Q functions are for detunings �/2εcrit = 0 (left)
and �/2εcrit = 0.12 (right).

Both trajectories [yellow (light) and cyan (dark) lines] start
on the left by following the higher mean-field branch, but
quantum fluctuations allow the isolated [see frames (b) and (c)
of Fig. 5] lower branch to be accessed too. The two branches
correspond to fields that are π out of phase in the imaginary
direction at zero detuning—inset Q function on the left—and
then rotate to eventually align with the real axis as the detuning
is changed—inset Q function on the right.

Similar results are plotted for η = 0.8 and η = 0.6 in the
middle and bottom frames, respectively. Once again, mean-
field curves are faithfully followed over segments of the path,
but the switching between branches is more common. The most
prominent feature, however, is the dramatic loss of stability
around zero detuning: although the mean-field analysis finds a
stable steady state at zero photon number [region Ra

2 in frame
(a) of Fig. 5], the full quantum treatment yields fluctuations
spanning the two previously stable coherent states; the fluctu-
ations are particularly apparent from the inset Q functions in
the middle frame of Fig. 9. The spikes that accompany switches
between branches are not numerical artifacts; they are decaying
oscillations—evidence of a spiraling trajectory for the field
amplitude in the approach to the new locally stable state.

Figure 10 presents the results of two detuning scans for
λ/κ = 50 and η = 0.2, corresponding to the parameters of
Fig. 7. In one scan the quantum trajectory follows the highest
branch of stable mean-field solutions all the way up to its
maximum. Much more commonly, though, the trajectory
switches between this branch and the vacuum state in the region
of �/2εcrit = ±0.1, as illustrated by the second scan. In this
region the quantum fluctuations show clear evidence of the
three coexisting stable mean-field steady states illustrated in
frame (e) of Fig. 7 (region R6)—inset Q function to the right.

V. CONCLUSIONS

We have generalized the dissipative extension [20] of the
Dicke model [13] of light interacting with matter in two direc-
tions, thus linking the superradiant phase transition of Hepp
and Lieb [12,30] to the breakdown of the blockade [25,26].
Although the former was originally approached through exact
calculations in the thermodynamic limit for N two-state sys-
tems in thermal equilibrium and the latter as a phenomenon
of single systems, both might be engineered in many-system
and one two-state-system versions, with the same underlying
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mean-field phenomenology and where the central issue of
photon number in the presence of dissipation is governed not
by the number of two-state systems only, but also the ratio
of coupling strength to photon loss [25]—even one two-state
system can control many photons in cavity and circuit QED
[26,29].

We adopted a generalization introduced by Hepp and
Lieb [30], and taken up in a number of recent publications
[31–38], where the interaction Hamiltonian is made from
a sum of rotating and counter-rotating terms of variable
relative strength; in this way we span the continuum from
the Jaynes-Cummings to the quantum Rabi interaction. We
also added direct driving of the field mode, since that, not the
counter-rotating interaction, creates photons in the breakdown
of photon blockade. We analyzed mean-field steady states as a
function of adjustable parameters for this extended model and
found that a common critical drive strength, εcrit = λ(1 + η)/2,
links the superradiant phase transition to the breakdown of
photon blockade—λ is the coupling strength and η the relative
strength of counter-rotating–to–rotating interactions. More
generally, we found that the extended phase diagram moves
from a region of pure superradiant character into the region
of the broken blockade, passing through a phase that although
present in the generalized model of Hepp and Lieb [30] is not
identified in that work.

We then carried our analysis beyond mean-field steady
states to a fully quantum treatment for the limiting case of

one two-state system: we extended a prior calculation of
quasienergies [39] to the generalized Hamiltonian—resonant
driving of the field mode and no dissipation—and obtained
numerical results with both detuning and photon loss included.
The quasienergy spectrum for one two-state system was shown
to be singular at εcrit , where it undergoes a transition from
discrete to continuous, and numerical simulations broadly
support mean-field results, though expanding the view from
earlier work [25,44] of multiphoton resonances at weak drive
and exhibiting quantum-fluctuation-induced switching among
locally stable mean-field steady states.

The aim of this study has been to uncover connections
between different dissipative quantum phase transitions for
light and we have left many directions untouched; for example,
a broader investigation of a very rich parameter space and
the fully quantum treatment. We expect future work on the
theoretical side will fill the gaps and hope that experiments in
the spirit of Refs. [18,19,21,26,29] will prove feasible.
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