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Exchange interactions and itinerant ferromagnetism in ultracold Fermi gases
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In the 1930s, two main paradigms for the theoretical description of ferromagnetism were developed: Heisenberg
ferromagnetism of localized fermions (e.g., in a lattice), and Bloch or Stoner ferromagnetism of nonlocalized
fermions (i.e., in a gas), also called itinerant ferromagnetism. Despite many theoretical predictions, itinerant
ferromagnetism has remained elusive in experiments. This ferromagnetic state is predicted to occur for strong
repulsive interactions, corresponding to a regime that is very challenging to describe theoretically because there
are multiple competing physical effects, including superfluid pairing. In this paper, we point out that the problem
of itinerant ferromagnetism for atomic Fermi gases is different from that of electron gases in metals due to
the short-range nature of the interatomic interactions. We also show that the standard saddle point used to
describe itinerant ferromagnetism of the electron gas in metals does not apply, because in the short-range limit
of this approximation the Pauli exclusion principle is violated. As a remedy, we introduce a modified interaction
pseudopotential for ultracold gases which includes both local (Hartree) and nonlocal (Fock) terms while preserving
the Pauli exclusion principle in the short-range regime. Furthermore, we demonstrate the usefulness of this method
to study the existence and stability of itinerant ferromagnetism in ultracold atomic gases. Lastly, we obtain the
critical temperature for the ferromagnetic transition as a function of the opposite-spin interaction strength and
find a rather good agreement with recent experimental results.
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I. INTRODUCTION

In 1929, Bloch suggested that in a system of spin-1/2
fermions, strong repulsive interactions can lead to spontaneous
spin polarization, even though the interaction potential is
spin independent [1], overcoming the cost in kinetic energy
for the Fermi system. This phenomenon is called itinerant
ferromagnetism, in contrast to the “localized” or Heisenberg
ferromagnetism arising from spins on a lattice [2]. The original
context of Bloch’s work was electrons in a metal, where
the (bare) Coulomb interactions between the electrons are
long ranged. Using Wick’s theorem, the interaction between a
fermion of spin state σ1 and a fermion of spin state σ2 can be
decoupled as follows:

〈
ψ†

σ1
(r)ψ†

σ2
(r′)ψσ2 (r′)ψσ1 (r)

〉� 〈ψ†
σ1

(r)ψσ1 (r)
〉〈
ψ†

σ2
(r′)ψσ2 (r′)

〉︸ ︷︷ ︸
Hartree

− 〈ψ†
σ1

(r)ψσ2 (r′)
〉〈
ψ†

σ2
(r′)ψσ1 (r)

〉︸ ︷︷ ︸
Fock

. (1)

*Present address: Institute of Astronomy, Catholic University of
Leuven, B-3001 Leuven, Belgium; enya.vermeyen@kuleuven.be

The contribution of the direct (Hartree) interaction is canceled
by the positive “jellium” background, and it is the energy
lowering that occurs through the exchange (Fock) interaction
that drives the spin polarization. By including band and finite
temperature effects, Stoner extended Bloch’s results [3]. How-
ever, subsequent theoretical work by Wigner [4] has revealed
that correlation effects beyond Hartree-Fock can suppress the
ferromagnetic instability. Moreover, Monte Carlo simulations
[5] found a polarized electron liquid only close to the Wigner
crystal phase. The instabilities that do survive after correlations
are taken into account are charge and spin density waves [6]
and also phase separation. It is well known that charge-density
wave (CDW) and spin-density wave (SDW) instabilities do not
occur in three-dimensional (3D) systems with spherical Fermi
surfaces because nesting is suppressed, given that there are no
flat regions on the Fermi surface that can be connected by a
single nesting vector [7]. However, in one and two dimensions,
or in 3D systems with deformed Fermi surfaces that allow for
nesting, CDW and SDW are important competing instabilities
to the formation of domains. Hence, there is no indication
of itinerant ferromagnetism in jellium models at this level of
approximation. Indeed, pure itinerant ferromagnetism has not
yet been found in solids.

Ultracold atomic gases have been proposed as an alternative
model system for the realization of pure itinerant ferro-

magnetism [8–12]. Using Feshbach resonances the interaction
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Electron gas in metals

Direct ↑↓ and ↓↑ (+) Direct ↑↑ and ↓↓ (+)

Exchange ↑↑ and ↓↓ (-)

Ultracold Fermi gas

Direct ↑↓ and ↓↑ (+) Direct ↑↑ and ↓↓ (+)

Exchange ↑↑ and ↓↓ (-)Jellium model: 
compensated by

 direct ≈ exchange
(= for s-wave contact

FIG. 1. A comparison of the direct (Hartree) and exchange (Fock) contributions for electrons and ultracold Fermi gases. For free electrons
in a material, the total direct interaction energy is compensated by the positive background (jellium model) and only the exchange energy has to
be explicitly written. For an ultracold Fermi gas interacting through an s-wave contact potential, the intraspecies direct and exchange interaction
energies cancel each other and only the direct interspecies interaction energy has to be written down explicitly. Despite these vastly different
expressions for the interaction energy, in both cases the spin polarization is driven by the spin dependency of the exchange interactions. The
total direct interaction energy remains spin independent as long as the original interaction potential is spin independent.

strength can be tuned, enabling the realization of strong repul-
sive interactions, where itinerant ferromagnetism is expected
to occur. Contrary to Bloch’s original context, in neutral atomic
gases there is no jellium background and interactions are
short ranged. Due to the absence of the jellium background,
the direct (Hartree) contribution to the interaction energy is
no longer canceled for fermions of opposite spin. In the
particular case where the system has only s-wave contact
interactions (zero-ranged), the direct contribution is perfectly
canceled by the exchange contribution for same-spin fermions
(Fig. 1). Indeed, the fermionic antisymmetry requirement does
not allow for contact s-wave interactions between same-spin
fermions. Nevertheless, spin polarization still reduces the over-
all interaction energy for repulsive interactions. Whereas in
Bloch’s context spin polarization causes the exchange energy
to become more strongly negative, in the context of quantum
gases spin polarization causes the remaining (positive) inter-
species direct energy to become smaller. Thus, by increasing
the interaction strength, a transition towards a spin-polarized
state is theoretically expected also in quantum gases.

The theoretical expectation just described motivated a re-
cent experiment in which Ketterle and co-workers were able to
probe the regime where itinerant ferromagnetism is expected in
an ultracold gas of lithium-6 atoms [13]. However, fast molec-
ular pairing due to the instability of the repulsive branch of the
Feshbach resonance prevented the formation of any equilib-
rium state (precluding formation of the itinerant ferromagnetic
state) [14–18]. In response, there have been many proposals
for minimizing the effects of this experimental instability
[19–23], including making use of mixtures [24], spin-orbit
coupling [25], reduced dimensionality [26,27], and optical
lattices [28,29]. However, it still remains to be seen whether
the itinerant ferromagnetic state itself is stable [30–34].
This has prompted new experiments [35] to investigate itiner-
ant ferromagnetism by studying the dynamics of spin diffusion
between initially prepared spin-polarized domains, as this
quantity reveals ferromagnetic correlations even if the itinerant
ferromagnetic state itself remains unstable.

The current experiments with ultracold Fermi gases remain
in a regime where the interactions are captured by a contact s-
wave pseudopotential. However, efforts are underway to probe

new interaction potentials, most notably dipolar interactions
[36–42], but also p-wave interactions [43,44]. In that case,
exchange effects in quantum gases will no longer be limited
to suppressing the interaction between same-spin fermions (in
contrast to the situation in Fig. 1) and the intraspecies interac-
tions will have to be written down explicitly. Consequently, in
our theoretical description it is important to take into account
correctly both direct and exchange contributions to the
interaction energy coming from equal-spin and opposite-spin
scattering. Itinerant ferromagnetism has been studied in the
functional integral formalism [45,46], based on the Ward-
Takahashi identities, in attempts to clarify the role of electron-
magnon interactions on the Stoner instability. Subsequent
work [47] within this formalism introduced collective quantum
fields corresponding to the spin density to theoretically study
the onset of itinerant ferromagnetism in metals.

The use of collective quantum fields, from which an order
parameter for the itinerant ferromagnetic state can be deduced,
is now the mainstream method to study the electron liquid
with functional integrals [48,49]. In the case of ultracold Fermi
gases, we show that care must be exercised in analyzing the
regime of short-ranged interactions. Since the Fock term is
nonlocal, using a strictly zero-ranged interaction potential does
not capture its contribution [50]. In contrast to electrons in a
metal, this problem is relevant for ultracold Fermi gases since
short-ranged potentials are widely used to model interatomic
interactions. The main aim of this paper is to propose a limiting
procedure that includes the Fock contribution correctly when
the interactions become very short ranged.

Possible alternative approaches that do not rely on Hubbard-
Stratonovich fields might be applied to describe itinerant fer-
romagnetism. For example, a variational perturbation method
proposed by Kleinert [48,51,52] avoids the use of collective
quantum fields in favor of classical collective fields. Another
method that does not rely on the Hubbard-Stratonovich trans-
form is a dynamical mean-field theory for lattice calculations
[53]. However, as our goal is to point out a difficulty with
the often used saddle-point expansion of the effective action
following a Hubbard-Stratonovich transform, we focus on
correcting the problem within that framework and obtain a
phase diagram for the uniform ferromagnetic state.
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In this context, the collective quantum field is expanded
up to quadratic fluctuations around the field configuration
that extremizes the effective action for the collective field.
These fluctuations describe the low-energy excitations of the
system such as sound and spin waves. Previously [30], we have
shown that for a contact potential the extremum of the action
functional for the collective quantum fields representing the
spin densities is not a minimum but represents an unstable
state, invalidating the use of Gaussian fluctuations in the
Hubbard-Stratonovich scheme. The present treatment allows
us to look at more general potentials with finite-ranged s-wave
andp-wave interactions, and we derive the region in interaction
parameter space where the instability remains present. In
the region(s) where the extremum represents a stable state,
we classify the nature of the saddle point as unpolarized,
partially polarized, or fully polarized. Furthermore, assuming
a uniform (single-domain) ferromagnet, we also describe the
ferromagnetic transition temperature versus s-wave scattering
length and correlate it to an experimental phase diagram that
probes the ferromagnetic phase transition through its domain
structure [35].

The remainder of the paper is structured as follows. In
Sec. II, we first show that applying a naive saddle-point
approximation in the Hubbard-Stratonovich formalism leads to
a violation of the Pauli exclusion principle for short-ranged in-
teractions. Still in Sec. II, we propose a remedy for this problem
by introducing a modified interaction pseudopotential, which
is applied in Sec. III to analyze itinerant ferromagnetism in

the context of ultracold atomic gases. Finally, conclusions are
drawn in Sec. VI.

II. FORMALISM

In Sec. II A, we first discuss the problems that arise when
one combines the Hubbard-Stratonovich transformation with
the saddle-point approximation for Fermi gases with short-
ranged interactions. In Sec. II B, we provide a remedy in order
to describe correctly itinerant ferromagnetism at the saddle
point and beyond. In Sec. II C, we use our method at the saddle-
point level.

A. The trouble with Hubbard-Stratonovich

To obtain a phase diagram requires the calculation of
the thermodynamic grand potential per unit volume � =
− ln (Z )/βV of the (pseudo)spin-1/2 Fermi gas, with Z the
partition sum, β = 1/kBT proportional to the inverse temper-
ature, and V the volume. In the path-integral formalism, the
grand-canonical partition sum can be calculated by summing
over all possible configurations of the fermionic Grassmann
fields ψ↑,x,τ and ψ↓,x,τ (and their conjugated counterparts ψ̄↑
and ψ̄↓), weighted by the Euclidean action S of each configura-
tion: Z = ∏

σ=↑,↓
∫
Dψ̄σ

∫
Dψσ exp (−S[ψ̄, ψ]). The action

of the system (in units h̄ = 1, kB = 1, the mass of the particles
m = 1/2, and the Fermi wave vector kF = 1) is given by

S[ψ̄, ψ] =
∑

σ1=↑,↓

∫ β

0
dτ

∫
dx

⎡
⎣ψ̄σ1,x,τ

(
∂

∂τ
− ∇2

x − μσ1

)
ψσ1,x,τ +

∑
σ2=↑,↓

∫
dx′ gσ1σ2 (�x)

2
ψ̄σ1,x,τψσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ

⎤
⎦, (2)

with τ the imaginary time, μσ the spin-σ chemical potential, gσ1σ2 (�x) the interaction potential, and �x = x − x′. For symmetry
reasons, we will assume g↑↓(�x) = g↓↑(−�x).

Due to the presence of the interaction term in the action, the path integral cannot be calculated exactly for a general case. Instead,
the interaction term is decoupled into several terms quadratic in the fermionic fields by introducing an auxiliary bosonic field
through the Hubbard-Stratonovich transformation. To study superfluidity, the quartic product is split into a product of the pairs
ψ̄σ1,x,τ ψ̄σ2,x′,τ and ψσ1,x,τψσ2,x′,τ , the so-called Bogoliubov channel. Here, we keep ψ̄σ1,x,τψσ1,x,τ and ψ̄σ2,x′,τψσ2,x′,τ as quadratic
products together, thus using the Hartree channel. The Hubbard-Stratonovich transformation for this channel is given by

exp

⎡
⎣−

∑
σ1,σ2=↑,↓

∫
dV

gσ1σ2 (�x)

2
ψ̄σ1,x,τψσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ

⎤
⎦

= 1

Zρ

∫
Dρ↑

∫
Dρ↓ exp

⎡
⎣ ∑

σ1,σ2=↑,↓

∫
dV

gσ1σ2 (�x)

2

(
ρσ1,x,τ ρσ2,x′,τ − ρσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ − ψ̄σ1,x,τψσ1,x,τ ρσ2,x′,τ

)⎤⎦, (3)

with
∫

dV = ∫ β

0 dτ
∫

dx
∫

dx′. In the functional integral iden-
tity above, two real-valued collective quantum fields ρ↑ and ρ↓
are introduced as auxiliary variables and are integrated over.
The prefactor Zρ shifts the zero point of the thermodynamic
grand potential and will be taken as our energy reference.
First, notice that even though this decomposition is called
the Hartree channel, it is an exact relation and thus contains
all contributions to the interaction energy: Hartree, Fock, and
Bogoliubov energy contributions are accounted for through

the full functional integration over the quantum fields ρ↑ and
ρ↓. Of course, approximations to the full functional integral
may lose or neglect some of these contributions. In the Hartree
channel, this may lead to a loss of the exchange interactions.

To clarify this point, consider the Grassmann algebra
generated by two Grassmann elements ψ̄α and ψα . In the
Grassmann-Berezin integral

I =
∫

Dψ exp(εαψ̄αψα + gψ̄αψαψ̄αψα ) = εα , (4)
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where
∫
Dψ = ∫

dψ̄α

∫
dψα , it is clear that the quartic term in

the exponential does not contribute, since it contains squares of
Grassmann variables. Regardless, we can apply the Hubbard-
Stratonovich trick to rewrite this quartic part:

exp(gψ̄αψαψ̄αψα )

= 1

gπ

∫
C

dz exp

(
−|z|2

g
− zψ̄αψα − z∗ψ̄αψα

)
. (5)

In our simple example, the auxiliary quantum field is reduced
to a single complex number z that needs to be integrated over.
Substituting this one obtains

I = 1

gπ

∫
C

dz exp

(
−|z|2

g

)

×
∫

Dψ exp(εαψ̄αψα − zψ̄αψα − z∗ψ̄αψα ). (6)

Performing the Grassmann-Berezin integrations first now
yields

I = 1

gπ

∫
C

dz(εα − Re [z]) exp

(
−|z|2

g

)
. (7)

As long as the integration over z is performed exactly, the
term with Re [z] = x vanishes. However, the saddle-point
approximation results in a term∫

dx exp(−x2/g + ln(x)) ≈
√

πg

2
xsp exp

(−x2
sp

/
g
)

(8)

with xsp = √
g/2, so that in this approximation the term

gψ̄αψαψ̄αψα contributes to the energy, violating the exclusion
principle.

B. The remedy for the missing exchange

As remarked above, in quantum gases contact interactions
V (�x) = gδ(�x) do not affect spin-polarized Fermi gases.
However, as the simplified example shows, after the Hubbard-
Stratonovich transformation, the saddle-point approximation
for the density field ρx = ρ0 no longer forces the terms with
�x = 0 and equal spin to vanish. The decoupling discussed in
Eq. (3) has been used to treat the ferromagnetic instability in the
electron gas in a solid (see Ref. [49]), where the long-range part
of the potential is important, and no major difficulty with the
Hartree channel arises. However, for atomic gases, the effective
potential is short ranged and the saddle-point approximation in
the Hartree channel leads to large inaccuracies, including the
violation of the Pauli exclusion principle.

The interaction energy in the Hartree-Fock approximation
for a system can be written as

EHF = 1

2

∑
σ1σ2

∫
dx
∫

dx′gσ1σ2 (�x)
[
ρσ1 (x)ρσ2 (x′)

− ζσ1,σ2 (x, x′)ζσ2,σ1 (x′, x)
]
, (9)

where we denote

ρσ1 (x) = 〈
ψ†

σ1
(x)ψσ1 (x)

〉
, (10)

ζσ1,σ2 (x, x′) = 〈
ψ†

σ1
(x)ψσ2 (x′)

〉
. (11)

The saddle-point approximation for short-ranged interactions,
on the other hand, results in a saddle-point energy

Esp = 1

2

∑
σ1σ2

∫
dx
∫

dx′gσ1σ2 (�x)ρσ1 (x)ρσ2 (x′). (12)

Now, notice that the Hartree-Fock energy can be rewritten as

EHF = 1

2

∑
σ1σ2

∫
dx
∫

dx′g̃σ1σ2 (�x)ρσ1 (x)ρσ2 (x′), (13)

with

g̃σ1σ2 (�x) = gσ1σ2 (�x)

(
1 − ζσ1,σ2 (x, x′)

ρσ1 (x)

ζσ2,σ1 (x′, x)

ρσ2 (x′)
δσ1,σ2

)
,

(14)

where δσ1,σ2 is the Kronecker δ. This is obtained by simply
dividing and multiplying the Fock term by the product of two
densities. Recall that the product ζσ1,σ2 (x, x′)ζσ2,σ1 (x′, x) is the
result of the Wick decomposition of a two-particle correlator
that varies spatially on a scale corresponding to the exchange
correlation length ξex. This implies that ζσ,σ (x, x + �x) also
goes to zero when |�x|/ξex → ∞, whereas it is equal to
ρσ (x) when |�x|/ξex → 0. When the density varies slowly
in comparison to ξex, then

fσ (�x) := ζσ,σ (x, x + �x)

ρσ (x)
(15)

is independent of x. Moreover, the following limit applies:

lim
�x→0

fσ (�x) = 1. (16)

However, as |�x| � ξex, fσ (�x) decreases to zero. Then, we
can model this exchange hole through the effective interaction

g̃σ1σ2 (�x) ≈ gσ1σ2 (�x)
[
1 − f 2

σ1
(�x)δσ1,σ2

]
, (17)

where f 2
σ (�x) can be interpreted as a “shielding” function,

equal to 1 for �x = 0 and which can be set to zero for |�x| �
ξex. When one uses expression (17) instead of gσ1σ2 (�x) in
the functional integral formalism, the resulting saddle-point
energy expression (12) will be equal to the Hartree-Fock result
(13). Hence this provides a way of correctly taking into account
the Fock contribution by fixing the problem at �x = 0.

After the Hubbard-Stratonovich transformation, a new ef-
fective action is defined, which is Fourier transformed in
order to remove the derivatives from the kinetic energy. If
g̃σ1σ2 (�x) = g̃σ1σ2 (−�x), one obtains

Seff [ψ̄, ψ, ρ] =
∑

σ1=↑,↓

∑
k,k′

ψ̄σ1,k

[−G−1
σ1

(k, k′)
]
ψσ1,k′

−
√

V

2

∑
σ1,σ2=↑,↓

∑
Q

g̃σ1σ2 (Q)ρσ1,−Qρσ2,Q,

(18)

where k = (k,ωn) and Q = (Q,�m) are four-vectors, ωn and
�m are the fermionic and bosonic Matsubara frequencies,
respectively, while

−G−1
σ1

(k, k′) = (−iωn + k2 − μσ1

)
δ(�k)

+ 1√
β

∑
σ2=↑,↓

g̃σ1σ2 (�k)ρσ2,�k (19)
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is the inverse Green’s function, and δ(�k) is the Dirac δ

function with �k = k − k′. After performing the fermionic
path integral, the partition sum is given by

Z =
∫

Dρ↑
∫

Dρ↓ exp

⎛
⎝ ∑

σ1=↑,↓
Tr
{
ln
[−G−1

σ1
(k, k′)

]}

+
√

V

2

∑
σ1,σ2=↑,↓

∑
Q

g̃σ1σ2 (Q)ρσ1,−Qρσ2,Q

⎞
⎠. (20)

As we show in the next section, the long-wavelength (Q → 0)
limit of Eq. (20) leads to the preservation of equal-spin cor-
relations. The regularized pseudopotential forces the system
to remember that these correlations come from finite-ranged
interactions.

C. Saddle-point approximation

The remaining bosonic path integral in Eq. (20) cannot be
calculated exactly for a general case. In the saddle-point ap-
proximation, the densities are assumed to be constant: ρσ,Q =√

βV δ(Q)ρσ . This results in the following expression for the
saddle-point thermodynamic grand potential as a function of
(β,μ↑, μ↓; ρ↑, ρ↓) in D dimensions:

�sp = −1

2

∑
σ1,σ2=↑,↓

g̃σ1σ2ρσ1ρσ2 + �sp,kin(β,μ′
↑, μ′

↓), (21)

where we defined new interaction parameters

g̃σ1σ2 =
√

V g̃σ1σ2 (Q = 0) =
∫

V

d(�x)g̃σ1σ2 (�x) (22)

and an effective chemical potential

μ′
σ1

= μσ1 −
∑

σ2=↑,↓
g̃σ1σ2ρσ2 . (23)

We would like to emphasize that both the bare gσ1σ2 (�x) and
the renormalized g̃σ1σ2 (�x) interactions for equal spins as well
as opposite spins are assumed to have a finite range from the
onset. As can be seen from Eq. (22), the interaction parameters
g̃σ1σ2 are spatial averages and depend on the interaction range.
It is only in the later sections, when we perform a comparison
with experiments, that we take the s-wave interaction between
opposite spins to have zero range (with scattering length as),
and the p-wave interaction between equal spins to have spatial
range rp > 0 (with scattering volume ap). The first term in
Eq. (21) represents the interaction energy, while the second
one represents the kinetic energy,

�sp,kin(β,μ′
↑, μ′

↓) =
∑

σ1=↑,↓

∫
dDk

(2π )D

(
k2 − μ′

σ1

− 1

β
ln
{
1 + exp

[
β
(
k2 − μ′

σ1

)]})
.

(24)

It has the same form as the kinetic energy of the noninteracting
gas, but its chemical potentials are shifted by the interactions.

In Eqs. (21) and (23), the values of ρ↑ and ρ↓ are determined
using the saddle-point equations,

∂�sp(β,μ↑, μ↓; ρ↑, ρ↓)

∂ρσ

∣∣∣∣
β,μ↑,μ↓;ρ−σ

= 0, (25)

while the particle number density of each spin state σ is given
by the number equations

nσ = − ∂�sp(β,μ↑, μ↓)

∂μσ

∣∣∣∣
β,μ−σ

. (26)

The saddle-point condition defined in Eq. (25) can be used
to find a spin-dependent uniform density solution ρσ = nσ .
From these results, we obtain next the polarization P =
(n↑ − n↓)/(n↑ + n↓) as a function of interaction strength and
temperature to characterize the regions of phase space where
itinerant ferromagnetism emerges.

III. HESSIAN MATRIX AT THE SADDLE POINT

A solution to the saddle-point equations (hereafter called
a saddle point) is physical only if it is also a minimum
of the saddle-point thermodynamic grand potential �sp as a
function of ρ↑ and ρ↓. If it is not a minimum, it is unstable
to (uniform) density fluctuations. The stability of saddle-point
solutions can be tested by studying its Hessian matrix H of
second derivatives of �sp with respect to ρ↑ and ρ↓. If H

has two positive eigenvalues, that is, if both its trace and
determinant are positive, a saddle point is also a minimum
and thus stable against (uniform) density fluctuations. In this
section, we derive the stability conditions and the correspond-
ing polarization of saddle-point solutions for the particular ex-
ample of exchange-induced itinerant ferromagnetism in three
dimensions. We also obtain the temperature versus interaction
phase diagram for a uniform (single-domain) ferromagnetic
state.

In order to exclude other sources of polarization, we limit
ourselves to the case g̃↓↓ = g̃↑↑ = g̃eq and use units such
that kF = (3π2n)3/2 (with n = n↑ + n↓) is equal to 1. This
means that the saddle-point equations have to be solved in
conjunction with the equation for the chemical potential μ

that fixes the total density to n = 1/3π2. Hence, the parameter
space for the phase diagrams are the intraspecies interaction
strength g̃eq, the interspecies interaction strength g̃↑↓, and the
inverse temperature β. Note that the chosen example represents
a uniform system in the grand-canonical ensemble, which
is different from the case of ultracold atoms confined in a
trap, where the number of particles is fixed, the density is
inhomogeneous, and itinerant ferromagnetism is exhibited
through phase separation in magnetic domains. Our description
is more suitable for a system of cold atoms in a box potential,
where uniform and single-domain ferromagnetic solutions
may arise.

For a given polarization P and inverse temperature β, the
remaining number and the saddle-point equations are used
to calculate the effective chemical potentials μ′

↑ and μ′
↓,

which differ from the actual chemical potentials μ↑ and μ↓
as shown in Eq. (23). When these values are substituted in
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(a) (c)

(b)

FP UP

FIG. 2. (a, b) The parameters Itot (a) and z (b) as a function of the polarization P for different values of the inverse temperature: β → +∞
(T = 0, black solid line), β = 10 (blue dashed line), β = 3.5 (purple dot-dashed line), and β = 1 (red dotted line). (c) The regions where the
Hessian is positive definite are shown for different values of z as a function of the scaled interaction parameters G↑↓ = Itotg̃↑↓ and Geq = Itotg̃eq.
The black dashed line is the upper boundary (independent of z), while the colored solid lines (for different values of z) are the lower boundaries
of the regions where the Hessian is positive definite.

�sp(β,μ↑, μ↓; n↑, n↓), the Hessian matrix becomes

H =−
(

g̃↑↑ g̃↑↓
g̃↑↓ g̃↓↓

)

−
(

g̃2
↑↑I↑+g̃2

↑↓I↓ g̃↑↓(g̃↑↑I↑+g̃↓↓I↓)

g̃↑↓(g̃↑↑I↑+g̃↓↓I↓) g̃2
↑↓I↑+g̃2

↓↓I↓

)
, (27)

where the positive functions I↑ and I↓ are given by

Iσ (β,μ′
σ ) = − ∂2�sp,kin

(∂μ′
σ )2

∣∣∣∣
β,μ′−σ

= β

2

∫
dDk

(2π )D

{
1

1 + cosh[β(k2 − μ′
σ )]

}
. (28)

Subsequently, the conditions Tr H � 0 and det H � 0 are
used to derive the stability condition, which can be written in
terms of the rescaled interaction parameters Geq = Itotg̃eq and
G↑↓ = Itotg̃↑↓ (with Itot = I↑ + I↓) as

−|G↑↓| � Geq � −2

z
+
√

4(1 − z)

z2
+ G2

↑↓, (29)

with z = 4I↑I↓/I 2
tot ∈ [0, 1].

The functions Itot and z decrease monotonously with in-
creasing polarization and temperature, as shown in Figs. 2(a)
and 2(b). While the scaling function Itot determines the size of
the stability region in the original interaction parameter space,
the parameter z determines the shape of the stability area [see
Fig. 2(c)]. The value of z is strongly tied to the polarization
of the saddle points: z = 1 for P = 0 and z = 0 for P = 1.
However, for intermediate polarizations, z still depends on the
inverse temperature β as shown in Fig. 2(b).

Within the stability region defined by Eq. (29) and shown in
Fig. 2(c), solutions to the saddle-point equations are minimal
and thus stable, provided that they exist. So far, we have
presumed that a solution with a particular polarization P exists
at a specific inverse temperature β and we calculated the
corresponding effective chemical potentials μ′

σ . However, the
corresponding value of the chemical potential μσ still needs
to be calculated from Eq. (23), which defines the effective
chemical potential. If no value of μσ can be found that satisfies
Eq. (23), no saddle points exist for the chosen values of
β, P , g↑↓, and geq. As a next step in our calculation, we
establish the existence conditions of the saddle-point solutions
regardless of their stability. These existence conditions are
divided in three categories, depending on the polarization of
the corresponding saddle points: unpolarized (UP), partially
polarized (PP), and fully polarized (FP). Finally, the stability
and existence conditions are combined to produce stability-
existence phase diagrams.

For the UP saddle points (P = 0), Eq. (23) becomes μ′ =
μ − g̃eq/6π2 and a valid solution can always be found by
adapting μ. Consequently, unpolarized saddle points exist for
all values of the inverse temperature β and in all parts of the
(g↑↓, geq ) plane. This implies that the unpolarized stability
region is equal to its stability-existence region.

For the partially polarized (PP) solutions (0 < |P | < 1),
Eq. (23) corresponds to a system of two equations
that can be rewritten into the existence condition
Geq = G↑↓ − 6π2ζ ′Itot/P , with ζ ′ = (μ′

↑ − μ′
↓)/2 being

equal to half of the effective chemical potential difference.
This represents a straight line in the (G↑↓,Geq ) plane, which
may intersect the corresponding stability area if the condition
0 � 3π2ζ ′Itot/P � 1 is satisfied. The parameter 3π2ζ ′Itot/P

has a physical meaning: it can be rewritten as the ratio χdiff/χtot
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FIG. 3. The ratio χdiff/χtot between the differential and total
susceptibility as a function of the polarization P for different values of
the inverse temperature: β → +∞ (T = 0, black solid line), β = 10
(blue dashed line), β = 3.5 (purple dot-dashed line), and β = 1 (red
dotted line).

between the differential susceptibility χdiff = ∂ (δn)/
∂ζ ′|β,μ′ = Itot and the total susceptibility χtot = δn/ζ ′,
where δn = n↑ − n↓. These quantities are defined in analogy
to their magnetic counterparts. In Fig. 3, χdiff/χtot is shown for
different values of β. For finite values of β, χdiff/χtot → +∞
if P → 1. At low temperatures, PP saddle points can only be
stable up to a maximum polarization Pmax, which decreases as
a function of temperature as shown in Fig. 4. For β � 1.715,
none of the PP saddle points are stable.

Fully polarized (FP) saddle points only exist at zero tem-
perature, because nσ = 0 can only be achieved in the limit
μσ → +∞ at nonzero temperatures. This is an important
qualitative difference between zero and nonzero temperatures.
At zero temperature, FP solutions to the number equations
exist for ζ ′ � 2−1/3. For the PP solutions, only one value of
ζ ′ corresponds to each value of P, and the resulting existence
condition represents a straight line in the (G↑↓,Geq ) plane. For
the FP solutions at zero temperature, each possible value of ζ ′
corresponds to a similar existence condition in the form of a
straight line in the (G↑↓,Geq ) plane. This infinite collection of

FIG. 4. The maximum value Pmax of the polarization P for which
PP (and FP) saddle points can be stable as a function of the temperature
T = 1/β. Polarized saddle points can only be stable for T � 0.583
(or β � 1.715).

straight lines forms an existence plane defined by the condition
Geq � G↑↓ − 3π222/3Itot.

By combining the existence and stability conditions, we
obtain finite temperature phase diagrams as a function of
the modified interaction parameters g̃eq and g̃↑↓ as shown
in Fig. 5. Stable saddle points are only found in the lowest
quadrant (g̃eq � |g̃↑↓|). The UP stability region is a square
which increases in size as a function of temperature. The FP
and PP stability regions shrink and become less polarized as a
function of temperature, until they are completely absorbed by
the growing UP area. If |g̃eq| or |g̃↑↓| are too large, the system
is susceptible to density fluctuations and none of the saddle
points is stable. This greatly reduces the itinerant ferromagnetic
(PP and FP) areas in the phase diagram, which may explain
why itinerant ferromagnetism is so notoriously hard to find
experimentally.

IV. CONNECTION TO EXPERIMENT

The results shown in Fig. 5 can be related to experiments
in ultracold atomic gases using g̃↑↓ = 8πkF as , where as is
the s-wave scattering length. The parameter g̃eq describes the
strength of the equal-spin correlations and can be estimated
as g̃eq = −8πkF ap/r2

p, where ap is the p-wave scattering
volume and rp is the spatial interaction range. Here, we set
g̃eq = −31, close to the largest negative value it can take
for the ferromagnetic state to be stable. Then we track the
existence-stability range of g̃↑↓ as a function of temperature
for the combined FP and PP phases.

In Fig. 6, we show the resulting critical temperature as
a function of kF as as black dots connected by solid black
curves. There is a critical interaction strength above which the
saddle-point solution is no longer stable, as indicated by the
black dash-dotted line. We defer the discussion of the upper
critical interaction strength to the next section and first compare
the results below that value to experimental results. The red
squares are experimental results [35] and the red dashed curve
is a square-root fit also discussed in that work. We find that the
minimum interaction strength for the onset of ferromagnetism
is kF as = 0.65. In experiments [35], the value kF as = 0.8 was
obtained, in agreement with Monte Carlo simulations [54].
Both values are substantially smaller than that of the Stoner
criterion kF as = π/2, even when second-order corrections
[12] lower the value of kF as from π/2 to 1.05. Given that the
present theory does not take into account fluctuations, which
tend to lower the critical temperature and increase the critical
kF as value, the qualitative agreement with the experimental
data is rather good.

Note that the experiment corresponds to an essentially
nonequilibrium measurement, from which equilibrium prop-
erties are inferred. In the experiment [35], there are two
types of metastability involved: metastability with respect to
spin diffusion, and metastability associated with staying on
the upper energy branch of the scattering states. Itinerant
ferromagnetism occurs only in the upper branch, so it is
intrinsically limited in lifetime by the decay to the lower branch
due to inelastic collisions [35]. In our work, we do not consider
this type of decay, that is, we assume that the scattering states
in the upper branch have infinite lifetime.
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FIG. 5. The regions where the Hessian matrix at the saddle point is positive are shown as a function of the modified interaction parameters
g̃eq and g̃↑↓ for different values of the inverse temperature: β → +∞ (T = 0), β = 10, β = 3.5, and β = 1. The area where the unpolarized
(UP) state is the saddle point has blue borders and diagonal blue hatching. The area with green borders and darker green horizontal and vertical
hatching shows where the fully polarized (FP) state is the saddle point. Finally, in the colored area the partially polarized (PP) state is the saddle
point, and color indicates the polarization.

In our theoretical description, we investigate within the
manifold of uniform states whether an extremum of the free
energy is a minimum or not. If we were to include the lower
branch in the manifold of states, this would give our minimum
a pathway to decay into the lower energy branch. In the absence
of this pathway, the states that we identify can be called stable.
Of course, we agree that this does not imply that such states
are always stable in current experiments, where an initially
prepared nonequilibrium configuration can be used to probe a
much larger manifold of states, including those where there is
a decay into the lower branch.

V. DISCUSSION

Whereas the lower critical interaction strength discussed
above is suitable to describe the transition between the normal
and ferromagnetic states, the upper critical interaction value
kF as = 1.23 indicates another instability that occurs in our
model when g̃↑↓ = −g̃eq. In contrast to our result, current
experimental data suggests a continuation of the ferromagnetic

phase beyond kF as = 1.23. Notice that the experimental setup
starts from a two-domain magnetic phase out of equilibrium,
from which spin diffusion across the domain boundary is
measured as the system relaxes towards equilibrium. This
situation is different from the one we model: within the
manifold of states described by the density fields introduced
in the Hartree channel, the present method only investigates
uniform densities and equilibrium physics. Since no stable
saddle-point solution with such a uniform density exists, this
indicates that the true minimum within this particular manifold
corresponds to a nonuniform state. Hence, if ferromagnetism
survives beyond the region where the uniform saddle point is
stable, this suggests that multidomain configurations may be
more stable than single-domain states for large values of kF as .

A simplified argument showing that an increase of kF as

leads to the appearance of nonuniform states can be formulated
as follows. The polarization P = (N↑ − N↓)/(N↑ + N↓) is
a function of temperature, and for any nonzero temperature
|P | < 1. In the uniform state, the spin-up and spin-down clouds
interpenetrate by definition and fill the entire volume V of a
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kFas

T
F

FIG. 6. The critical temperature for itinerant ferromagnetism is
plotted as a function of kF as (where as is the scattering length
determining the dimensionless parameter g̃↑↓, from Fig. 5). The red
squares are experimental results from Valtolina et al., Ref. [35]. The
red dashed curve is the result of a fit of a square-root power law
to the experimental data, also from [35]. The black dots joined by
the black curve are the result from the present theory for a fixed
value of the (unknown) Fock contribution strength (g̃eq = −31). The
black dash-dotted line indicates the value of kF as above which the
single-domain, uniform saddle point is unstable.

box. For a fixed number of particles N and fixed polarization
P , the ground-state energy of the system is

E

(3/5)NEF

= 1

2
[(1 + P )5/3 + (1 − P )5/3]

−α(1 + P 2) + γ (1 − P 2), (30)

where EF = (h̄2/2m)(3π2N/V )2/3 is the Fermi energy, and

α = 5

(6π )2
(8πkF |aeq|), (31)

γ = 5

(6π )2
(8πkF a↑↓), (32)

are the ratios between the interaction energies at P = 0 and
the kinetic energy at P = 0. The parameter α describes the
equal-spin interactions with aeq = ap/r2

p, where ap is the p-
wave scattering volume and rp is the spatial interaction range.
The parameter γ describes the opposite-spin interaction with
a↑↓ = as , where as is the s-wave scattering length. The kinetic
energy [first term in Eq. (30)] favors states where both spins
can coexist with zero polarization. Both interaction energies
[second and third terms in Eq. (30)] favor states with larger
polarization. However, for any given polarization P , the equal-
spin interaction lowers the energy (equal spins attract), whereas
the opposite-spin interaction increases the energy (opposite
spins repel).

Now consider a nonuniform state with the same N and
P values but which is completely phase separated. The total
volume remains equal to that of the uniform state, so each spin
species occupies one half of the volume. The energy becomes

E

(3/5)NEF

= (1+P )5/3+(1−P )5/3−2α(1+P 2). (33)

The first term (the kinetic energy) and the second term (the
equal-spin interaction energy) remain present and double in
value, but the opposite-spin interaction energy vanishes. Since
in Eq. (33) the energy is independent of γ, whereas in Eq. (30)
the energy grows linearly with γ , this means that there exists
a critical value γcr such that the nonuniform state is lower
in energy. In the argument above, we compared two simple
situations which did not include effects such as domain wall
structure. Therefore, the exact result for the critical value γcr

cannot be found from this simple argument; however, it is clear
that such a critical value must exist. The inclusion of more
detailed structure in variational spin density profiles would
only reduce the energy in Eq. (33), leading to a smaller value
of γcr. The adaptation of the current formalism to nonuniform
itinerant ferromagnetic phases, including in particular domain
wall physics, is left for future analysis.

The itinerant ferromagnetic phase is predicted in regimes
where the interaction energy is comparable to the kinetic en-
ergy, and hence competing strongly correlated phases need to
be discussed. We begin our discussion by reminding the reader
that the issue of itinerant ferromagnetism in the context of ultra-
cold quantum gases is different from that found for electrons in
metals. The existence of possible competing phases depends
strongly on the interaction form (range, strength, anisotropy,
etc.) and on whether the fermions are charged or neutral. Next,
let us highlight and contrast some of these phases.

One of the major differences is that in a dilute isotropic
3D quantum gas with short-ranged repulsive interactions, even
when the interaction energy dominates the kinetic energy,
Wigner crystallization does not occur, while for charged
particles this phase is expected theoretically in the low-density
regime and has been experimentally observed.

Another possibility, already mentioned above, is a com-
peting phase involving spin or charge-density waves. As we
discussed, we do not expect the CDW and SDW instabilities to
occur here, since in 3D systems with spherical Fermi surfaces
nesting is suppressed [7].

A p-wave superfluid phase can exist in the absence of
repulsive s-wave interactions, but the p-wave interaction
strengths considered here are approximately k3

F ap ≈ 10−4 for
an interaction range in real space given by kF rp ≈ 10−2. For a
fixed interaction range, this leads to a critical temperature [55]
that is exponentially small, Tc ∝ TF exp {−π/(k3

F |ap|)}, and
hence much lower than the temperatures that can be achieved
experimentally. In addition, the inclusion of s-wave repulsive
interactions tends to suppress the p-wave superfluid state, even
at these very low temperatures.

Therefore we are left with the possibility of phase separation
and domain formation whenever the uniform ferromagnetic
state is no longer a minimum of the free energy.

VI. CONCLUSION

In this paper, we have shown that itinerant ferromagnetism
for atomic Fermi gases is different from that of electron gases in
metals due to the short-range nature of atomic interactions. We
have demonstrated that the Pauli exclusion principle may be
violated when performing a naive saddle-point approximation
to the effective action resulting from the Hubbard-Stratonovich
transformation in the Hartree channel. As a remedy, we have
proposed to use a modified density-density pseudopotential
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that correctly describes both the local (Hartree) and the nonlo-
cal (Fock) terms and preserves the Pauli exclusion principle.

Furthermore, we demonstrated that this approach leads to
a good saddle-point description of the ferromagnetic transi-
tion. We studied the existence-stability region for the saddle
points in the plane of equal- versus opposite-spin interaction
strengths. Lastly, we obtained the critical temperature for itin-
erant ferromagnetism as a function of the interaction parameter
kF as and compared it with the results of a recent experiment
[35]. Our analysis was performed for single-domain, uniform
ferromagnetic phases, which become unstable for larger values
of the opposite-spin scattering parameter, possibly leading to
a nonuniform itinerant ferromagnetic state.
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