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Field-induced ferromagnetic phase transition in two-dimensional Fermi systems with magnetic
dipole-dipole interaction
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Magnetic properties of two-dimensional (2D) spin-polarized Fermi gas with dipole-dipole interaction are
studied in the presence of external magnetic field at zero temperature. Within perturbation theory and the second
quantization formalism, the total energy is explicitly obtained as a function of three dimensionless parameters:
the spin polarization, dipolar coupling, and Zeeman parameters. We examine the effects of these agents on the
magnetic properties of 2D Fermi gas. The results show that an induced ferromagnetic phase transition is observed
only for adequately large values of magnetic field. This paper offers two controllable factors to change the spin
polarization of the system.
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I. INTRODUCTION

Fermi gas as one of the fundamental models in many-body
physics has been investigated in condensed matter for decades
[1–3]. In this model, the long-range interactions between
fermions determine various observed physical phenomena
[4,5]. Due to the realization of the Bose-Einstein condensate
for 53Cr atoms [6], the dipole-dipole interaction (DDI) has at-
tracted considerable attention. Unlike the Coulomb interaction,
dipole-dipole interaction is a noncentral interaction of which
both strength and sign can be controlled [7].

In Fermi systems, magnetic dipole moments (or spin of par-
ticles) interact via dipole-dipole interaction with anisotropic
and long-range characteristics which decay faster than the
Coulomb interaction at large distance. Due to its particular
nature, the DDI has opened perspectives to examine many-
body systems [8,9]. The DDI appears in a strong interaction
with highly magnetic fermionic atoms such as 53Cr [6,10],
167Er [11], and 161Dy or 163Dy [12]. Various associated effects
have been discussed in the theoretical literature. These include
stability and excitations of dipolar gases [13,14], superfluidity
in bilayer and multilayer systems [15–17], and topological
superfluidity in two-dimensional (2D) systems [18,19].

In recent years, numerous theoretical studies have been
done to clarify the characteristics of the DDI. The magnetic
properties of nucleonic systems with tensor force which has
a similar structure to the DDI were determined on the basis
of Landau–Fermi-liquid theory [20,21]. In addition, its impact
on Fermi systems with spin degrees of freedom was examined
via variant approaches. The ground-state energy of three-
dimensional (3D) Fermi gas with spin-1/2 dipolar atoms was
found as a function of the average interparticle distance by
Mahanti and coworkers [22–24] employing the Hartree-Fock
approach by considering the spheroid occupation function.
Subsequently, theoretical studies on the 3D Fermi gas with
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dipolar and short-range interactions were carried out within the
Hartree-Fock approximation. Especially, Fregoso et al. [25,26]
showed that biaxial nematic and ferronematic phases occurred
in Fermi gases of dipolar atoms. Based on the perturbation
theory, the magnetic properties of Fermi gas with dipole force
were also achieved theoretically at zero temperature [27]. On
the other hand, the stability of unpolarized 3D dipolar Fermi
gas was studied through mean-field theory [28]. In our earlier
paper [29], the DDI energy of 3D electron gas was obtained
by microscopic analysis. In that paper, it was shown that the
energy of this system was presented by the summation of all
energy contributions of the states with opposite parity.

Several efforts have been made to study the ground-state
properties of 2D dipolar Fermi gas. At weak coupling, the
Fermi-liquid properties of 2D dipolar Fermi gas were com-
puted applying perturbation theory by Lu and Shlyapnikov
[30]. These authors expressed thermodynamic quantities as a
power series up to second order in the dimensionless dipolar
parameter. In another theoretical study, Matveeva and Giorgini
[31] employed the quantum Monte Carlo method to obtain the
numerical results for the phase diagram of dipolar Fermi gas
over a wide range of dipolar parameters. Additionally, within
the Euler-Lagrange Fermi-hypernetted-chain approximation,
theoretical studies on the ground-state properties of dipolar
Fermi fluid were performed by Abedinpour et al. [32].

Since the polarization rate of the system is very sensitive to
the strength of the magnetic field, controlling the magnitude
of the external field becomes consequential. Moreover, sudden
changes in the response function to the magnetic field lead to
the emergence of phase transition. Therefore, the magnetic
field acts as an effective factor for creating the ferromagnetic
order and tuning the spin polarization of the system. Despite
numerous studies on the effect of DDI in Fermi systems,
including dipolar Fermi gas, there have been no reviews yet to
investigate the effect of external magnetic field on these polar-
ized systems. In the present paper, we investigate the magnetic
properties of a two-dimensional polarized Fermi gas with spin
1/2 at zero temperature. The chargeless Fermionic particles
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interacting via the dipole-dipole interaction are subjected to an
external uniform magnetic field along the z axis. Employing
the perturbation theory, the analytic expression for the ground-
state energy in the weak-coupling regime is obtained. The
numerical results are in reasonable agreement with theoretical
calculations. In this approach based on the second quantization
formalism, the DDI energy is represented as a sum of partial
energies with even and odd quantum numbers. Finally, the
effects of magnetic field and dipolar parameter on the magnetic
properties of the system are reported.

II. MODEL AND THEORY

We consider a uniform 2D Fermi gas consisting of N

fermionic particles with mass m, spin 1/2, and magnetic dipole
moment d = d0S, where S is the spin operator and d0 is the
strength of the magnetic dipole moment. By applying the
uniform magnetic field along the z direction, the spin-polarized
system subsequently consists of n+ parallel and n− antiparallel
spins with respect to the magnetic-field direction where nσ

denotes the number density for spin σ = +,−.
The spin polarization as the most used parameter is defined

as

ξ = n+ − n−
n

, (1)

where −1 � ξ � 1, and n = n+ + n− is the total number
density of the system.

For this system, the total Hamiltonian is described as

Ĥ = − h̄2

2m

N∑
i=1

∇2
ri

+
N∑

i=1

di · B + Ĥd−d , (2)

where the first and the second terms are the kinetic energy and
Zeeman energy of the Fermi particles.

The magnetic dipole-dipole interaction between two parti-
cles with dipole moments di and dj is as follows:

Ĥd−d = 1

2

μ0

4π

N∑
i �=j=1

di · dj − 3(di · r̂)(dj · r̂)

|ri − rj |3
. (3)

In the above equation, r = ri − rj and r̂ = r/|r| are the
relative position of particles and its unit vector, respectively.
For this interacting many-body system, the dipolar interaction
is presented in the second quantization formalism [33] for any
quantum state (denoted by β ≡ k, σ ) as follows:

Ĥdd = 1

2

∑
β1β2β3β4

〈β1, β2|V̂dd |β3, β4〉 a
†
β1

a
†
β2

aβ4aβ3 . (4)

In the above equation, the two-body dipolar interaction is
given by

V̂dd = Cdd

4π

Ŝ12

|r|3 , (5)

where

Cdd = μ0 d2
0 , Ŝ12 = (S1 · S2) − 3(S1 · r̂)(S2 · r̂). (6)

For a 2D Fermi gas, one can calculate the matrix elements
of Eq. (4) with respect to the single-particle wave function

expressed by a plane-wave function and spin state with z

component, χσ , in the surface area of A:

ψk,σ (r) = 〈r |k, σ 〉 = A
− 1

2 ei k·r χσ . (7)

Using the following variables, the two-body system can be
expressed in the center-of-mass and relative coordinates:

K = k1 + k2, K′ = k3 + k4, κ = k1 − k2

2
,

κ ′ = k3 − k4

2
. (8)

Regarding the singularity of dipolar interaction at the origin,
we use the expansion of plane waves in terms of cylindrical
waves to simplify the calculations:

ei k·r =
+∞∑

m=−∞
i−m Jm(kρρ) e−imφk eimφ. (9)

In Eq. (4), the two-body matrix elements are obtained as

V (κ, κ ′) = 〈k1σ1, k2σ2|V̂dd |k3σ3, k4σ4〉
= 2π

A

Cdd

4π

∑
SMs

S ′M ′
s

F (κ, κ ′) Vm,SMs ;m′,S ′M ′
s

× {
C

σ1σ2
SMs

C
σ3σ4
S ′M ′

s

}
δKK′ , (10)

where

F (κ, κ ′) =
∑
m,m′

eimφκ e−im′φκ′

×
∫

im−m′
Jm(κρ)

1

ρ3
Jm′ (κ ′ρ)ρ dρ. (11)

In this expression, Jm(κρ) is the Bessel function of order
m with wave number κ and C

σ1σ2
SMs

is the Clebsch-Gordan
coefficient corresponding to the addition of σ1 and σ2. Also
Vm,SMs ;m′,S ′M ′

s
= 〈m, SMs |Ŝ12|m′, S ′M ′

s〉 are the matrix ele-
ments of Ŝ12. Accordingly, the two-body dipolar Hamiltonian
in the second quantization form is found as

Ĥdd = 1

2

∑
kpq

∑
σ1σ2
σ3σ4

V (κ, κ ′) a
†
k+q,σ1

a
†
p−q,σ2

ap,σ4ak,σ3 , (12)

where

κ ′ = k − p
2

, κ = κ ′ + q. (13)

The ground-state properties of dipolar Fermi gas are char-
acterized by three parameters: spin polarization ξ , the dimen-
sionless dipolar coupling parameter λ, and the dimensionless
Zeeman parameter �. The dipolar and Zeeman parameters can
be expressed as

λ = Cdd

8π εF

kF
3, � = 2 d0B

εF

(14)

where εF and kF = √
4πn are the Fermi energy and Fermi

wave number of full-polarized 2D Fermi gas, respectively.
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For a small dipolar parameter, the kinetic energy has a
dominant effect compared to dipole-dipole interaction. In other
words, the DDI interaction behaves as a perturbative effect
at weak coupling. Under the aforementioned condition, the
perturbation theory can be applied as an appropriate method
to calculate the first-order energy. Consequently, one can
compute the DDI energy by computing the expectation value
of the Hamiltonian in the normalized ground state, |F 〉:

E(1) = 〈F |Ĥd−d |F 〉. (15)

The normalized ground state is only occupied by states
with momenta less than the Fermi wave number. Therefore,
the following conditions should be taken into account:

k + q = p, σ1 = σ4, σ2 = σ3. (16)

This makes it possible to reach the nonzero value of the dipolar
energy. It is also worth mentioning that the direct term (q = 0)
has no contribution in the two-body energy.

At zero temperature, the distribution function of particles
with spin σ corresponding to a circular Fermi surface is given
by

nσ,k = 〈a†
σkaσk 〉 = �(kFσ − k) (17)

where �(x) is the step function.
The Fermi wave number can be determined through the

expectation value of the number operator:

nσ = A−1
∑

k

〈a†
σkaσk 〉

= A−1
∑

k

�(kFσ − |k|) = k2
Fσ

4π
. (18)

The resulting expression for the DDI energy is given as

E(1) = − Cdd

4πA

∑
kq

∑
σ1σ2

+∞∑
m=−∞

∑
SMs

2q(−1)1−S+m

4m2 − 1

× ∣∣Cσ1σ2
SMs

∣∣2
VSMs ;SMs

�
(
kFσ1 − |k + q|)�(

kFσ2 − |k|).
(19)

Substituting Eq. (18) into Eq. (19), and employing the
diagonal matrix elements of Ŝ12 and the Clebsch-Gordan
coefficients, the first-order perturbation energy of DDI can be
written as

E(1) = Cdd

4π

A

16π

[
128

45π

(
k5
F+ + k5

F−
) − 2k5

F {I (ξ ) + h(ξ )}
]
,

(20)

where

I (ξ ) ≡ 1

πk5
F

∑
σ=+,−

∫ kF++kF−

|kF+−kF−|
2q2

[
k2
Fσ arcsec

(
kFσ

qσ

)

− qσ

√
k2
Fσ − q2

σ

]
dq, (21)

h(ξ ) ≡ 2

3k5
F

{
k2
F−(kF+ − kF−)3 kF+ > kF−

k2
F+(kF− − kF+)3 kF+ < kF−

, (22)

q± = q2 ± k2
F+ ∓ k2

F−
2q

, (23)

k2
F± = 2πn(1 ± ξ ). (24)

The contributions of kinetic energy and Zeeman energy per
particle are also given as

E(0)

N
= h̄2πn

2m
(1 + ξ 2),

EM

N
= −doBξ. (25)

Therefore, the total energy per particle of 2D Fermi gas
with the dipole-dipole interaction in terms of the dimensionless
parameters can be expressed as

E

N
= E(0)

N
+ EM

N
+ E(1)

N

= ε0

⎛
⎝1

2
(1 + ξ 2) − �ξ + λ

⎧⎨
⎩ 128

45π

⎡
⎣(

1 + ξ

2

) 5
2

+
(

1 − ξ

2

) 5
2

⎤
⎦ − 2[I (ξ ) + h(ξ )]

⎫⎬
⎭

⎞
⎠ (26)

where ε0 = εF

2 = h̄2k2
F

4m
= h̄2πn

m
.

In Eq. (26), the second term in the bracket reaches zero
value when the 2D Fermi gas is fully polarized. Therefore,
the circular Fermi surface is a suitable approximation for this
case. It should be noted that the deformation of the Fermi
surface stems from the anisotropic nature of dipole-dipole
interaction. Consequently, it is expected that by considering
the deformation in the distribution function the value of DDI
energy is changed slightly.

III. RESULTS AND DISCUSSION

The total energy per particle [Eq. (26)] is calculated to
compute the magnetic properties of spin-polarized 2D Fermi
gas with the dipole-dipole interaction subjected to an external
magnetic field. In this section, the numerical results are
presented.

In Fig. 1, the total energy per particle of 2D Fermi gas
versus spin-polarization parameter for various values of � at
λ = 0.5 is plotted. It can be seen that the energy is reduced
with increasing the Zeeman parameter, and the 2D Fermi gas
becomes more stable. It is obvious that the energy slightly
changes for the Zeeman parameters with values less than about
0.5, and consequently the corresponding magnetic field does
not have a substantial influence. Furthermore, the symmetry
of total energy with respect to spin polarization is broken in
the presence of magnetic field, and the minimum value of
the energy of the system occurs at the nonzero value of the
spin-polarization parameter in 0 < ξ � 1. At λ = 0.5, we have
found that for the Zemman parameter � � 2.0 the value of
spin polarization corresponding to the minimum point of the
energy is less than +1, and so the system is partially polarized.
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FIG. 1. The total energy per particle (in units of ε0) vs spin-
polarization parameter for various values of � at λ = 0.5.

However, the minimum energy (ground-state energy) happens
at the polarization of +1 for larger values of the Zeeman
parameter, and the system reaches the saturation point. This
means that the ferromagnetic state is available, and 2D Fermi
gas is fully polarized. It should be noted that this threshold limit
of the Zeeman parameter increases as the dipolar parameter
enhances.

The partial DDI energy per particle of spin-polarized Fermi
gas corresponding to the azimuthal quantum number, m, at
λ = 0.5 and � = 1 is listed in Table I. The DDI energy is found
to be a negative (positive) value for the even (odd) values of
m, except in the case of m = 0 .

Invariance of the DDI against the spatial inversion leads to
the conservation of the parity, where the spatial wave functions
with even (odd) azimuthal quantum numbers have even (odd)
parity. The factor (−1)m in Eq. (19), indicating the parities of
the system, confirms this result. This behavior has been also
reported for tensor force in two-nucleon systems. As can be
expected, with an increase in values of m, the magnitude of
DDI energy decreases, and it approaches a specific value.

The ground-state energy per particle of polarized 2D Fermi
gas versus dipolar parameter is shown for some values of
Zeeman parameter in Fig. 2. It is seen that with enhancement
of dipolar parameter the energy per particle for each Zeeman
parameter increases. By increasing the Zeeman parameter, the
rate of change of energy increases at each dipolar parameter.
This indicates that an increase of the magnitude of magnetic
field induces growth of the increasing rate of Zeeman energy.

TABLE I. The partial DDI energy per particle (in units of ε0)
corresponding to the azimuthal quantum number m, at λ = 0.5 and
� = 1.

Azimuthal quantum number m Partial DDI energy per particle

0 0.079391
±1 0.026464
±2 −0.00529
±3 0.002268
±4 −0.00126

FIG. 2. The ground-state energy per particle of polarized 2D
Fermi gas (in units of ε0) vs dipolar parameter for some values of
Zeeman parameter.

In Fig. 3, the variation of ground-state energy per particle
with respect to the Zeeman parameter for different values of
the dipolar parameter is plotted. With an increase of Zeeman
parameter up to 0.5, the energy nearly remains constant.
However, the energy is dropped drastically for values of
�>

˜
0.5. This behavior reveals that the magnetic field is an

efficient factor in this range. It is also seen that with the growth
of the dipolar parameter the magnitude of energy per particle
increases for a distinct Zeeman parameter.

For the equilibrium state, the spin-polarization parameter
(or dimensionless magnetization) as a function of dipolar
parameter for various Zeeman parameters is presented in Fig. 4.
It is observed that for each value of � the spin polarization
increases with decreasing the dipolar parameter. This point
stems from the fact that as the dipolar parameter decreases
the interparticle distance of fermions increases, leading to a
reduction in repulsion between the particles. Therefore, it is
not necessary to adhere to the Pauli exclusion principle, and
spins tend to orient in parallel. In other words, the probability
of existence of the ferromagnetic state is more than that of the
paramagnetic state. For small values of Zeeman parameter, the
Fermi gas is nearly unpolarized. Conversely, at large values
of this parameter, the system has a high polarization even at
higher values of λ. Consequently, the magnetic field plays a

FIG. 3. The variation of the ground-state energy per particle (in
units of ε0) vs Zeeman parameter for different values of dipolar
parameter.

023634-4



FIELD-INDUCED FERROMAGNETIC PHASE TRANSITION … PHYSICAL REVIEW A 98, 023634 (2018)

FIG. 4. The spin-polarization parameter corresponding to the
equilibrium state as a function of dipolar parameter for various
Zeeman parameters.

substantial role against the dipolar interaction in polarization
of this system.

The variations of kinetic energy, the DDI energy, and
Zeeman energy per particle are separately shown with respect
to the dipolar parameter at � = 2.5 in Fig. 5. In the perturbative
regime, the contribution of kinetic energy is relatively large
in comparison to the contribution of DDI energy. Further-
more, the Zeeman energy substantially has a dominant effect
compared to others. The numerical results at λ � 0.8 which
represent a fully polarized Fermi gas in Fig. 4 are in a
reasonable agreement with the results of fully polarized 2D
dipolar gas reported in Refs. [30–32].

In Fig. 6, the influence of Zeeman parameter on the
spin-polarization parameter (dimensionless magnetization) at
equilibrium state for various values of λ is illustrated. For small
values of �, the spin-polarization parameter almost reaches
zero where it demonstrates spin symmetry of 2D Fermi gas.
With the growth of Zeeman parameter, 2D Fermi gas can be
partially polarized, and the spin polarization of the system
is maximized for small values of λ. Moreover, the value
of the spin-polarization parameter increases rapidly with an
increase in Zeeman parameter. This phenomenon reveals the
existence of an induced ferromagnetic phase transition in the
presence of a strong magnetic field. It should be noted that for
any value of dipolar parameter the value of spin polarization

FIG. 5. The variation of kinetic energy, the DDI energy, and
Zeeman energy (in units of ε0) vs dipolar parameter at � = 2.5.

FIG. 6. The influence of Zeeman parameter on the spin-
polarization parameter at the equilibrium state for various values
of λ.

corresponding to the large value of � is equal to +1, and the
ferromagnetic state becomes more expectable. Accordingly,
the magnetic field acts as a symmetry breaking that generates
the ferromagnetic order. In addition, the threshold limit of
the Zeeman parameter enhances with increasing the dipolar
parameter.

The response of a system to the magnetic field, the magnetic
susceptibility, is defined as

χ (n,B ) =
[
∂M (n,B )

∂B

]
n

.

Figure 7 depicts the dimensionless magnetic susceptibility,
χ/Nd0

2

ε0
, as a function of Zeeman parameter at four values of

dipolar parameter. It is clear that for each λ a maximum point
occurs at the specific Zeeman parameter (�m) in this curve.
This result is found to be direct evidence for a ferromagnetic
phase transition induced by external magnetic field. Moreover,
the maximum point of the Zeeman parameter corresponding
to the phase transition point clearly depends on the strength of
the DDI.

In Fig. 8, the phase diagram shows the ferromagnetic and
paramagnetic phases separated by a single line. It can be
observed that �m enhances monotonically with an increase

FIG. 7. The dimensionless magnetic susceptibility (χ/Nd0
2

ε0
) as a

function of Zeeman parameter at four values of dipolar parameter.
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FIG. 8. Phase diagram for the spin-polarized 2D Fermi gas with
dipole-dipole interaction in the presence of magnetic field.

in dipolar parameter. It is concluded that in stronger dipolar
coupling the induced phase transition is observed at larger
values of magnetic field. To sum up, the results show that the
spin polarization of the system can be changed through two
agents, the magnetic field and the dipolar coupling parameter.
The value of the dipolar coupling parameter can be controlled
by number density and particular choices of atoms.

IV. SUMMARY AND CONCLUSION

In summary, the magnetic characteristics of 2D polarized
Fermi gas with the dipole-dipole interaction subjected to
an external magnetic field were investigated employing the
perturbation theory. In the framework of second quantization
formalism, the total energy was calculated in terms of spin
polarization, dipolars, and Zeeman parameters. The results of
our investigation are quite convincing in comparison with those
reported for 2D fully polarized dipolar Fermi gas [30–32].

The DDI energy was also represented as a sum of partial
energy of states with opposite parities. The results indicated
that for � < 0.5 the magnetic field has a nearly negligible
effect. When the magnetic field is applied, the minimum
energy becomes available at 0 < ξ � 1 depending on the
strength of the magnetic field. As a consequence, the magnetic
field causes symmetry breaking, and creates the ferromagnetic
order. By increasing the Zeeman parameter, the ground-state
energy decreases, and gives rise to a more stable system.
It is evident that the effect of the magnetic field on the
magnetic properties of 2D Fermi gas becomes more significant
and visible when the Zeeman parameter is greater than 0.5.
By increasing the Zeeman parameter, the rate of changes
of energy increases for any dipolar parameter. For a fixed
Zeeman parameter, it was found that the ground-state energy
grows with increasing the dipolar parameter. Furthermore, the
spin polarization increases as the dipolar parameter decreases.
Therefore, we can conclude that the dipole-dipole interaction
plays a weak role on the magnitude of spin polarization of this
system with respect to that of the magnetic field. It was seen
that an induced ferromagnetic phase transition occurs in the
presence of magnetic field, and for larger dipolar parameters
this phenomenon becomes observable in the stronger magnetic
field. Finally, based on the results of this research, the dipolar
coupling parameter and the magnetic field were suggested
as controllable means of changing spin polarization for 2D
Fermi gas.
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