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Recent experiments confirmed that fluctuations beyond the mean-field approximation can lead to self-bound
liquid droplets of ultradilute binary Bose mixtures. We proceed beyond the beyond-mean-field approximation and
study liquid Bose mixtures by using the variational hypernetted-chain Euler–Lagrange method, which accounts
for correlations nonperturbatively. Focusing on the case of a mixture of uniform density, as realized inside large
saturated droplets, we study the conditions for stability against evaporation of one of the components (both
chemical potentials need to be negative) and against liquid-gas phase separation (spinodal instability), the latter
being accompanied by a vanishing speed of sound. Dilute Bose mixtures are stable only in a narrow range near an
optimal ratio ρ1/ρ2 and near the total energy minimum. Deviations from a universal dependence on the s-wave
scattering lengths are significant despite the low density.
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Ultracold quantum gases provide a rich toolbox to study
correlations in quantum many-body systems [1] and model
condensed-matter physics such as magnetic systems [2], solid-
state systems [3], or superfluidity [4]. A recent example is
the prediction [5] and two independent observations [6,7] of a
self-bound liquid mixture of two ultradilute Bose gases (39K
atoms in two different hyperfine states). In this liquid state,
when the attraction between different species overcomes the
single-species average repulsion, the mean-field approach [8]
would predict a collapse. In Ref. [5], correlations were taken
into account approximatively by using the beyond-mean-field
(BMF) approximation [9], based on the Lee–Huang–Yang
(LHY) expansion in a local density approximation. In a regime
where the BMF corrections can stabilize the binary mixture by
compensation of the mean-field attraction, self-bound droplets
are formed which live long enough to perform measurements
with the trapping potential switched off. Being self-bound
and three dimensional, they are different from bright solitons,
which are essentially one dimensional and have a limited
number of particles [10], while droplets can only be formed
with a critical minimum number of atoms. On a similar footage,
self-bound droplets in the region of mean-field collapse have
also been found in dipolar trapped systems of 164Dy [11–13]
and 166Er [14] atoms. In this case quantum fluctuations com-
pensate the attractive components of the dipolar interactions, as
confirmed by theory [15–17]. Bose mixtures and dipolar Bose
gases share similarities (competition between repulsive and
attractive interactions), although the latter case is complicated
by the anisotropy of the dipolar interaction.

A sufficiently large saturated droplet has a surface region
where the density drops to zero and a uniform interior with a
density plateau at the equilibrium density ρeq resulting from
the balance of attractive and repulsive interactions. In this
work we focus on the effect of self-binding rather than on the
droplet surface. Therefore we take the thermodynamic limit
N → ∞ and V → ∞ with ρ = N/V fixed. We investigate the
ground state of a three-dimensional uniform Bose mixture with

partial densities ρ1 and ρ2 (hence a total density ρ = ρ1 + ρ2)
and equal atom masses m. We explore a wide range of
ρ1 and ρ2 values, finding an optimal ratio ρ1/ρ2 and the
equilibrium density ρeq. We note, however, that in the presently
published experiments [6,7], the self-bound droplets are not
saturated: they do not exhibit a central density plateau but an
approximately Gaussian density profile, and they are so small
that they are dominated by surface effects.

The Hamiltonian of a Bose mixture is given by

H = −
∑
i,α

h̄2

2m
�i,α + 1

2

∑
α,β

∑
i,j

′vα,β (|ri,α − rj,β |), (1)

where a Greek index α labels the component, and a Latin index
i numbers the atoms of species α. The prime indicates that we
only sum over i �= j for α = β. We use the Lennard–Jones-like
interactions

vα,β (r ) = sα,β

[(
σα,β

r

)10

−
(

σα,β

r

)6
]
,

with v12 = v21. The parameters of vα,β are adjusted to set
the s-wave scattering length aα,β to a desired value, which
can be done analytically [18]. Since vα,β has two parameters,
we further characterize vα,β (r ) by the effective range reff

α,β ,
evaluated numerically [19]. In all calculations, sα,β and σα,β

are chosen such that there are no two-body bound states.
Previously, Lee–Huang–Yang corrections to the mean-field

approximation [5] and quantum Monte Carlo (QMC) meth-
ods [20,21] have been employed. Here we use a different
approach, the variational hypernetted-chain Euler–Lagrange
(HNC-EL) method. HNC-EL is computationally very eco-
nomical, like the BMF approximation, but has the advantage
of including correlations in a nonperturbative manner. This
leads to a strictly real ground-state energy, in contrast to the
BMF approximation where the energy of a uniform self-bound
mixture has an unphysical small imaginary part. The two-
component HNC-EL method has been described in Ref. [22]
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and in a different formulation in Ref. [23], and has been re-
cently generalized to multicomponent Bose mixtures [24]. The
starting point is the variational Jastrow–Feenberg ansatz [25]
for the ground state consisting of a product of pair correlation
functions for a multicomponent Bose system,

�0({ri,α}) = exp

⎡
⎣1

4

∑
α,β

∑
i,j

′uα,β (|ri,α − rj,β |)
⎤
⎦. (2)

The many-body wave function �0 does not contain one-body
functions uα (ri,α ) because we consider a uniform system.
Higher-order correlations such as tripletsuα,β,γ (ri,α, rj,β , rk,γ )
have been incorporated approximately for helium [26,27], but
are neglected here because their contribution is very small at
low density.

We solve the Euler–Lagrange equations δe/δgα,β (r ) = 0,
where the energy per particle e = 1

N

〈�0|H |�0〉
〈�0|�0〉 is

e =
∑
α,β

ραρβ

2ρ

∫
d3r gα,β (r )

[
vα,β (r ) − h̄2

4m
�uα,β (r )

]
(3)

in terms of the pair distribution function

gα,β (r ) = 1 + δαβ

ραρβ

δ ln〈�0|�0〉
δuα,β

.

Partial summation of the Meyer cluster diagrams for ln〈�0|�0〉
in the HNC/0 approximation provides a relation between gα,β

and uα,β [28,29]. A practical formulation of the resulting HNC-
EL equations to be solved for gα,β can be found in Ref. [24].
From gα,β (r ) we can calculate the static structure functions
Sα,β (k) = δαβ + √

ραρβ FT[gα,β − 1] (FT denotes Fourier
transformation), needed for the calculation of excitations.

At low densities, a uniform binary Bose mixture of two
species of equal mass is characterized by the scattering lengths
a11, a12, and a22, and the partial densities ρ1 and ρ2. However,
our results depend also on the next term in the expansion of
the scattering phase shift, the effective range reff

α,β [30], leading
to a total of eight parameters {ρα, aα,β, reff

α,β} to characterize
our uniform binary Bose mixtures. We use a11 as the length
unit and E0 ≡ h̄2/ma2

11 as the energy unit. For 39K used in
experiments [6,7], we have a11 = 35.2aB and E0 = 3.55 mK.
We have used these values to restore dimensions in some of
the figures below.

We use the combinations of scattering lengths aαβ from the
experiments reported in Ref. [6], which are very similar to those
reported in Ref. [7]. A negative value of δa = a12 + √

a11a22

is necessary for a self-bound mixture. Before investigating the
dependence on δa, we study the dependence on the partial
densities ρ1 and ρ2. Figure 1 shows a map of the energy
per particle e as function of ρ1 and ρ2 for the experimental
scattering lengths corresponding to δa = −5.5aB , which is
δa = −0.156 in our length unit a11 and the most negative value
in Ref. [6]. The other scattering lengths are a22 = 1.86 and
a12 = −1.52. The effective ranges are reff

11 = 5.2, reff
12 = 33.0,

and reff
22 = 43.2. Negative energies, where the mixture is a

self-bound liquid, are shown by a red color range, together
with contour lines, positive energies by a blue color range.
Thus, as predicted by BMF calculations [5] and confirmed
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FIG. 1. Total energy per particle e as a function of ρ1 and ρ2 for
δa = −5.5aB , with contour lines for energies −3.35, −2.68, −2.01,
−1.34, −0.67, and 0.0 Also shown are the spinodal instability (thick
black line), and the zeros of the chemical potentials μ1 (blue) and
μ2 (green). Only in the narrow region pointed at by the arrow is
the mixture stable against evaporation. The inset shows e and the
chemical potentials μ1 and μ2 along the dashed line intersecting the
energy minimum.

by experiments [6,7], we find a liquid state for δa < 0. In
the phase space (ρ1, ρ2) the self-bound states form a narrow
valley following a typical optimal ratio ρ1/ρ2. The phase
space of meaningful combinations (ρ1, ρ2) ends at the spin-
odal line (thick black line in Fig. 1). Approaching this line,
the uniform mixture becomes sensitive to long-wavelength
density oscillations (see below). At the spinodal line, in-
finitesimal density fluctuations trigger a liquid-gas phase
separation.

While in a uniform mixture we can choose any ρ1 and ρ1, a
finite droplet adjusts its radius to minimize the energy, attaining
the equilibrium (zero pressure) density inside the droplet. The
situation is more complicated for a mixture because the droplet
radius affects only the total density, but not necessarily the
ratio ρ1/ρ2. The latter can be adjusted by evaporating one
component or by phase separation. Therefore, we calculate the
chemical potential of component α, μα (ρ1, ρ2) = e(ρ1, ρ2) +
ρ

∂e(ρ1,ρ2 )
∂ρα

. If μα > 0 a particle of species α is not bound to
the mixture—the energy is lowered by removing it. A stable
droplet requires both e < 0 (red valley in Fig. 1) and μα < 0.
The blue line in Fig. 1 shows the zeros of μ1, with μ1 < 0
above this line. Similarly the green line shows the zeros of
μ2, with μ2 < 0 below this line. Hence only the narrow region
pointed at by the arrow is stable against evaporation; this region
includes of course the equilibrium energy eeq = min[e]. The
inset of Fig. 1 shows e, μ1, and μ2 along the dashed line as
function of ρ1 for a fixed value ρ2a

3
11 = 0.934 × 10−5, such

that we intersect the equilibrium energy. μα is very sensitive
to the partial density, which explains why the region where
both μα < 0 is so narrow. If a droplet is prepared outside the
stable region, particles evaporate and the system moves on the
energy surface until it is stable.
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FIG. 2. Energy per particle e as function of the total density ρ for
several values δa. Closed circles denote the equilibrium density ρeq

and energy eeq; open circles denote spinodal points. The black dashed
and dash-dotted lines are the real and imaginary parts, the latter using
a different scale, of the BMF energy for δa = −0.156.

Our results for e and μα mean that large droplets will reach
the equilibrium energy eeq by a combination of evaporating
superfluous particles and adjusting the droplet radius. In the
case discussed so far, δa = −0.156, the density ratio at the
equilibrium energy predicted from our HNC-EL results in
Fig. 1 is ρ1/ρ2 = 1.380, which is to be compared with the
optimal mean-field ratio [31] ρ1/ρ2 = √

a22/a11 = 1.363. The
latter is a very good approximation even though the mean-field
approximation does not even predict a liquid state. As seen in
the inset of Fig. 1, e changes very little if the density ratio is
slightly changed; therefore for further calculations of e we use
the mean-field ratio.

When δa increases towards zero, the liquid becomes less
bound, until it is no longer self-bound at δa = 0. In Fig. 2 the
energy per particle e as function of total density ρ is shown for
several values of δa in the range [−0.156, 0], corresponding to
the range of values in experiments [6,7] where δa is adjusted by
changing the s-wave scattering length a22 via a magnetic field.
We follow this protocol and modify the strength s22 of v22(r ) to
obtain the corresponding a22, which also changes reff

22 ; v11 and
v12 are not changed and chosen as above. Table I lists the values
of a22, reff

22 , and ρ1/ρ2 for Fig. 2. The equilibrium energies eeq

TABLE I. Values for δa, a22, reff
22 , and ρ1/ρ2 used to obtain the

results shown in Fig. 2, as well as the equilibrium energy and density
obtained from these results. Lengths and energies are in units of a11

and E0 (see text) if not otherwise stated.

δa [units of aB ] δa a22 reff
22 ρ1/ρ2 106eeq 105ρeq

−5.5 −0.156 1.86 43.2 1.363 −3.364 2.221
−5.0 −0.142 1.90 40.3 1.377 −2.426 1.756
−4.4 −0.125 1.94 37.0 1.394 −1.571 1.294
−3.2 −0.091 2.04 31.2 1.428 −0.544 0.609
−2.4 −0.068 2.10 27.7 1.450 −0.214 0.319

0.0 0.0 2.31 19.1 1.519
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FIG. 3. Equilibrium density ρeq of the uniform Bose mixture as
function of δa, varied by changing a22; see Table I. For all curves,
a12 = −1.52. The circles and squares are the present HNC-EL results
obtained for reff

12 = 33.0 and 18.2, respectively. The line is the BMF
result.

and densities ρeq are marked by filled circles and are also listed
in Table I. Naturally, both eeq → 0 and ρeq → 0 as δa → 0.
For δa = 0, e > 0 and the mixture is not liquid anymore. The
spinodal densities, where a uniform liquid becomes unstable
against infinitesimal density fluctuations, are marked by open
circles in Fig. 2. Also shown in Fig. 2 is the energy per
particle eBMF calculated in the BMF approximation [5] for
δa = −0.156. Since eBMF is complex, we show both the real
and the small imaginary part of eBMF (note the different energy
scale for the latter). The BMF approximation fails to predict
the spinodal instability and eBMF extends all the way to ρ = 0.

The density is more accessible to measurement than the
energy; e.g., in Refs. [6,7] the central density of droplets
was measured. In Fig. 3 we summarize the results shown
in Fig. 2 by plotting the equilibrium total density ρeq as a
function of δa (filled circles). Also shown in Fig. 3 is the
BMF result for ρeq(δa), obtained as the minimum of the
real part of the BMF energy, which qualitatively agrees with
HNC-EL but predicts a somewhat lower equilibrium density.
The square symbols in Fig. 3 show our results for ρeq(δa), if we
choose different parameters s12 and σ12 in v12(r ) such that we
keep a12 = −1.519, while changing the effective range from
reff

12 = 33.0 (upper curve) to reff
12 = 18.2 (lower curve). This

demonstrates that the results are not universal; they depend
not only the s-wave scattering lengths, but at least also on the
effective ranges.

Figure 4 shows the dependence of the energy per particle
e(ρ) on the effective range reff

12 for δa = −0.156, with a12 =
−1.519 and the other scattering lengths as above, for different
values reff

12 = 18.2, 23.0, 33.0, 44.8. The dependence on reff
12

is significant, with e varying by 10% and ρeq varying by
13% for this range of reff

12 values. The BMF energy Re[eBMF]
agrees better with HNC-EL for smaller reff

12 . Alkali interaction
potentials have an effective range that is often much larger than
the s-wave scattering length [32]. The values of reff

12 [33] used
here are of the order of those relevant to the 39K experiments of
Refs. [6,7,10], computed according to the model of Ref. [34].
Considering the low equilibrium densities ρeq, it might appear
surprising to find this nonuniversal behavior. We note, however,
that for small δa the mean-field energy is the result of large
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cancellations of negative and positive contributions. Therefore,
it is plausible that a dependence on higher-order parameters
such as the effective range becomes visible.

The spinodal instability (thick black line in Fig. 1) can be
relevant for the preparation of the liquid droplets, achieved
by ramping one of the scattering lengths. During a fast ramp,
the mixture may visit the “forbidden” region of the (ρ1, ρ2)
phase space and can condense into multiple droplets. To
characterize the uniform liquid mixture near this instability
in more detail, we choose aα,β and reff

α,β as for Fig. 1 corre-
sponding to δa = −0.156, and the mean-field optimal ratio
ρ1/ρ2 = 1.363. A simple approximation for the excitation
spectrum of a Bose mixture is given by the Bijl–Feynman
approximation [35], which provides a good estimate of the
long-wavelength dispersion. A mixture supports density and
concentration oscillations, with dispersion relations ε1(k) and
ε2(k), respectively. They can be easily calculated from the
static structure functions Sαβ (k) by solving the eigenvalue

problem h̄2k2

2m
ψ i = εi (k)S(k)ψ i where S is the 2 × 2 matrix

with elements Sαβ (k) and ψ i are two-component vectors.
Figure 5 shows the long-wavelength phase velocities ci =
limk→0 dεi (k)/dk for the density and concentration mode. The
density mode has lower energy than the concentration mode
for all densities shown in Fig. 5, including the equilibrium
density. While c2 is finite and hence the mixture is stable
against demixing, the density mode becomes soft for k → 0 as
ρ is lowered, evidenced by the vanishing speed of sound c1 at
the spinodal instability (vertical line), where phase separation
into liquid and gas occurs. This is similar to the onset of the
modulational instability in dipolar Bose gases [11,12], which
however is triggered by a vanishing roton energy with a finite
wave number [36,37]. Excitations of Bose mixtures were also
studied using Beliaev diagrammatic theory [38].

In summary, we analyze the properties of a liquid, i.e., self-
bound, uniform Bose mixture using s-wave scattering
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FIG. 5. Long-wavelength phase velocities in the two-component
Bijl–Feynman approximation for density oscillations (lower curve)
and concentration oscillations (upper curve) as a function of total
density. The vertical line denotes the spinodal instability, and the red
circle denotes the equilibrium density.

lengths as in Refs. [6,7]. With the HNC-EL method, which
includes pair correlations nonperturbatively, we find a narrow
regime of partial densities ρα where the conditions for a
stable liquid mixture are met: the energy per particle and both
chemical potentials μα (ρ1, ρ2) are negative. If μα > 0, atoms
of component α evaporate until reaching either equilibrium or
the spinodal line. Despite their ultralow density, the properties
of these liquids depend also on the effective ranges reff

α,β .
This deviation from universality was not observed in two-
dimensional liquids [20]. We find that the liquid can have a
spinodal instability, where the speed of sound vanishes and
infinitesimal density fluctuations lead to a separation into a
liquid and gas phase, which can be relevant during a nona-
diabatic evolution of a droplet in experiments. We compare
our HNC-EL results with the BMF approximation and find
qualitative agreement, the small differences in energies and
equilibrium densities can probably be attributed to the neglect
of the effective range in the BMF approximation. However,
as a low-density expansion, BMF misses the spinodal point
and leads to a small but unphysical imaginary part in the
energy for δa < 0, while the HNC-EL energies are always
real. The existence of the spinodal point demonstrates quite
well why the BMF approximation, which relies on the LHY
low-density expansion in a local density approximation, is
conceptually unpleasant: a uniform liquid phase does not exist
for low densities because of the spinodal point; see Fig. 1. In
the presently available experiments [6,7] the liquid droplets
are far from saturation, as evidenced by the Gaussian shaped
density profiles, and possibly not in equilibrium. Describing
small unsaturated droplets will require an inhomogeneous
generalization of HNC-EL based on the energy functional (3).
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