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Three-dimensional splitting dynamics of giant vortices in Bose-Einstein condensates

Jukka Räbinä,1,* Pekko Kuopanportti,2 Markus I. Kivioja,1 Mikko Möttönen,3 and Tuomo Rossi1
1Faculty of Information Technology, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland

2Department of Physics, University of Helsinki, P.O. Box 43, 00014 Helsinki, Finland
3QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500, 00076 Aalto, Finland

(Received 20 April 2018; published 22 August 2018)

We study the splitting dynamics of giant vortices in dilute Bose-Einstein condensates by numerically
integrating the three-dimensional Gross-Pitaevskii equation in time. By taking advantage of tetrahedral tiling
in the spatial discretization, we decrease the error and increase the reliability of the numerical method. An
extensive survey of vortex splitting patterns is presented for different aspect ratios of the harmonic trapping
potential. The discrete rotational symmetries of the splitting patterns that emerge in the time evolution are in
good agreement with predictions obtained by solving the prevailing dynamical instabilities from the Bogoliubov
equations. Furthermore, we observe intertwining of the split vortices in prolate condensates and a split-and-revival
phenomenon in a spherical condensate.
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I. INTRODUCTION

Quantized vortices are archetypal topological objects that
play important roles in various branches of physics, ranging
from superconductors [1] and helium superfluids [2] to cos-
mology [3] and astrophysics [4]. Quantized vortices exist in
matter fields described by a smooth complex-valued scalar
field. The essential idea is that while the complex field itself
is single valued, its phase is defined only modulo 2π . Hence,
the contour integral of the phase around a closed loop need
not vanish, but may in fact be any integer multiple κ of 2π . A
nonzero κ implies the presence of a quantized vortex within
the loop and is referred to as the winding number of the vortex.

Bose-Einstein condensates (BECs) of atomic gases are di-
lute superfluids that can be described by tractable models [5,6]
and controlled accurately in experiments [7]. Thus, they are
excellent physical systems for studying quantized vortices.
The BEC community has devoted a great deal of atten-
tion to multiquantum vortices, for which |κ| � 2, and giant
vortices, for which |κ| � 1. Methods used to create them
in gaseous BECs have so far included topological phase
engineering [8–12], coherent transfer of angular momentum
from photons to the atoms [13], and removal of atoms from a
lattice of single-quantum vortices by a tightly focused laser
beam [14,15]. Given that the kinetic energy of a vortex is
proportional to κ2, a multiquantum vortex typically has a
higher energy than a cluster of |κ| separated singly quantized
vortices. This makes multiquantum vortices prone to split
into singly quantized vortices. The associated instabilities and
dynamics have been studied both theoretically [16–28] and
experimentally [9–12]. Recent studies have also addressed
utilizing vortex splitting as a means to generate quantum
turbulence with controllable net circulation [29–31]. Besides
being interesting due to their dynamics, multiquantum vortices
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could also be used to implement a ballistic quantum switch [32]
or realize bosonic quantum Hall states [33].

Previous theoretical studies of vortex splitting have been
limited to small winding numbers |κ| � 5 [16–24,28] or to
quasi-two-dimensional models pertaining to highly oblate
BECs [25–27,31]. In Ref. [34], vortex splitting was studied
in three dimensions up to κ = 45, but only for small BECs
in isotropic harmonic traps. Splitting patterns with up to
tenfold rotational symmetry were observed in the numerical
simulations. In this work, we carry out a more comprehensive
investigation of giant-vortex splitting in three-dimensional
BECs. Covering all three types of cylindrically symmetric
harmonic traps (oblate, spherical, and prolate) and a wide range
of repulsive interaction strengths, we simulate the temporal
evolution of axisymmetric giant vortex states subjected to small
random perturbations. In general, we find good agreement
between the splitting patterns observed in the evolution and
those predicted by linear stability analysis. Vortex splitting
in prolate BECs is found to result in branched intertwining
of the vortices, and spherical BECs are observed to exhibit a
split-and-revival effect.

Importantly, we also find that the splitting patterns appear-
ing in the simulated time evolution can be prone to numerical
artifacts stemming from the symmetry of the underlying spatial
grid. As a result, particular care should be taken when dis-
cretizing the time-dependent Gross-Pitaevskii equation (GPE)
for the condensate. Specifically, the Cartesian grids used in
the previous investigations tend to favor the fourfold splitting
pattern, which may explain why, in Ref. [26], the higher-
symmetry splitting patterns predicted by the linear stability
analysis were not observed to arise from random perturbations.
We solve this problem by basing our time integration scheme
on discrete exterior calculus [35–37] with tetrahedral tiling.

The remainder of this article is organized as follows.
In Sec. II we present the time-dependent GPE, derive the
Bogoliubov equations used for the linear stability analysis, and
outline our numerical integration method. Section III begins
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with an analysis of the integration method and presents our
numerical results. We summarize the paper in Sec. IV.

II. THEORY AND METHODS

A. Mean-field model

The complex-valued order parameter � of a dilute BEC at
low temperatures obeys the time-dependent GPE

ih̄∂t�(r, t ) =
[
− h̄2

2m
∇2 + V (r) + g|�(r, t )|2

]
�(r, t ),

where i is the imaginary unit, h̄ is the reduced Planck
constant, m is the atom mass, and g is the effective interac-
tion strength. The order parameter is normalized such that∫ |�(r, t )|2d3r = N is the number of condensed atoms. We
assume a cylindrically symmetric harmonic trapping potential
V (r) = m(ω2

ρρ
2 + ω2

zz
2)/2, where ωρ and ωz are the radial

and axial trapping frequencies, respectively. Here and in what
follows, cylindrical coordinates are denoted by (ρ, φ, z).

To have generally applicable results, we introduce dimen-
sionless quantities by measuring position in units of the radial
harmonic oscillator length aρ = √

h̄/mωρ , time in units of

1/ωρ , the order parameter in units of
√

N/a
3/2
ρ , and the

effective interaction strength in units of a3
ρ h̄ωρ/N . Thus, the

conversion to the dimensionless quantities (denoted by an
overbar) is given by

r̄ = r
aρ

, t̄ = tωρ, �̄(r̄, t̄ ) = �(r, t )
a

3/2
ρ√
N

, ḡ = gN

a3
ρ h̄ωρ

.

Consequently, the dimensionless order parameter is normal-
ized such that

∫ |�̄(r̄, t̄ )|2d3r̄ = 1, and it satisfies the dimen-
sionless GPE

i∂t̄�̄(r̄, t̄ ) = [− 1
2 ∇̄2 + V̄ (r̄) + ḡ|�̄(r̄, t̄ )|2]�̄(r̄, t̄ ). (1)

The dimensionless potential is given by V̄ (r̄) = (ρ̄2 +
λ2z̄2)/2, where λ = ωz/ωρ is referred to as the aspect ratio.
In the cylindrical coordinates, the dimensionless Laplacian is
given by ∇̄2 = ∂2

ρ̄ + ρ̄−1∂ρ̄ + ρ̄−2∂2
φ + ∂2

z̄ .
Equation (1) has stationary vortex solutions �̄λ,ḡ,κ , which

depend on λ, ḡ, and the integer winding number κ (we can
assume κ � 0 without loss of generality). These stationary
states can be written as

�̄λ,ḡ,κ (r̄, t̄ ) = f (ρ̄, z̄)eiκφ−iμ̄t̄ , (2)

where f is a real-valued function and μ̄ is the dimensionless
chemical potential. The stationary vortex states satisfy the
time-independent equation[

1

2

(
κ2

ρ̄2
− ∂2

ρ̄ − 1

ρ̄
∂ρ̄ − ∂2

z̄

)
+ V̄ + ḡf 2

]
f = μ̄f,

which can be solved using a relaxation method [38].

B. Bogoliubov equations and stability

To study the local stability properties of a given stationary
vortex solution �̄λ,ḡ,κ , we decompose the order parameter as

�̄(r̄, t̄ ) = [f (ρ̄, z̄) + χ (r̄, t̄ )]eiκφ−iμ̄t̄ , (3)

where χ is a function describing a small perturbation such
that

∫ |χ (r̄, t̄ )|2d3r̄ � 1. By substituting Eq. (3) into Eq. (1),
neglecting the second- and third-order terms in χ , and seeking
oscillatory solutions of the form

χ (r, t̄ ) =
∑
q∈N

∑
l∈Z

[
uq,l (ρ̄, z̄)eilφ−iω̄q,l t̄ + v∗

q,l (ρ̄, z̄)eiω̄∗
q,l t̄−ilφ

]
,

(4)

we obtain the Bogoliubov equations(
Dl ḡf 2

−ḡf 2 −D−l

)(
uq,l

vq,l

)
= ω̄q,l

(
uq,l

vq,l

)
, (5)

where the linear differential operator is defined as

Dl = 1

2

[
(κ + l)2

ρ̄2
− ∂2

ρ̄ − 1

ρ̄
∂ρ̄ − ∂2

z̄

]
+ V̄ + 2ḡf 2 − μ̄.

The integer l specifies the angular momentum of the excitation
with respect to the condensate, and q ∈ N is an index for the
different eigenmodes with a given l.

Equations (5) can be used to determine the stability char-
acteristics of the stationary vortex state in question. If the
excitation spectrum {ω̄q,l} contains at least one eigenfrequency
with a positive imaginary part Im(ω̄q,l ) > 0, the state is dy-
namically unstable; otherwise, the state is dynamically stable.
If the spectrum contains an excitation for which Re(ω̄q,l ) < 0
and

∫∫
(|uq,l|2 − |vq,l|2)ρ̄ dρ̄ dz̄ � 0, the state is energetically

unstable; if no such excitations exist, the stationary state is
(locally) energetically stable. We emphasize that energetic
stability is a stronger condition than dynamical stability, since
the former implies the latter.

As can be observed from Eq. (4), the occupations of
excitation modes with Im(ω̄q,l ) > 0 are predicted to increase
exponentially over time; consequently, small perturbations
of a dynamically unstable stationary state typically lead to
large changes in its structure. For dynamically unstable multi-
quantum vortices, in particular, the complex-frequency modes
usually induce instability against splitting of the multiply quan-
tized vortex into singly quantized ones. In fact, the quantity
maxl maxq Im(ω̄q,l )/2π and the maximizing winding number
l can be used to predict, respectively, the inverse lifetime of
a vortex and the discrete rotational symmetry of its typical
splitting pattern [18]. Note, however, that the dynamically
unstable modes quickly drive the system beyond the linear
regime of the Bogoliubov analysis. As a result, the long-time
dynamics of dynamically unstable states must be described
with the time-dependent GPE (1) instead.

C. Time integration

Finite-difference methods have become popular for solving
the time-dependent GPE because of their simplicity [39–41].
Alternative spectral methods [42–45] are also widely used.
Typically, these methods rely on Cartesian spatial discretiza-
tion, even though there are strong reasons to prefer simplicial
grids [46,47].

This work, in contrast, utilizes a time integration method
based on discrete exterior calculus (DEC) [35–37], which
naturally segregates the differentiable and metric struc-
tures [48,49]. This approach can be regarded as a generalized

023624-2



THREE-DIMENSIONAL SPLITTING DYNAMICS OF GIANT … PHYSICAL REVIEW A 98, 023624 (2018)

finite-difference scheme that closely resembles the finite-
integration technique [50] and the finite-difference time-
domain method [51,52]. The DEC method is applicable to
unstructured grids, along with being stable and conserving the
particle number.

The discretization is based on a pair of interlocked three-
dimensional meshes: a primal (Delaunay) mesh and its dual
(Voronoi) mesh. We assign to each dual node a floating-point
complex number to obtain a column vector ψ (k) that represents
the discretized order parameter at a time instant k�t̄/2, where
k is an integer and �t̄ is the length of the time step. In the
notation of Ref. [53], the discretized Laplacian is written as
− �3 d2 �−1

2 dT
2 , where �p is a diagonal matrix called the

discrete Hodge star and d2 is a sparse matrix called the discrete
exterior derivative. The time integration of Eq. (1) is carried
out using the central-difference method

ψ (k+1) = ψ (k−1) − i�t̄
(

1
2 �3 d2 �−1

2 dT
2 + U (k)

)
ψ (k),

where U (k) is a diagonal matrix with elements U
(k)
jj = (ρ̄2

j +
λ2z̄2

j )/2 + ḡ|ψ (k)
j |2. Here ρ̄j and z̄j denote the radial and axial

coordinates of the j th dual node. The method is numerically
stable if �t̄ < M−1, where M is the largest diagonal element
of the matrix 1

2 �3 d2 �−1
2 dT

2 + U (k).

III. RESULTS

A. Assessment of the time integrator

First, we test our numerical integrator by propagating a
stationary vortex state forward in time and investigating its
stability during the simulation. We consider the normalized
GPE (1) with parameters λ = 1, ḡ = 300, and κ = 10. The
time integrator is initialized at time instants −�t̄/2 and 0 by
setting ψ

(k)
j = �̄λ,ḡ,κ (r̄j , k�t̄ /2) for k = −1, 0; here r̄j is the

j th dual node position of the mesh.
Let us vary the spatial mesh and consider its effects on

the solution. We employ three qualitatively different grids,
which correspond to Delaunay meshes generated by the node
positions illustrated in Fig. 1. The simplest and most commonly
used grid is the one associated with the simple cubic tiling.
Its popularity is mainly based on its ease of implementation.
Second, we use a body-centered-cubic (bcc) tiling [54,55],
which is preferred by certain numerical studies [46,56]. The
third option is the C15 structure, which is one of the tetra-
hedrally close-packed tilings [57–60]. The C15 structure has
been found to be a high-quality grid for the solution of the
Maxwell equations [47,53]. For each of these three grid types,
we employ three discretization levels, where tasks are scaled
to involve 109, 1010, or 1011 floating-point multiplications per
integration over a unit time interval.

C15bcccubic

FIG. 1. Node positions for cubic, bcc, and C15 tilings.
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FIG. 2. Error S (t̄ ) induced by the numerical implementation of
the GPE as a function of time for different tilings and discretization
levels. The values used for the aspect ratio, interaction strength, and
vortex winding number are λ = 1, ḡ = 300, and κ = 10, respectively.

During the time integration, we monitor the deviation from
the stationary state, S (t̄ ) = 1 − | ∫ �̄∗

λ,ḡ,κ (r̄, 0)�̄(r̄, t̄ ) d3r̄|,
and terminate the simulation when S (t̄ ) exceeds 0.1. The
duration before the termination is referred to as the time span
of stability. The evolution of S (t̄ ) is shown in Fig. 2.

The time span of stability appears to be very sensitive
to the grid type used. The bcc grid offers the longest time
spans because it is numerically the most isotropic of the three
grids [53]. With the finest discretization level, the bcc grid
leads to threefold splitting, which is the most likely physical
solution for the parameter values used (see Sec. III B). In other
cases, the fourfold symmetry of the cubic base grid steers the
numerical solution into fourfold splitting. This demonstrates
the importance of the proper tiling choice for obtaining correct
physical results.

The bcc grid also offers the smallest early-stage errors
before the actual vortex splitting occurs. The early-stage error
is approximately proportional to h4, where h is the dual edge
length. With the lowest discretization level (109 operations
per unit time), the average dual edge lengths are 0.20, 0.16,
and 0.17 for the cubic, bcc, and C15 grids, respectively. The
edge lengths of the finest (1011) and second-finest (1010)
discretization levels are about 0.38 and 0.61 times the above-
mentioned edge lengths, respectively.

Owing to these results, we choose to use the bcc grid in
all simulations of time evolution that follow. The Bogoliubov
equations, however, can safely be solved using standard finite-
difference techniques because the relevant equations (3)–(5)
treat the azimuthal direction analytically.

B. Dominant splitting symmetries

Even the smallest random perturbation to a dynamically
unstable stationary vortex state triggers the splitting of the
vortex. To find the physically most likely splitting symmetries,
the stationary vortex states �̄λ,ḡ,κ are perturbed by adding
low-amplitude random noise in the beginning of the computa-
tion. The discretized order parameter is initialized at instants
k = −1, 0 by

ψ
(k)
j = (

1 + 1
10ζj

)
�̄λ,ḡ,κ (r̄j , k�t̄/2),
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FIG. 3. Particle density |�̄(t̄ )|2 in an oblate BEC (λ = 10) integrated over z at time min{t̄ | Pldom (t̄ ) > 0.2} (see text for the definition of
ldom). These seven examples illustrate the typical ldom-fold splitting patterns that appear for ldom = 2, 3, . . . , 8, respectively.

where ζj is a random variable chosen uniformly from the unit
disk in the complex plane.

The spatial discretization employs a bcc grid whose dual
edge lengths are less than 5% of the effective wavelength

Lλ,ḡ,κ = 2π√
− ∫

�̄∗
λ,ḡ,κ (r̄, 0)∇̄2�̄λ,ḡ,κ (r̄, 0) d3r̄

.

This corresponds to the second-finest discretization level of
Sec. III A. The computational domain is a rectangle that
contains all points r̄ for which |�̄λ,ḡ,κ (r̄, 0)| is greater than
10−5 times its maximum value. Zero particle density is used
as the boundary condition.

The following procedure is applied to find dominant split-
ting symmetries. During a time integration, splitting indicators
Pl (t̄ ) = | ∫ eilφ|�̄(r̄, t̄ )|2d3r̄| are computed at each time in-
stant t̄ . The number ldom ∈ N+, for whichPldom (t̄ ) � Pl (t̄ ) ∀l ∈
N+, indicates the dominant splitting symmetry. Vortex dy-
namics is divided into three categories: If Pldom exceeds 0.1
before the time reaches 200, we classify the case as vortex
splitting with ldom-fold symmetry (see Fig. 3). Otherwise, if
S (t̄ ) < 0.1 for the entire integration interval 0 � t̄ � 200, we
detect a relatively stable vortex and label this case as “no split”.
Otherwise, we observe an unstable vortex without any obvious
dominant splitting symmetry; this case is called “unclear”.

We use three different values for the aspect ratio λ to repre-
sent oblate (λ = 10), spherical (λ = 1), and prolate (λ = 0.1)
condensates. In addition, we vary the effective interaction
strength ḡ and the winding number κ to obtain a comprehensive
understanding of the splitting process. The resulting splitting-
symmetry diagrams are presented in Fig. 4. We note that the
observations from the time integrator are not entirely unique,
since the results depend slightly on the seed of the random
number generator. To reduce variation, we have simulated
each splitting process twice with different seeds and chosen
the splitting symmetry that is closer to the prediction of
the Bogoliubov equations. Here the Bogoliubov prediction is
defined as the rotational symmetry corresponding to the value
of |l| for which maxq Im(ω̄q,l ) is largest [26]. Visual inspection
of Fig. 4 shows that the results of the time integration mostly
coincide with the Bogoliubov predictions.

The characteristics of the splitting symmetries as functions
of ḡ and κ are similar for different aspect ratios λ. For each of
the three λ values considered in Fig. 4, rotational symmetries
of orders from 2 to 9 are observed in the splitting of vortices
with 2 � κ � 40. When the aspect ratio is decreased, a given
splitting symmetry is found at higher interaction strengths,
which is explained by the increased size of the condensate. The
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FIG. 4. Observed splitting symmetries plotted in the plane of
the effective interaction strength ḡ and the winding number κ in
(a) oblate (λ = 10), (b) spherical (λ = 1), and (c) prolate (λ = 0.1)
condensates. The symbol indicates the result of the time integration,
while the background color (shade) corresponds to the prediction
of the Bogoliubov equations, namely, the value of |l| for which
maxq Im(ω̄q,l ) is largest. These values are also given by the numbers
inside the larger regions.
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FIG. 5. Transparent isosurface of the particle density |�̄(t̄ )|2
demonstrates the intertwining of (a) two- and (b) five-quantum
vortices in a prolate condensate (λ = 0.1). The domain dimensions
are 13×13×73 and 15×15×91, respectively.

most significant qualitative difference between the three panels
in Fig. 4 is that the unclear splitting symmetries appear only in
the spherical and prolate condensates. This phenomenon will
be studied in more detail in the next section.

C. Intertwining of vortices

In prolate condensates, we observe vortices to intertwine
as they split, as illustrated in Fig. 5. Similar intertwining
processes of doubly quantized vortices (κ = 2) have already
been discovered in Refs. [18,20,21]. Our study demonstrates
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FIG. 6. Effect of the aspect ratio λ on the stability of a three-
quantum vortex with the interaction strength set to ḡ = 1000/λ.
(a) The deviation S (t̄ ) from the stationary state as a function of
time. (b) Particle density isosurfaces visualizing the split-and-revival
effect observed for λ = 1.0. The corresponding stationary state
has maxl maxq Im(ω̄q,l ) ≈ 0.101, with the maximum occurring for
|l| = 2. The domain dimensions are 14×14×13. The states shown in
(b) are marked with black dots in (a).
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FIG. 7. Performance of the CPU implementation (solid blue line)
and the GPU implementation (dashed red line) as a function of the
computing resources. One iteration corresponds to an integration over
one unit of time.

that intertwining also occurs for large winding numbers.
Figure 5(b) shows the intertwining of a five-quantum vortex
(κ = 5) proceeding in a branched fashion.

The intertwining of vortices does not take place in the oblate
condensates with the aspect ratio λ = 10, but the phenomenon
seems to emerge when λ is close to 1. To investigate this further,
we consider the dynamics of three-quantum vortices (κ = 3)
for different intermediate aspect ratios. To equalize the local
peak interaction strengths, the effective interaction strength ḡ is
chosen to be inversely proportional to the aspect ratio by setting
ḡ = 1000/λ. The results of these simulations are presented in
Fig. 6.

The simulations indicate that the three-quantum vortices
are stable in oblate condensates with λ � 1.5. In prolate
condensates with λ � 0.5, the vortices seem to be unstable
and exhibit intertwining. In the regime 0.5 < λ < 1.5, no
prevalent behavior is detected. Nevertheless, in a condensate
with λ = 1.0, we discover a cyclic splitting process, where the
vortex begins to split but then returns nearly to its initial state.
This split-and-revival effect is illustrated in Fig. 6(b).

D. Computational performance

The time integrations of this paper were executed on
central processing units (CPUs), but we have also implemented
the solver with graphics processing units (GPUs). The per-
formances of the two implementations are studied here by
measuring the simulation times in the case λ = 0.1, ḡ = 5000,
and κ = 20. We utilize up to 96 12-core Intel Xeon CPUs
(E5-2690 v3, Haswell-EP, 64 bits) and up to four NVIDIA
Tesla P100 GPUs. The results in Fig. 7 indicate that the per-
formance of the GPU implementation on one GPU corresponds
to the performance of the CPU implementation executed on at
least 60 CPU cores.

IV. CONCLUSION

In summary, we have studied the splitting dynamics of giant
vortices in dilute BECs, with particular emphasis on the time
integration of the three-dimensional GPE. We showed that a
significant reduction of the numerical error is achieved when
a tetrahedral spatial tiling is used instead of the customary
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Cartesian grid. Importantly, the careful choice of the numer-
ical method provided us with the physically correct splitting
symmetry.

Comprehensive maps of vortex splitting symmetries were
presented for oblate, spherical, and prolate BECs. The solu-
tions obtained by time integration were found to agree with
the linear stability analysis based on the Bogoliubov equations.
Splitting patterns exhibiting up to ninefold rotational symmetry
were obtained with both approaches, the highest-order symme-
tries occurring for small interaction strengths and large winding
numbers.

The splitting-induced intertwining of giant vortices in
prolate condensates was demonstrated and a branched variant
of the process was detected. The aspect ratios for which the
intertwining became observable were also assessed. A split-
and-revival phenomenon, where the vortex almost returned to
its initial state after splitting temporarily, was observed in the
crossover from a dynamically stable vortex into an unstable
one as a function of the aspect ratio.

The performance study presented in Sec. III D indicates
nearly optimal scalability of the CPU implementation and
promising performance for the GPU implementation. A future
study of how the GPU performance scales with a larger number
of GPUs would help us accomplish more challenging tasks
than is currently possible with CPUs. These tasks may include
solving the dynamics of a lattice of monopole-antimonopole
pairs [61,62].
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