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The variational JWKB method is used to determine experimentally accessible macroscopic quantum tunneling
regimes of quasibound Bose-Einstein condensates in two quasi-one-dimensional trap configurations. The
potentials can be created by magnetic and optical traps: a symmetric trap from two offset Gaussian barriers
and a tilt trap from a linear gradient and Gaussian barrier. Scaling laws in barrier parameters, ranging from
inverse polynomial to square root times exponential, are calculated and used to elucidate different dynamical
regimes, such as when classical oscillations dominate tunneling rates in the symmetric trap. The symmetric trap
is found to be versatile, with tunneling times at and below 1 s, able to hold 103–104 atoms, and realizable for
atoms ranging from rubidium to lithium, with unadjusted scattering lengths. The tilt trap produces subsecond
tunneling times, is able to hold a few hundred atoms of lighter elements such as lithium, and requires the use
of Feshbach resonance to reduce scattering lengths. To explore a large parameter space, an extended Gaussian
variational ansatz is used, which can approximate large traps with Thomas-Fermi profiles. Nonlinear interactions
in the Gross-Pitaevskii equation are shown to produce additional effective mean-field barriers, affecting scaling
laws.
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I. INTRODUCTION

Quantum tunneling occurs when an object obeying quantum
mechanics penetrates energy barriers which are forbidden by
classical analysis, in other words, lack sufficient energy to
overcome the barriers. As a transport phenomenon, this allows
movement between wells separated by a classically impene-
trable barrier, allowing for recurrence, such as in Josephson
junctions. Alternatively, it allows decay into free space with a
continuum of energies, such as in a quasibound state. Tunneling
between finite potentials was originally applied to the study
of chiral isomers in a series of papers by Hund [1], where
he showed that the probability to tunnel through an energy
barrier is exponentially dependent on the barrier area. Alpha
decay was understood as a quantum tunneling escape process
by Gamow [2] and Gurney and Condon [3], providing firm
evidence that nuclear phenomena were described by quantum
mechanics. Since its inception, quantum tunneling has found
application in several technologies including the scanning
tunneling microscope, flash memory, tunneling diodes, and
Zener diodes. The reader may have noticed that all of these
technologies use electron tunneling, the reason being that
electrons are very light when compared to atoms. To be
specific, Hund showed that the oscillation frequency of tun-
neling between two wells (representing left- and right-handed
isomers) changes from nanoseconds to billions of years with
an increase in the barrier area by just a factor of 7. For this
reason, quantum tunneling is considered relevant only for
molecules with small energy barriers, such as ammonia, which
oscillates at 23 GHz. Even for single-atom tunneling, very cold
temperatures, very small barriers (tunneling distances), or very

light atoms are generally required. At Kelvin temperatures,
hydrogen, deuterium, and oxygen tunneling contributes to
diffusion in amorphous and polycrystalline ice [4,5]. Carbon
atoms in complex molecules have been shown to tunnel over
subangstrom distances at Kelvin temperatures [6]. Beyond
specific low-temperature systems, quantum tunneling has been
experimentally and theoretically shown to affect many organic
chemistry and related biological systems, such as in the kinetic
isotope effect and enzyme catalysis [7–9].

Given such apparently stringent constraints on single-
particle tunneling, one might hypothesize that quantum tunnel-
ing in systems involving larger or heavier atoms, molecules,
or many particles with interatomic interactions would be all
but negligible. Quite the opposite, tunneling in such systems,
termed macroscopic quantum tunneling (MQT), encompasses
a much richer landscape due, but not limited, to the statistics
of the particles (whether fermionic, bosonic, or anyonic),
larger masses leading to gravitational effects, weak interatomic
interactions allowing quasiparticle descriptions (magnons,
polaritons, excitons, etc.), strong interactions dominated by
many-body effects (fluctuations, entanglement, strongly corre-
lated systems, etc.), and the interaction between particles and
time-dependent potentials (for a detailed overview see [10]).
We will focus on studying the regime of repulsive weakly
interacting bosonic atoms, specifically in a dilute ultracold gas.
Such a system can be adequately treated via a semiclassical
field which assumes that quantum fluctuations around the mean
are negligible: a mean-field description.

Ultracold atomic systems are ideal for exploring the MQT
landscape, with experimental access to single-atom systems,
such as with optical tweezers, up to billions of atoms.
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Josephson tunneling, where two weakly linked macroscopic
wave functions undergo MQT, has been measured for both ac
and dc configurations in superconductors [11] and superfluid
He [12,13]. The Josephson effect has been used to create
superconducting quantum interference devices, to measure the
value of the volt, and as a measure of elementary charge
and is important for many potential quantum computing
applications [14]. A Bose-Einstein condensate (BEC) is an
object composed of 103–109 atoms [15], with most in the
same quantum mechanical state, in other words, collectively
behaving as a single large quantum object. Many properties
make BECs particularly suited to study MQT. Highly con-
trollable atom-atom interactions can be tuned over several
orders of magnitude via Feshbach resonances [16]. Advances
in optical, magnetic, and radio-frequency traps allow for
a diversity of trap geometries and highly controllable ex-
periments [17–19]. Time-of-flight measurements are able to
measure first- and second-order correlations [19], important
to distinguishing many-body effects. Interference patterns
have been used to measure up to tenth-order correlations in
superfluids [16]. Macroscopic quantum tunneling in double-
well systems is well established in BECs for both the ac
and dc Josephson effects [20,21], with interactions allowing
for self-trapping regimes and decreased oscillation period
by an order of magnitude. Furthermore, the mean-field or
semiclassical observation of quantum tunneling escape has
been made [22], where interactions produced nonexponential
decay.

In this article we will explore macroscopic quantum escape
in two quasi-one-dimensional (quasi-1D) trapping configura-
tions: a symmetric trap using offset Gaussians and a tilt trap
using a Gaussian and linear gradient. Both of these are experi-
mentally realizable using a combination of magnetic and opti-
cal traps. While there are many techniques to go beyond mean-
field physics, such as density-matrix renormalization-group
methods [23], multiconfigurational time-dependent Hartree
methods [24,25], quantum Monte Carlo theory [26,27], and
dynamical mean-field theory [28], we choose a combination
of the variational principle and a modified Jeffreys-Wentzel-
Kramers-Brillouin (JWKB) model (the variational JWKB
model), which includes mean-field effects, to understand the
gross features of MQT out of a trapping potential. This
variational JWKB method [29,30] allows for rapid exploration
of large parameter spaces, compared to more powerful and
expensive numerical techniques which explicitly account for
the many-body effects. Moreover, most BEC experiments are
sufficiently dilute so that corrections to the mean-field energy
and chemical potential are less than 1%, and depletion due to
correlations is also less than 1%; contrast this with superfluid
4He, where depletion is near 90%. Whether mean-field theory
accurately describes MQT dynamics or many-body effects
dominate is an open question, but one cannot answer this
clearly without first having a thorough picture of mean-field
effects. We find scaling laws using experimentally controllable
trapping parameters, obtaining regions where scaling in trap
parameters is dominated by the classical oscillation period in
the trap or tunneling probability through a barrier, and deter-
mine accessible experimental conditions for MQT realization.
Furthermore, we find that mean-field interactions cause the
appearance of additional effective barriers within the trap for

certain parameter ranges, altering the overall tunneling rates
and scaling laws.

This article is organized as follows. First, we introduce
the variational JWKB formalism, discuss the barrier config-
urations under study, and outline our numerical procedure in
Sec. II. With the formalism and numerics fleshed out, we
present scaling laws and a discussion of the implementation
of the symmetric and tilt potentials in Sec. III. Consider-
ations of and findings from the variational JWKB method,
i.e., the effects of different variational functions and the
appearance of additional wells in the effective potential, are
discussed in Sec. IV. Finally, we summarize our findings in
Sec. V.

II. VARIATIONAL JWKB METHOD

In this section, we overview the variational JWKB method
employed and present the two barrier configurations under
study, along with the wave functions used in all figures; we also
explore other Ansätze in Sec. IV B. We illustrate the numerical
procedure in detail for the tilt potential.

A. Formalism

The variational-JWKB method consists of two procedures:
variationally finding a wave function for the Gross-Pitaevskii
equation (GPE) (1) and using a modified JWKB method to
calculate the tunneling rate, i.e., the complex component of
the chemical potential. A dilute and weakly interacting Bose
gas at zero temperature, ignoring quantum fluctuations [31], is
described by

(
− h̄2

2m

∂2

∂x2
+ V (x) + g|ψ (x)|2

)
ψ (x) = μψ (x), (1)

a quasi-1D time-independent GPE, with tight harmonic con-
finement assumed in the transverse direction [32], under the
assumptions of separation of variables in time and space,
where the chemical potential μ is taken to be complex to
capture quasibound or decaying states undergoing MQT es-
cape. The single-particle wave function is given by the order
parameter ψ and the total number of atoms N by normaliza-
tion

∫ |ψ (x)|2dx = N . Assuming binary contact interaction
between atoms gives the nonlinear interaction parameter g.
This is related to the full 3D parameter via g = g3D/2π�2

⊥,
with g3D = 4πh̄2as/m, transverse harmonic oscillator length
�⊥ = √

h̄/mω⊥, h̄ the reduced Plank constant, m the atomic
mass, ω⊥ the transverse confining angular frequency, and as the
s-wave scattering length. The external 1D confining potential
from which the atoms will tunnel, in either the symmetric or
tilt configuration, is given by V (x).

The first step in our calculation is to find a metastable state
for Eq. (4), using a variational wave function ψ (x; α1, . . . , αM )
with variational parameters (α1, . . . , αM ) chosen under con-
sideration of the potential, presented in Sec. II B. There exists
a caveat in using the variational procedure for this nonlinear
problem, specifically that the wave function is not normalized
until after variation [33]. Using the non-normalized wave
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function, the total system energy E(α1, . . . , αM ) is calculated,

E(α1, . . . , αM ) =
∫ ∞

−∞
E dx, (2)

E = h̄2

2m
|∇�(x)|2 + V (x)|�(x)|2 + 1

2
g|�(x)|4, (3)

assuming limx→±∞ �(x) = 0. Varying the energy with respect
to (α1, . . . , αM ) and calculating the normalization condition
produces a system of M + 1 equations; the solution procedure
for this system is fully discussed in Sec. II C.

After a variational solution ψ (x) has been found, the
tunneling rate is calculated using a modified JWKB procedure,
accounting for the mean-field interaction. The standard JWKB
tunneling rate � = (average barrier collisions frequency) ×
(tunneling probability) is given by

� = ν exp

(
− 2

h̄

∫ xout

xin

dx|p(x)|
)

, (4)

ν =
(

m

∮
dx

|p(x)|
)−1

, (5)

where higher-order corrections in the actions are negligible for
our purposes.

In Eq. (4), xin and xout are the classical turning points at
the inner and outer edges of the barrier, found by solving
for zero momentum p(xin ) = p(xout ) = 0. Equation (5) is the
semiclassical oscillation frequency in the well; the momentum
p(x) is given by the standard form as a function of the total (in
this case chemical) and potential energy, except the potential
V (x) is replaced with the effective potential Veff (x),

p(x) =
√

2m[Veff (x) − μ], (6)

Veff (x) = V (x) + g|�(x)|2, (7)

accounting for interparticle interactions.
We assume that, on average, the atoms move with the semi-

classical momentum p(x) in the effective potential Veff (x), a
good approximation for BECs, which are highly condensed
into a single energy state. The average period between col-
lisions with the outermost barrier, the barrier from which the
particles can escape, is ν−1. The closed path in Eq. (5) indicates
that the integral is calculated over a period of oscillation
between barriers from which the atoms can escape. For the
symmetric barrier, one period of oscillation would be between
the barriers, i.e., from the left barrier to the right one or vice
versa, while for the tilted barrier one period of oscillation
would be from the right barrier to the left barrier and back
to the right barrier (Fig. 2). Using this effective mean-field
barrier produces a surprising result. It can give rise to additional
effective barriers (Fig. 8), which have a noticeable effect on
tunneling rates and require a slight modification of Eq. (4), as
detailed in Sec. IV A.

B. Barrier configurations and ansatz

We investigate two potential configurations which lend
themselves well to experimental implementation. First, a
symmetric well Vsym is formed by two displaced Gaussian
barriers, given by Eq. (8). This models, for example, a 1D slice

g| 2

Vsym(x)
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FIG. 1. Symmetric trap variational wave function. A typical wave
function solution g|�|2 (dashed blue line) and chemical potential μ

(dash-dotted red line) for Vsym(x ) (solid yellow line) with parameters
V0 = 27.9 nK, σ0 = 1.41 μm, and x0 = 4.5 μm are shown. Black
squares mark the connection points in the wave function between the
two Gaussian tails for |x| > 2.43 and the flat region in the middle.

through a rotationally symmetric trap or a trap formed by two
light sheets [22]. The second tilt configuration Vtilt is created
from a Gaussian barrier with a linear ramp given by Eq. (9),
where the tilt could result from gravity and/or a magnetic field

Vsym(x) = V0[e−(x−x0 )2/2σ0
2 + e−(x+x0 )2/2σ0

2
], (8)

Vtilt (x) = V0e
−x2/2σ0

2 − α0x. (9)

The wave-function ansatz for the symmetric well is given
by Eq. (10), with variational parameters being the Gaussian
separation x1, width σ1, and amplitude A. In other words,
variation in the energy density (3) is performed with respect
to A, x0, and σ0; a typical solution is given in Fig. 1. Physical
motivations for this Ansatz split the wave function into three
regions: a flat middle section and left and right decaying wave-
function tails, which extend through the trapping barriers. The
flat middle section mimics the Thomas-Fermi approximation
when the barrier separation is large [19], but also allows for
a nearly Gaussian solution for narrow traps; details of how a
pure Gaussian ansatz underestimates escape rates in a wide
well are presented in Sec. IV B,

�(x) =
{
A exp

(−|x − x1|2/2σ 2
1

)
, |x| > x1

A, |x| � x1.
(10)

Beyond the commonly used Gaussian tail Ansatz, we also
explored modifying these tails using a superposition of ex-
ponential and Gaussian functions (Sec. IV B).

The tilt barrier Ansatz is given by Eq. (11). Similar to the
symmetric potential, we allow a middle linear region which
can mimic the Thomas-Fermi approximation for wide traps,
but allow the middle region to have a nonzero slope since
the barrier is not symmetric; Vtilt (x) is thus formed by two
independent Gaussian tails, connected by a linear function,

�(x) =

⎧⎪⎨
⎪⎩

BL exp
(−(x + xL)2/2σ 2

L

)
, x < CL

A1x + A2, CL � x � CR

BR exp
[−(x − xR )2/2σ 2

R

]
, x > CR.

(11)
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FIG. 2. Tilt trap variational wave function. A typical wave func-
tion solution g|�|2 (dashed blue line) and chemical potential μ

(dash-dotted red line) for Vtilt (x ) (solid yellow line) with parameters
V0 = 79.3 nK, σ0 = 0.85 μm, and α0 = 1.07 m/s2 are shown. Black
squares show the connection points for the different wave-function
pieces: the left Gaussian tail below x ≈ −6, the middle connection
region between x ≈ −6 and x ≈ −1.5, and the right Gaussian tail
above x ≈ −1.5.

A typical solution for Vtilt is shown in Fig. 2. The variational
parameters are the Gaussian heights for the left and right tails
BL and BR , displacement of the tails xL and xR , width of
the tails σL and σR , and the slope A1 and intercept A2 of the
middle region. Continuity conditions on the wave function at
the connection points CL and CR will eliminate some of the
previously stated parameters and result in CL and CR becoming
variational parameters.

C. Numerical procedure

We illustrate the variational JWKB procedure, varying the
wave function Ansatz to find a metastable solution and applying
the modified JWKB procedure, for Vtilt . The unknowns are the
wave function parameters (A1, A2, BL, BR , xL, xR , σL, and
σR), the connection points (CL and CR), and the total energy.
Trap parameters and nonlinearity (V0, σ0, α0, and g) are input
parameters, chosen under considerations of the experiment.

The variational component involves deriving and solving a
system of equations. First, we consider wave-function bound-
ary conditions, matching the height and derivative of the wave
function at the two connecting points (CL and CR). The four
boundary conditions allow us to solve for four parameters; we
choose A1, A2, BR , and xR , noting that the connecting points
now become variational parameters in the wave function.
Boundary conditions can be used to eliminate any variable,
but these were chosen for algebraic simplicity. Second, we
calculate the total energy of the wave function (2). Third, we
calculate the first and second derivatives of the energy with
respect to remaining unknown wave function parameters (BL,
xL, σL, σR , CL, and CR), along with the Hessian. From this
procedure, we now have seven equations (first derivatives must
be zero and the normalization condition), seven unknown pa-
rameters (BL, xL, σL, σR , CL, CR , and μ), and eight constraints
(second derivatives and the Hessian are positive for minimum
energy). We emphasize that the normalization condition must

not be enforced until after variation of the energy. After
variation, we can apply the normalization condition, resulting
in unknowns (μ, xL, σL, σR , CL, and CR), which can be
numerically found.

Given trap parameter values (V0, σ0, and α0) and the nonlin-
earity g, solutions for all wave-function parameters are found
numerically to hold (at least) to 10−60 absolute accuracy (the
working precision is chosen high enough) and checked to fulfill
the constraints. With numerical solutions to all parameters, we
proceed with the modified JWKB calculation (4). Because we
use the effective potential in the momentum (6), additional
effective mean-field barrier islands inside the potential appear
in the calculations (Sec. IV A).

This procedure can then be repeated for all desired potential
parameters and interactions. As the minimization problem is
not convex, a solution-caching system was used. Variational
parameters to a trap configuration are found using the solution
of a closed trap configuration as a starting point of the search;
the first solutions used in this system were thoroughly checked
to be minimized metastable states and the distance between
adjacent parameter values (V0, σ0, α0, and g) was kept small.
For most parameter scans, barrier parameters were held fixed
while the nonlinearity was incremented in small steps relative
to the cutoff nonlinearity, where the repulsive mean-field
interaction become too large for trapped states.

III. BARRIER ANALYSIS

In this section we explore the parameter space of the two
barrier configurations given by the experimentally adjustable
Gaussian width σ0, Gaussian height V0, mean-field interaction
g, and separation x0 (acceleration α0) for Vsym (Vtilt). We
present scaling laws for the maximal tunneling rate in x0, V0,
and α0. Furthermore, we analyze experimental implementation
and limitations of the potentials, presenting the parameter
regimes that lend themselves well to studying MQT. All plots
here are for rubidium; we analyze how these change for lithium
and sodium in Sec. III C.

A. Scaling laws for the symmetric barrier

Adjustable parameters, those that can be controlled experi-
mentally, for the symmetric barrier are the trap parameters (V0,
x0, and σ0) and the interaction strength Ng in units of scattering
length as , Ng = 2h̄ω⊥Nas . We first look at how the tunneling
rate � depends on the barrier height V0 and mean-field
interaction Ng in Fig. 3 for x0 = 4.5 μm and σ0 = 1.41 μm.
All barrier heights have an interaction strength gmax beyond
which bound modes are no longer supported, with larger
barriers having larger overall gmax; this maximal value oc-
curs because we are considering repulsive interactions g > 0,
which can become strong enough to overcome the trapping
barrier. With increasing V0, one might expect that tunneling
rates will generally be smaller; larger barriers are more difficult
to penetrate. Maximal tunneling rates �max generally decrease
with increasing V0 in Fig. 5, except for a barrier range where
�max increases with increasing V0. This phenomenon is caused
by the appearance of additional mean-field barrier islands,
turning the single well into multiple wells (Fig. 8); this requires
a slight modification in the calculations, as fully discussed
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FIG. 3. Tunneling rate for various barrier heights. Tunneling rate
vs interaction strength, given by the number of atoms N and scattering
length as in units of the Bohr radius a0, shown for Vsym with 11
equally spaced barrier heights between V0 = 14.0 and 125.6 nK with
the parameters x0 = 4.5 μm and σ0 = 1.41 μm, assuming transverse
frequency ω⊥ = 2π×500 Hz. Larger barriers allow for greater mean-
field interaction. The maximal tunneling rate shows a nontrivial trend,
initially decreasing, followed by increasing, and then decreasing
again. For rubidium, the largest barrier V0 = 125.6 nK would allow
N ≈ 3000. Markers are data with error bars smaller than the markers
and curves are a guide to the eye.

in Sec. IV A. We find similar trends when examining � vs
g for different x0. Tunneling rates for any given parameter
configuration are strongly peaked around some mean-field
strength g0. For this reason, we find scaling laws in �max which
can be used to seek appropriate MQT regimes.

First, we examine scaling in the barrier separation x0.
Because the barrier height V0 and width σ0 are held constant,
changes in the tunneling rate are largely due to an increase
in the classical oscillation frequency (5), which is strongly
dependent on the separation x0; in other words, the exponential
term in the tunneling rate (4) does not change much between
adjacent x0 for larger barrier separations when compared to
the increase in oscillation frequency. We plot and fit to �max

in Fig. 4 for several values of σ0. For σ0 = 0.42 an apparent
kink can be seen. This is due to the brief region of increasing
�max due to the appearance of mean-field islands, but is a weak
effect for x0 scaling. Because the kink is less drastic than for V0

scaling, we are able to fit a single curve to the entire domain.
The data trend as

�max � (
a0 + a1x0 + a2x

2
0

)−1
, (12)

with fit parameters a0, a1, and a2; this is a very rough trend due
to the large deviation in �max for smaller x0 values.

Next we examine scaling in V0, which produces very
different results. For x0 = 1.0, 5.0 μm, we plot �max vs V0

for several values of σ0 in Fig. 5; the upper range of σ0 values
is approximately half of x0 to allow sufficient room inside the
trap. The effect due to the appearance of mean-field islands
can be seen in Fig. 5(a), with a dip followed by a steady rise at
V0 ≈ 300 nK for σ0 = 0.42 μm; smaller σ0 barriers undergo
this for a V0 range too large to be captured in these plots. The
barrier width has a large effect on the tunneling rates, with
wider barriers reducing tunneling rates, as seen in Figs. 5(a)
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FIG. 4. Scaling in barrier separation for the symmetric trap.
Maximal tunneling rate �max on a semilogarithmic scale as a function
of barrier separation for (a) V0 = 27.9 nK and (b) V0 = 85.8 nK, with
various Gaussian widths σ0; solid green curves are fits and points are
data (data points are connected as a guide to the eye). Tunneling rate
decreases with both increasing x0 and increasing V0. All data exhibit
a kink due to the mean-field islands for smaller x0, but fits still capture
the overall trend. Larger σ0 do not produce bound states for smaller
traps. Error bars for data points are smaller than the markers.

and 5(b). The appearance of the mean-field islands causes a
drastic change in �max and so we use different fit functions
before and after the kink. By examining the modified JWKB
tunneling rate (4) to lowest order, we expect the tunneling rate
to scale as �max � f (V0) exp[g(V0)], with suitable functions
f and g.

Before the kink, we find that the classical oscillation period
dominates scaling and so the data trend as

�max � V0
(
a0 + a1V

a2
0

)−1
, (13)

as plotted in Fig. 5(a); although we only plot data for
x0 = 1.0, we find for x0 = 1.0, 2.0, 3.0, 4.0, 5.0 fit pa-
rameter a2 = 1.32 ± 0.05, 1.24 ± 0.05, 1.23 ± 0.03, 1.32 ±
0.09, 2.0 ± 0.8, respectively. The factor of V0 in the fit function
likely comes from a weak linear dependence on the tunneling
probability from Eq. (4) and the power a2 comes from the
nonlinear dependence on V0 in Eq. (6). Although we can get
an arbitrarily small error in �max, assuming a 1% error, we
typically find a reduced chi squared of χ2

r ∈ [1, 5]. After the
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FIG. 5. Scaling in barrier height for the symmetric trap. Maximal
tunneling rate as a function of V0 for different values of σ0, with
barrier separation for (a) x0 = 1.0 μm and (b) x0 = 5.0 μm; solid
yellow (green) curves are fits before (after) the kink, the emergence of
effective mean-field islands. For smaller barrier width x0 = 1.0 μm,
scaling is dominated by the classical oscillation frequency. Error bars
for data points are smaller than the markers.

appearance of the effective mean-field islands, the penetration
probability becomes important and we find

�max � a0

√
V0 exp [−a1V0] (14)

[Fig. 5(b)]; again assuming a 1% uncertainty, we typically find
χ2

r ∈ [0.3, 8.4].

B. Scaling laws for the tilt barrier

For Vtilt (x), the adjustable experimental parameters are the
Gaussian height V0, Gaussian width σ0, acceleration α0, and
interaction Ng. Similar to scaling in Vsym(x), σ0 increases or
decreases the overall trend in �, so we focus on scaling in V0,
α0, and Ng.

To qualitatively understand the role of Ng in tunneling, we
plot � as a function of Ng, in units of s-wave scattering as , for
various barrier tilts [Fig. 6(a)] and barrier heights [Fig. 7(a)].
The emergence of mean-field islands is very noticeable for Vtilt .
For Vsym(x) the emergence of mean-field islands for any given
� vs g is not clear, only recognizable as a kink in�max, while the
effect is immediately noticeable for α0 = 2 m/s2 in Fig. 6(a)
and V0 = 72.6 nK in Fig. 7(a). Similar to the symmetric trap,
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FIG. 6. Scaling in ramp slope for the tilt trap. (a) Tunneling rate
� plotted as a function of interaction, in terms of effective scattering
length as in units of the Bohr radius a0 and the number of atoms N ,
for several tilts α0, with V0 = 79.3 nK and ω⊥ = 2π×1000 Hz. The
emergence of effective mean-field islands is apparent for α0 = 2 with
the appearance of a kink. Markers are data points and curves are a
guide to the eye. (b) Maximal tunneling rate �max as a function of α0

for several barrier values. Fit curves are split with (solid green line)
and without (solid yellow line) emergence of the effective mean-field
islands. The largest barrier V0 = 125.6 nK is sufficiently large to have
mean-field islands for all plotted α0. All data points have error bars
smaller than the markers.

there exists a maximal interaction gmax for any given barrier
configuration where the repulsive interaction is sufficiently
large to overcome the trapping potential, and no metastable
bound states are possible.

Tunneling in Vtilt has a strong dependence on both α0 and
V0, in the sense that a change in either variable will necessarily
result in simultaneously a wider or narrower trap and a smaller
or larger trapping height for the atoms. For this reason, we are
not able to describe scaling in any given variable directly to
the classical oscillation period or tunneling probability (4).
Furthermore, unlike Vsym, tunneling rate is not as strongly
peaked about Ng for Vsym; a change in Ng of 10% can decrease
� by an order of magnitude or more in the symmetric trap.
Although we can get arbitrarily small uncertainty in numerical
data, all data are fit with an uncertainty of 1%. Scaling in α0

results in two distinct regimes, smaller (larger) α being with
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FIG. 7. Scaling in barrier height for the tilt trap. (a) Tunneling
rate � plotted as a function of interaction, in terms of the number
of atoms N and effective scattering length as in units of the Bohr
radius a0, for several barrier heights V0, with α0 = 1.87 m/s2 and
ω⊥ = 2π×1000 Hz. A kink in � for V0 = 78.2 marks the appearance
of effective mean-field islands. Markers are data, while curves are a
guide to the eye. (b) Maximal tunneling rate �max as a function of V0

for various α0 showing clear trends before and after the appearance of
effective mean-field islands; fit curves are split before (solid yellow
line) and after (solid green line) the emergence of islands. All data
points have error bars smaller than the markers.

(without) the mean-field islands, depending on V0. For α0 with
mean-field islands,

�max � a0 + a1α0, (15)

with χ2
r = 0.03 and χ2

r = 1.57 for V0 = 55.8 and 79.3 nK,
respectively. The larger value of V0 = 125.6 nK had

�max � a0 + a2α
2
0 + a3α

3
0, (16)

with χ2
r = 0.69; the much larger barrier has mean-field islands

for the entire α0 range considered. For α0 without mean-field
islands, all data had fits of the form (16); V0 = 55.8, 79.3 nK
with χ2

r = 0.98, 0.34, respectively
Scaling in V0 also gives two distinct regimes, again with

and without mean-field islands. For smaller V0, we find

�max � a0 + a1V0 + a2V
2

0 + a3V
3

0 (17)

for α0 = 1.9 and 2.4 m/s2 with χ2
r = 1.69 and 0.71, respec-

tively. In the mean-field island regime, we find the smaller

α0 = 1.3 m/s2 resulted in scaling as in Eq. (17) except without
the quadratic portion, a2 = 0, χ2

r = 0.86 with χ2
r = 0.86. The

larger values of α0 = 1.9 and 2.4 m/s2 scale as Eq. (17)
without the linear part a1 = 0, with χ2

r = 0.82 and 0.05,
respectively.

C. Experimental implementation

A combination of magnetic and optical trapping techniques
can be used to study macroscopic quantum escape in the two
barrier configurations [34]. Here we discuss the regimes which
can be accessed experimentally and possible limitations. There
are four major constraints that must be met: The chemical
potential μ, mean-field interaction Ng, BEC number density
n, and tunneling time 1/� must all be sufficiently small.
Furthermore, we examine how the chosen atomic species
change these requirements.

In order to keep the transverse wave-function component
in the ground state, the chemical potential in the quasi-1D
trap must be below the traverse energy spacing μ < h̄ω⊥. The
chemical potential is limited by the trapping barrier height V0

giving an overall maximal barrier height Vmax = h̄ω⊥, which
ranges from 2.2 nK for ω⊥ = 2π×50 Hz to 48 nK for ω⊥ =
2π×1000 Hz. For V0 scaling inVsym, smaller potentials such as
x0 = 1.0 μm [Fig. 5(a)] will be completely dominated by the
classical oscillation period with short tunneling times 1/� =
O(0.01) s and require tighter transverse confinement 2x0 	
�⊥, i.e., �⊥ ≈ 0.4 μm for ω⊥ = 2π×500 Hz. Furthermore,
for such small trapping well sizes, the Gaussian width must
be sufficiently small, or a very shallow well will be created.
Larger wells, x0 = 5.0 μm with σ0 = 1.7–2.5 μm, as shown
in Fig. 4(b), allow access to regimes with and without mean-
field islands; the transition occurs around V0 = 15–20 nK.
Because Vtilt does allow direct control on well width, only
indirectly by the ramp slope α0, we used Gaussian barriers with
σ0 = 0.85 μm, resulting in faster tunneling rates and requiring
larger barrier heights V0. In order to satisfy the bound μ < h̄ω⊥
for the regimes explored in this article in Vtilt , much tighter
confinements, ω⊥ > 1000 Hz, are required. This will cause
n � O(1015 cm−3), causing three-body loss to dominate for
rubidium BECs.

The mean-field energy in the trap is limited by the chemical
potential, which is bounded by the transverse energy h̄ω⊥.
We can find upper limits on Ng1D, assuming the Thomas-
Fermi approximation and replacing the potentials in Eqs. (8)
and (9) with infinite hard walls; Vsym becomes an infinite
square well and Vtilt becomes an infinite square well with a
linear ramp. Using these assumptions in the GPE, one finds
Ng1D

sym = 2μx0 andNg1D
tilt = 1

2μ2/α0. These turn out to be good
upper bounds when compared to numerical values of Ng1D

max for
any given potential configuration, which are typically 5–10 %
lower than the hard-wall Thomas-Fermi approximation. Using
the bound μ < h̄ω⊥ and relation g1D = 2h̄ω⊥as , we can
derive limits for the number of particles and scattering length
Na

sym
s < 1

4 h̄ω⊥/α0 and Natilt
s < x0. For rubidium in Vsym with

unaltered scattering length as ≈ 98a0, with Bohr radius a0, one
finds N = 200–1300 for x0 = 1–7 μm, and tunneling times
of 1/� = 0.05–2.0 s. In contrast, Vsym with α0 = 1 m/s2,
ω⊥ = 2π×1000 Hz, and as ≈ 98a0, a configuration which
should allow a larger number of atoms, gives only N ≈ 200.
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Thus, as would have to be decreased for rubidium to allow for
several hundred atoms, on the order as � O(10)a0 for smaller
ω⊥ and larger α0.

For the GPE (1) to be a proper quasi-1D description, the
harmonic oscillator length �⊥ = √

h̄/mω⊥ must but be smaller
than the healing length ξ = (8πnas )−1/2. This condition gives
us an upper bound to the BEC density nmax = (8π�2

⊥as )−1.
Using as = 1–100a0 and ω⊥ = 2π×(100–1000) Hz give
nmax = 1012–1015 cm−3, which is a density range most BEC
experiments fall into. The larger densities (1015 cm) will cause
three-body loss mechanics to become dominant on O(s) [35]
and thus require subsecond tunneling times.

The condition on sufficiently fast tunneling rates � is
arguably the most important since exceedingly long tunneling
times are what prevent observable MQT in many systems, such
as in chiral isomers, and need to be faster than three-body loss
rates [36]. Even with increased tunneling times for heavier
objects, all figures in this article present tunneling regimes
with realizable rates using rubidium, one of the heavier atoms
for BECs. Rubidium is often preferred for BEC experiments
because the three-body loss rate is two orders of magnitude
smaller than for lithium and sodium. However, since escape
tunneling only requires the BEC to exist long enough to
measure tunneling, we can overcome this limitation with faster
escape rates. All quantities in this article can be easily rescaled
for these lighter masses. To be specific, for quantities such
as μ, V0, α0, and g, rescaling can be determined from nondi-
mensionalization. For example, assuming some length scale
L and nondimensionalized quantity μ̃, then μLi = h̄2

mLiL2 μ̃ =
mRb

mLi μ
Rb. In other words, all gain a factor of mRb/mLi ≈ 12.5

or, for example, mRb/mNa ≈ 3.8; this allows for larger traps,
interaction strengths, and tunneling rates. Rescaling � is subtle
and depends on the exact question being asked. One possibility
is, given some specific values of g, μ, and trap parame-
ters, how does � change for different atoms? Going from

rubidium to lithium gives �Li = �Rb
√

mRb/mLiP

√
mLi/mRb−1

tunn ,
where Ptunn = 0.05–0.10 are typical tunneling probabilities,
giving �Li ≈ (10–20)�Rb. However, if instead we ask how we
rescale �max values from rubidium to other atoms, rescaling
all parameter quantities μ, g, etc, the answer is simpler, �Li =
mRb

mLi �
Rb. Maximal density is rescaled as nLi

max = mLi

mRb n
Rb
max. So,

while we had maximal densities of nRb
max = 1012–1015 cm−3,

we find nLi
max = 1011–1014 cm−3, which produces BECs that

survive up to 1 s in the most extreme traps considered in this
article. This is particularly important for Vtilt , which requires
tighter transverse confinement and thus higher densities.

IV. RESULTS AND DISCUSSION OF THE VARIATIONAL
JWKB METHOD

In this section we explore the emergence of small effec-
tive mean-field barriers which protrude above the chemical
potential, appearing for sufficiently large Ng and V0. We also
consider different wave-function variational Ansätze: the most
commonly used pure Gaussian, a linear Ansatz with Gaussian
tails appropriate to decay in a harmonic trap, and exponential
tails more appropriate to decay in a square barrier. Properly
accounting for the mean field as well as making an informed

g� 2�Vtilt(x)

Vtilt(x)

�4 �3 �2 �1 0 1
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rg
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FIG. 8. Effective potential produces an extra barrier. The effective
potential g|�|2 + Vtilt (x ) (solid blue line) contains a small island
region, located around x ≈ −1.5, which goes slightly above the chem-
ical potential μ (dash-dotted red line); the bare potential Vtilt (x ) (solid
yellow line) is shown for comparison. The potential parameters are
V0 = 125.6 nK, σ0 = 0.85 μm, and α0 = 3.74 m/s2. The symmetric
potential, not shown, produces two islands.

choice of variational Ansatz improves tunneling predictions
enormously.

A. Effective potential: A single well becomes multiple wells

In the well-known JWKB approximation, classical turning
points are calculated by solving for zero momentum. This
is modified in the variational JWKB method, by using the
effective mean-field potential in the semiclassical momentum
(6). With the effective potential, we find that certain barrier
parameters, with large enough nonlinearity, result in additional
effective barriers with energies above the chemical potential,
as shown in Fig. 8; although we show only the case for Vtilt ,
we find similar results in the symmetric barrier, except in the
symmetric case two barriers are produced inside the potential.
Consequently, the system is then composed of the trapping
barriers and multiple smaller barriers, or islands. Emergence
of these multiple wells requires a slight modification when
calculating the tunneling rates. The probability to tunnel
through these islands is symmetric; the probability of going
from left to right is the same as from right to left. Along with this
symmetric nature, the probability of tunneling through these
islands is always much larger, by an order of magnitude, than
the outermost barrier. We can then, on average, approximate the
semiclassical period T of one particle in the system as the sum
of all periods Ti in every well i. The probability of passing
through the outermost barrier in one attack is unaffected by
these multiple wells. Hence, when these islands appear, we
modify Eq. (4) to

� =
(∑

i

Ti

)−1

exp

(
− 2

h̄

∫ x2

x1

dx|p(x)|
)

. (18)

Island formation is robust, in the sense that islands will
appear for sufficiently large interactions g′, with appropriate
barrier parameters, and then persist for all larger values g > g′.
Islands are caused by a combination of the self-interaction
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FIG. 9. Commonly used pure Gaussian variational Ansatz
severely underestimates tunneling rate. Tunneling rate as a function
of barrier separation x0 plotted for a pure Gaussian (dashed red line)
and Gaussian with a flat middle region, the extended Gaussian (10)
(solid blue line), in Vsym with the parameters V0 = 79.8 nK and σ0 =
2.12 μm. The tunneling rates are almost equal for smaller separation,
where the extended Gaussian approximates the pure Gaussian.

g and the wave function overlapping with a barrier, similar
to how a water-wave swells as it approaches a shoreline.
However, while islands appear from both Gaussian barriers
in Vsym overlapping with the wave-function tails, for Vtilt

only the left-hand tail (linear and Gaussian part) in Eq. (11)
interacts with the linear potential to cause mean-field islands.
As a consequence of this, mean-field islands will emerge for
sufficiently small α′ and then for all smaller α0 < α′ (Fig. 6).
Scaling in x0 shows a similar situation, where x0 must be
sufficiently large for islands to form.

B. Variational wave function: Tails and connecting functions

Gaussian wave functions are commonly used as a varia-
tional Ansatz, from anomalous nonlinear ocean waves [37] to
quantum droplets in BECs [38]. However, in order to fully
explore the parameter space for our trapping potentials, we
extend a simple Gaussian by placing a linear function between
the two tails in Eq. (10), allowing the wave function to spread
out in larger traps; this is especially important when the BEC is
in the Thomas-Fermi operating regime. For larger traps, a pure
Gaussian will stay largely localized inside the trap, which is
unphysical and hence produce quantitatively wrong tunneling
rates. To explicitly see this, we plot �max for fixed σ0 = 1.5 and
V0 = 79.8 nK for increasing x0 in Fig. 9. For sufficiently small
barrier separation, the tunneling rates are close, but quickly
diverge for larger x0.

Beyond allowing the Gaussian tails to be separated, we also
examine different wave-function tails. Bose-Einstein conden-
sates in harmonic traps have Gaussian tails, while tunneling
through barriers is often approximated by exponential tails,
such as in the JWKB approximation, building on the exact
solution for the square barrier. To explore the overlap between
these two physical regimes, both of which are relevant to BECs,
we also study a superposition of exponential and Gaussian
wave functions in the symmetric potential. In other words,
the simple Gaussian tails in Eq. (10) are replaced with the

superposition of a Gaussian and an exponential. Because
this Ansatz wave function cannot be continuous in the first
derivative, as the reader may verify for themselves, we can
introduce a connecting function, which smoothly connects
the linear and tail portions of the wave function. We find
that, whether using a connecting function to smooth the first
derivative, or a simple linear function to allow the tails to
extend outward, the same result was always obtained such
that the contribution to overall tunneling rate was nearly zero
from the connecting function’s section; this is due to the
connecting region always being significantly smaller than the
trapping potentials, and to greatly simplify numerics one can
just allow the Gaussian exponential tails to connect directly
to the flat region. The Gaussian exponential tail Ansatz was
found to reduce the maximal mean-field interaction Ngmax

by at least 20% such that, for example, the curves in Fig. 3
end for smaller interactions. Furthermore, the tunneling rate
and chemical potential only changed by more than 5% for
any given interaction strength. All of these results combine
to produce maximal tunneling rates one to two orders of
magnitude smaller for the Gaussian exponential Ansatz.

V. CONCLUSION

In summary, we have used a combination of the variational
technique and a modified JWKB method to calculate macro-
scopic quantum escape rates of repulsive BECs described
by the GPE, in two experimentally realizable quasi-1D po-
tentials. For the variational Ansatz, we used Gaussian tails
separated by a linear connecting function, which approximate
the Thomas-Fermi regime in larger traps. The two traps were
a symmetric trap created by two offset Gaussians (Fig. 1) and
a tilt trap formed by a Gaussian and linear ramp (Fig. 2).
Using the variational JWKB method, which includes the
nonlinear atom-atom interactions, we explored the parameter
space created by mean-field strength and the potential-specific
control knobs, Gaussian height, separation, width, and ramp
acceleration. Furthermore, we found substantially different
scaling laws in the maximal tunneling rate, the rate with
largest nonlinearity allowed in a potential configuration, from
polynomial to rational to exponential in the various potential
parameters.

We examined the assumptions under which the parameter
ranges could be experimentally realized, carefully considering
BEC number density, chemical potential, mean-field interac-
tion strength, and tunneling times. Although tunneling rates
are in general hindered for large barriers and large masses, we
found rates ranging from O(0.1) to O(100) Hz, with trapping-
well dimension O(1) μm, Gaussian barrier widths from 0.1
to 3 μm, and s-wave scattering lengths from 1a0 to 100a0

for rubidium atoms with densities O(1012–1015) cm−3. We
found that lighter atoms, such as lithium, allow for tunneling
rates, nonlinearities, barrier heights, and linear ramps an order
of magnitude larger, with densities still allowing the BEC to
survive several seconds. Lithium was also found to be more
suitable for the tilt trap, as the relatively small well behind
the Gaussian requires tight transverse trapping frequencies
above 2π×1000 Hz. Estimates for the number of allowable
trapped atoms depend strongly on the trapping configuration.
The symmetric trap can support N = 200–1300 atoms with
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barrier separations 1–7 μm for rubidium with an unaltered
s-wave scattering length, allowing large quantities by reducing
the scattering length. The tilt trap requires smaller scattering
lengths for rubidium, below 10a0, and tighter transverse
confinement, required by the smaller well size, limiting the
BEC density. This makes lithium a more suitable choice for
the tilt trap, even though the three-body loss rates are larger,
because the density will be an order of magnitude smaller than
for rubidium.

Both traps were found to produce regions in trap parameters
where additional effective mean-field barriers, islands, were
produced inside the traps (Fig. 8). These islands altered
scaling in maximal tunneling rates. Most notably, for the
symmetric potential, we found that the classical oscillation
frequency dominates scaling in barrier separation for small
Gaussian heights, where mean-field islands do not form.
For larger heights, in the regime where mean-field islands
exist, we found that both the oscillation period and tunnel-
ing probability contribute, producing significantly different
scaling. The maximal tunneling rate for the tilt potential
was found to scale from linear to third-order polynomials
for barrier height and ramp acceleration. Finally, we ex-
plored the effect of different variational wave-function An-
sätze, finding that a pure Gaussian underpredicts tunneling
rates for wide traps and a Gaussian-exponential superposi-
tion predicts tunneling rates an order of magnitude smaller
than the Gaussian tails connected by an intermediate linear
region.

The findings in this article can be used as a road map towards
the realization of quasi-1D macroscopic quantum escape ex-
periments in ultracold-atom systems. These systems can also
be tuned to lower particle numbers, where many-body effects
can become important. Simulations taking many-body effects
into account predict that trapped atoms will remain coherent
but become incoherent as they escape, that the decay process
will be exponential in time [24], and that recently escaped parti-
cles will influence the tunneling process [39]. Coherence of the

trapped atoms suggests that our mean-field analysis could have
some extension into the many-body regime. In contrast to non-
interacting predictions, the mean-field decay process has been
predicted and measured as nonexponential in time [22,40]. A
current experiment did not have the necessary resolution to
separate out mean-field and possible many-body effects [10],
and these quasi-1D experiments are a possible avenue, i.e.,
performing interference measurement of the escaped atoms.
Future theoretical analysis can use the parameter regimes in
this article to examine the full dynamics, including many-body
effects, and determine if the mean-field islands are a persistent
phenomenon and have a measurable effect. Confinement in the
tilt trap could be made stronger, over 10 kHz, and possibly
lead towards studying the tunneling dynamics of strongly
interacting systems such as the Tonks-Girardeau gas [41–44],
a complementary approach to the few-body analysis [45].
Furthermore, potentials with smaller longitudinal confinement,
below 1 μm, start approaching strongly interacting regimes
where different models, such as a nonpolynomial nonlinear
Schrödinger equation, are required [46].
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