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Vortices in self-bound dipolar droplets
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Quantized vortices have been observed in a variety of superfluid systems, from 4He to condensates of alkali-
metal bosons and ultracold Fermi gases along the BEC-BCS crossover. In this article we study the stability of
singly quantized vortex lines in dilute dipolar self-bound droplets. We first discuss the energetic stability region
of dipolar vortex excitations within a variational ansatz in the generalized nonlocal Gross-Pitaevskii functional
that includes quantum fluctuation corrections. We find a wide region where stationary solutions corresponding to
axially symmetric vortex states exist. However, these singly charged vortex states are shown to be unstable, either
by splitting the droplet in two fragments or by vortex-line instabilities developed from Kelvin-wave excitations.
These observations are the results of large-scale fully three-dimensional simulations in real time. We conclude with
some experimental considerations for the observation of such states and suggest possible extensions of this work.
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I. INTRODUCTION

Quantized vortices are a direct manifestation of the genuine
quantum behavior of superfluid systems. A prime example is
superfluid helium, which has been widely studied over the
past decades. Ultracold quantum gases offer the possibility
to investigate vortex properties in a complementary regime
in terms of particle numbers, interaction strength, and range
[1,2] with either bosonic [3] or fermionic [4] atoms. Dipolar
condensates may also display vortex excitations with peculiar
properties as a consequence of the long range and anisotropy
of the interactions [5–8]. For a three-dimensional condensate
with a vortex line and in the presence of a periodic potential,
the spectrum of transverse modes may display a rotonlike
minimum [9,10], which destabilizes the straight vortex and
leads to a transition from vortex into helical or snakelike
configurations [11,12].

Theoretical models of superfluid states of ultracold gases at
zero temperature are usually based on well-established mean-
field approximations which accurately describe experiments
[13], ranging from analytic treatments and variational ap-
proaches to full numerical simulations. Corrections beyond the
mean-field picture have been measured for strongly interacting
Bose gases [14] and for ultracold fermions along the BCS-BEC
crossover [15] and compared with ab initio quantum Monte
Carlo calculations.

The recent observation of ultradilute self-bound droplets
both in dipolar condensates [16–22], as well as in two-
component Bose mixtures [23], together with a combined
theoretical effort, established the importance of the fundamen-
tal role of quantum fluctuations in ultracold atomic systems
[24–38]. Yet, no work has investigated the presence and stabil-
ity of vortex states in self-bound droplets in ultradilute liquids.

Helium droplets hosting several quantized vortices have
been recently observed [39] and studied in detail theoretically
[40–43], both in pure samples and in the presence of impurities.

The scales are, nevertheless, completely different. Helium
droplets can be easily taken as a homogeneous, infinite super-
fluid background since vortices are much smaller compared to
the system size (given the large interaction strengths).

Droplets in quantum ferrofluids are very anisotropic, and
vortex cores are expected to have a size comparable to that of
the whole droplet. Here we address the issue of stability and
dynamics of singly quantized vortex lines in dipolar droplets
for a wide range of dipolar interaction strengths and particle
numbers. We carry out large-scale fully three-dimensional
simulations, which allow for an efficient determination of
energies and shapes of droplets as well as their dynamics. We
find a strong anisotropy of such droplets, very elongated along
the polarization axis. For small particle numbers, droplets are
dynamically unstable towards splitting in two droplets where
angular momentum is redistributed into surface collective
excitations [44]. For larger sizes we do not observe splitting,
yet vortex lines display bending for long times [12,45–48].
We conclude with a discussion of a possible experimental
implementation and observation of our findings with current
experimental setups.

II. METHODS

The dynamics of an untrapped dipolar Bose-Einstein con-
densate is described by a generalized nonlocal Gross-Pitaevskii
equation,

i h̄ ψ̇ =
(

− h̄2∇2

2m
+ Kint (r) + gLHY|ψ |3

)
ψ, (1)

where ψ (r, t ) is the BEC wave function. Kint (r) =
gc|ψ (r)|2 + ∫

dr′ Vdd(r − r′)|ψ (r′)|2 describes the contact
and dipolar mean-field interaction of the condensate. Here
gc = 4πas h̄

2/m is the contact interaction strength, with as

being the s-wave scattering length, and Vdd(r) = Cdd
4π

1−3 cos2 θ
r3
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FIG. 1. (a) Stability diagram of an axisymmetric droplet with a vortex line. Density plot of the energy per particle of self-bound solutions
hosting a vortex as a function of ε−1

dd and N calculated using the variational Gaussian wave function (2). The thick black line corresponds to
EV = 0. Energy is in units of E0 = h̄2/(m a2

dd ). The yellow square and the green triangle correspond to (N, ε−1
dd ) = (104, 0.2) and (105, 0.1)

coordinates, respectively, used in Fig. 2 to characterize the dynamics. (b), (c) Characterization of droplets hosting a vortex line. (b) Size of the
vortex core scaled by the dipolar length as a function of ε−1

dd and for N = 5×103, 104, 105 particle numbers. Full dots correspond to energy
minima of the Gross-Pitaevskii energy functional. (c) Longitudinal (wz) and horizontal (wr ) droplet size as a function of ε−1

dd for the same
particle numbers as in (b). In (b) the vortex core size is defined as the distance from the origin to the point where the density reaches 90% of
its maximum. In (c) the radial (axial) width is defined as the mean length wr (z) ≡ (wi + we )/2, where wi and we are the distances between the
points where the density reaches, respectively, 90% and 10% of its maximum value along the radial direction (along the vertical, peak-density
line). In all panels lines are variational results, and dots are numerical results for stationary solutions of Eq. (1), imposing a vortex with azimuthal
symmetry (see text).

is the dipolar potential. Cdd = μ0μ
2 ≡ 12πh̄2

m
add is the dipolar

coupling constant, μ is the magnetic dipole moment, θ is
the angle between r and the vertical axis (polarization axis
of the dipoles), and add = μ0μ

2m

12πh̄2 is the dipolar length. The
parameter εdd = add/as is the ratio of dipolar interaction to the
s-wave interaction strengths, defining stability of a uniform
condensate in the Bogoliubov approach when εdd < 1 [5].
Quantum fluctuation corrections to the mean-field energy
for a uniform dipolar condensate are introduced in Eq. (1)
by a Lee-Huang-Yang–type (LHY) term, with coefficient

gLHY = 128
√

π

3
h̄2a

5/2
s

m
(1 + 3

2ε2
dd ) [27,28,49]. Energetic stability

of dipolar droplets in trapping potentials have been studied in
a number of works. A stability diagram for droplets in free
space was proposed in [26] via a Gaussian ansatz and checked
against numerical simulations. The variational approach well
describes collective properties of the condensate, such as the
energy, the shape close to the instability region, and excitation
spectra [29].

III. ENERGETIC STABILITY DIAGRAM

We begin our study with the static properties of vortex lines
introducing a variational wave function

ψV (r) =
(

22�+3N

π
3
2 σ 2�+2

ρ σz

) 1
2

ρ� ei�φ e
−2

(
ρ2

σ2
ρ

+ z2

σ2
z

)
, (2)

where N is the particle number and ρ the radial coordinate [50].
The choice � = 0 corresponds to a state with no vortex, whereas
for � > 0 the state has � quanta of circulation. In this work we
specialize to the case of � = 1 and leave the investigation of
multicharged vortices to a separate study. In Eq. (2) the widths
of the condensate σρ and σz are variational parameters to be
determined via a minimization of the full energy functional
associated with Eq. (1). Therefore, we compute the rescaled

energy

EV

E0
= 1

Nσ 2
z

(
1 + 4

y2

)
+ 2

√
2

π
1
2 σ 3

z y2N

(
ε−1

dd − g(y)
)

+ 8192
√

2

625π5/4

1 + 3
2ε2

dd

ε
5/2
dd N2

, (3)

where E0 = h̄2

ma2
dd

, y = σρ/σz, g(x) = f (x) + 3x f ′(x)/8 +
x2 f ′′(x)/8, and f (x) = 1+2x2

1−x2 − 3x2arctanh
√

1−x2

(1−x2 )3/2 [5]. The re-
sulting minimization of Eq. (3) is shown in Fig. 1(a) as a
function of ε−1

dd and particle number N . For comparison we
show the result of energy minimization for � = 0 (dashed line)
[26]. The shaded region below the full line is the energetic
stability region of a droplet with � = 1, which is shrunk
compared to the � = 0 case. Above the solid line there is no
minimum, and the minimum energy state is a uniform solution
with vanishing density [51].

IV. SHAPE OF DIPOLAR DROPLETS
WITH A VORTEX LINE

We proceed by characterizing the shape of the droplet in
the presence of a vortex for different particle numbers and εdd.
In Fig. 1(b) we compute the vortex core size in units of add,
whereas in Fig. 1(c) we plot the horizontal and vertical widths
wr and wz. The vortex core size is defined from the origin
over the z = 0 plane to the point where the density reaches
90% of its maximum value. The droplet radial (axial) width
is defined as the mean length wr (z) = (wi + we )/2, where
wi and we are the distances between the points where the
density reaches, respectively, 90% and 10% of its maximum
value along the radial direction (along the vertical, peak-
density line). Variational calculations are checked against full
numerical simulations of Eq. (1) in imaginary time (dots in
Fig. 1), exploiting the azimuthal symmetry of vortex states,
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FIG. 2. Real-time dynamics of droplets with vortex lines. (a), (b), (c) Splitting instability for N = 104 particles and ε−1
dd = 0.2. Snapshots

of the dynamics at t/t0 = 0, 1200, 2000, where t0 = m a2
dd/h̄. At intermediate time t = 1200 t0 droplets split in two fragments moving at a

finite (opposite) momentum and carry excitations with finite angular momentum. (d), (e), (f) Vortex-line bending for N = 105 and ε−1
dd = 0.1.

Snapshots of the dynamics at t/t0 = 0, 600, 12 000. At initial times unstable Kelvin-wave modes tend to split the droplet. After a transient
dynamics, where part of the angular momentum is transferred to surface collective excitations, the vortex line bends (t = 12 000 t0). See
the full-dynamics video in the Supplemental Material [68]. Notice the difference in the length scales between the axes of the N = 104 and
N = 105 plots due to very strong anisotropy and different droplet lengths. Results are obtained by solving numerically Eq. (1) on a grid size of
512×512×256 points.

where we assume ψV(r) = eiφ�V(ρ, z). The problem reduces
then to an effective two-dimensional (2D) problem for the
function �(ρ, z) (solved over a grid size of 512×256 points).
To efficiently compute the kinetic term, we employ a discrete
Hankel transform in the radial direction (of first order, to
impose the vortex node at ρ = 0) and the usual fast Fourier
transform in the longitudinal direction [52]. In Figs. 1(b) and
1(c) lines terminate at the spinodal point of Fig. 1(a) for the
corresponding value of N . We notice that for a wide range
of interactions and particle numbers the vortex core is of the
same order of the radial width wr , and both are always much
smaller than the longitudinal width wz. All lengths decrease
slightly by increasing εdd for a fixed N . For every simulation
analyzed in Fig. 1, both ρ and z domains were chosen to
be at least twice as large as the maximum extension of the
droplet predicted by the variational approach (i.e., �2 σz).
The application of an interaction cutoff (as proposed in [53])
turned out to be irrelevant in these large-domain cases, meaning
that the Fourier copies (of the periodically bound numerical
box) were sufficiently spaced, making artificial effects of
the long-range interaction negligible. We observe agreement
between the variational and numerical results for small εdd and
particle numbers. A discrepancy for large particle numbers
and stronger interactions [as is the case of ε−1

dd < 0.2 and
N = 105, see Fig. 1(b)] is expected due to the combined effect
of the limited validity of the variational ansatz as well as for
resolution issues related to the strong anisotropy of the droplet.

V. REAL-TIME DYNAMICS

A crucial issue, relevant for the experiments, is the stability
of such vortex states in self-bound droplets. To address this
point we perform fully three-dimensional simulations in real
time to take into account possible instabilities which can break
azimuthal symmetry (see below). The input states at t = 0 are

created from the results of 2D imaginary-time relaxation de-
scribed previously. These 2D solutions are interpolated to a grid
of 512×512×256 points, thus generating three-dimensional
initial states [see Figs. 2(a) and 2(d)], slightly perturbed with
numerical noise.

In Fig. 2 we illustrate the prototypical real-time dynamics
of a droplet with a vortex line at t = 0 for two cases of
condensates of N = 104 and N = 105 particles with ε−1

dd =
0.2 and 0.1, respectively. Time is measured in units of t0 =
m a2

dd/h̄, which equals 0.12 μs for 164Dy and 0.03 μs for 168Er.
The blue shaded region is an isosurface cut of the magnitude
of the pseudovorticity vector ω = ∇ Re(ψ )×∇ Im(ψ ). This
quantity is tangent to the vortex line along its length and can be
used to track the numerical points corresponding to the vortex
core, where the zeros of the imaginary and real parts of the
wave function intersect [54]. The two dynamics display very
different features. For N = 104 the system develops a splitting
instability and divides in two droplets with Nf ≈ N/2 at t ≈
1200 t0, where Nf is the particle number of each droplet after
splitting. For longer times the two fragments move apart with
opposite momenta and display no residual vorticity. All initial
angular momentum gets transferred into collective surface
excitations of the droplets. For the larger system, splitting in-
stability starts to develop at the same time t = 600 t0; however,
the droplet does not fragment. At later times the condensate
restores a dropletlike configuration with the development of
Kelvin waves along the vortex line, eventually leading to vortex
bending for t = 12 000 t0 and surface excitations. We observe
similar features, i.e., absence of splitting and enhancement of
surface excitations, also for longer times. The shape of the
bent vortex line resembles the U -shaped excitations studied
in [55], which were shown to hold less angular momentum
than a straight-line vortex state, corroborating our description
of angular momentum being transferred to surface modes
[see Fig. 2(f)]. Since external torques on the droplet are absent,
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FIG. 3. Numerical simulations. Tables (a) and (b) show the vortex core rcore, the longitudinal rz, and the transverse radius rρ in units of add and
the total energy per particle in units of E0 for the two points in the diagram of Fig. 1. They correspond to the stationary state for (a) N = 104 and
ε−1

dd = 0.2, and (b) N = 105 and ε−1
dd = 0.1. Results are obtained by solving numerically Eq. (1) with imaginary-time evolution on a grid as large

as 512×256 points along the transverse and longitudinal directions, respectively. The domain ranges are (a) ρ×z ∈ [−300, 300]×[−800, 800]
and (b) ρ×z ∈ [−400, 400]×[−1000, 1000] in units of add. Plots (c) and (d) show the energy and longitudinal angular momentum conservation
along the dynamics of Fig. 2 for the same particle numbers and interactions as in (a) and (b), respectively.

no change of the angular momentum along any direction is ex-
pected. Its necessary conservation means that angular momen-
tum had to be transferred from the vortex line to surface modes.
Numerically, a finer grid and larger simulation box would be
needed in order to preserve the angular momentum along the
vertical direction for very long times. In Figs. 3(c) and 3(d) we
show the numerical deviation of the energy and longitudinal
angular momentum for the two cases discussed above.

VI. EXPERIMENTAL CONSIDERATIONS

Vortices in ultracold atomic systems are controllably cre-
ated either by phase imprinting or via an effective rotating po-
tential generated by an applied laser beam. In any case, vortex
imprint must be done in-trap, following the droplet preparation
and before its release. The “optical spoon” technique is more
invasive and requires longer equilibration times and it becomes
less likely to work experimentally. Phase imprinting, on its
turn, can be done with high spatial resolution as well as
by means of very short optical pulses, allowing an almost
instantaneous imprint of a vortex. Following the simulations
presented above, the typical times for the observation of vortex
dynamics for 164Dy range from 100 μs to just below 2 ms,
which is short but still within experimental resolution. For
example, for the parameters as in Fig. 2(a), splitting instability
sets on for times t ≈ 103 t0, which correspond to t ≈ 0.1 ms for
164Dy. Nevertheless, we have also verified instances in which
the onset of the splitting process took slightly longer time. This
was the case of ε−1

dd = 0.6 and N = 105, where t ≈ 45 000 t0,
corresponding to t ≈ 6 ms. Detection, in any case, must be
done in situ, preferably with a levitating external magnetic field
gradient to allow for longer observation times [21]. Extraction
of dynamical properties, e.g., momentum, shape, atom number,

and/or absence of droplet movement in the cases covered in
Fig. 2, can be done at longer evolution times, on the order of
several milliseconds, when detection is expected to be easier.

VII. CONCLUSIONS

In this article we studied the stability of quantum vortex
lines in dilute self-bound droplets of dipolar atoms. We first
discussed the energetic stability region of such vortex excita-
tions via a variational ansatz in the generalized nonlocal Gross-
Pitaevskii functional that includes a LHY-type contribution.
The region corresponding to the stationary solutions where
EV < 0 is unstable to fragmentation into two droplets. When
this is not the case we found that Kelvin waves establish
along the vortex line, which eventually bends in the central
region of the droplet. We confirmed our findings by detailed
fully three-dimensional numerical simulations of vortex states
created by phase imprinting. The situation where Kelvin waves
start developing has also been predicted to appear in a similar
context of three-dimensional dipolar BECs [11]. Droplets with
vortices may thus serve as promising test-beds to the study
of twisted vortex lines in real-life experiments. An extension
of this work would include the investigation of the excitation
spectrum of these vortex lines, similarly to what has been
recently done in vortex-free droplets [30], and with vortex
states in trapped geometries [56]. These instabilities offer
new opportunities for devising stabilization methods, such
as temporal or spatial modulation of the scattering length as
proposed for nondipolar BECs [57,58] or pinning potentials
[59,60]. Also, the appearance of vortex arrays [61,62] as well
as the effects of impurities and turbulence phenomena may be
relevant to current experiments [63–66].
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