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The two-component Fermi gas with contact attractive interactions between different spin components can be
described by the Yang-Gaudin model. Applying the Bethe ansatz approach, one finds analytical formulas for
the system eigenstates that are uniquely parametrized by the solutions of the corresponding Bethe equations.
Recent numerical studies of the so-called yrast eigenstates, i.e., lowest energy eigenstates at a given nonzero
total momentum, in the Yang-Gaudin model show that their spectrum resembles an yrast dispersion relation of
the Lieb-Liniger model which in turn matches the dark soliton dispersion relation obtained within the nonlinear
Schrödinger equation. It was shown that such a conjecture in the case of the Lieb-Liniger model was not accidental
and that dark soliton features emerged in the course of measurement of positions of particles when the system
was initially prepared in an yrast eigenstate. Here, we demonstrate that, starting with yrast eigenstates in the
Yang-Gaudin model, the key soliton signatures are revealed by the measurement of pairs of fermions. We study
soliton signatures in a wide range of interaction strengths.
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I. INTRODUCTION

Nonlinear wave equations can possess solitonic solutions
that propagate without any change of their shape. These
extraordinary structures appear in a wide range of physical sys-
tems and may be formed by electromagnetic waves in nonlinear
optics [1], as well as matter waves particularly investigated
in ultracold atomic gases. Bose-Einstein condensates (BEC),
made up by a single-component Bose gas cooled to nearly
absolute zero temperature, turn out to be excellent playgrounds
for the investigation of matter wave solitons [2–11]. In the
mean-field description, we assume that every single atom in a
BEC experiences an effective average potential and occupies
exactly the same single-particle state. Such a case is described
by the Gross-Pitaevskii equation (GPE) that possesses bright
and dark soliton solutions in one-dimensional (1D) space for
attractive and repulsive interparticle interactions, respectively
[12]. The experimental realization of both kinds of solitons
confirmed the theoretical predictions obtained within the GPE
[2–8,10,13]. The observation of the quantum nature of solitons,
i.e., many-body effects that go beyond the mean-field GPE
description [14–44], is still very challenging from an experi-
mental point of view. Nevertheless, the rapid development of
laboratory techniques devoted to investigations of ultracold
atomic gases gives an opportunity to study systems dominated
by quantum many-body effects [13].

The experimental observation of solitons in Bose systems
provoked the investigations of similar structures in Fermi
systems. The two-component Fermi gas with attractive inter-
actions between fermions with different internal degrees of
freedom can form a superfluid state which can be described
by a set of nonlinear Bogoliubov–de Gennes equations in the

BCS regime [12]. Although this approach is dedicated to the
determination of ground-state properties, it can also be used
to describe dark soliton solutions, where particle densities are
very similar to those of the ground state but where the BCS
pairing function reveals signatures of a dark soliton [45–47].
Passing the BCS-BEC crossover, the BCS pairing function,
with dark soliton signatures, becomes the dark soliton wave
function of a molecular BEC [47,48].

The experimental realization of dark solitons in a BEC is
based on the phase imprinting method [2,5,6,10,49–51]. The
phase of the condensate can be modified by the application of a
short laser pulse whose intensity varies over the atomic cloud.
In particular, it is possible to carve a dark soliton notch so that a
half of a condensate cloud acquires a π phase. It turns out that,
using the same phase engineering technique, one can observe
the generation of pairs of dark and bright solitonlike states
in noninteracting single-component fermionic systems, where
the Pauli blocking plays the role of interparticle repulsion
[52,53]. The same idea was applied to create a dark soliton
in a superfluid Fermi system [54]. However, the resulting
state quickly decayed to a vortex that has been displayed in
numerical simulations [55,56] and observed in the subsequent
experiment [57]. The analysis of the nature of the dark soliton
BCS pairing function suggests that in order to excite a dark
soliton in a superfluid Fermi system, only one fermion of a
Cooper pair has to undergo the phase imprinting procedure
[58].

In general, our understanding of quantum many-body sys-
tems is very limited. Fortunately, there are many-body systems
in lower dimensions for which the brilliant method of Bethe
ansatz is applicable [59]. This is exactly the case of one-
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dimensional nonrelativistic Bose and Fermi gases with particle
interactions described by pointlike contact potentials [60–62].
In comparison to the case of identical bosons (Lieb-Liniger
model [63,64]), the problem of the multicomponent Fermi
gas with contact interactions requires a generalization of the
Bethe ansatz procedure. The model of a Fermi gas consisting
of arbitrary numbers of fermions with two internal degrees
of freedom has been solved analytically by Yang and Gaudin
[65,66]. Such an ultracold two-component Fermi gas has been
the subject of extensive studies [67–77].

The second branch of elementary excitations (the type-II
excitations) of the Lieb-Liniger model with periodic boundary
conditions corresponds to the so-called yrast states, referring
to the lowest energy at a given nonzero total momentum.
For weak repulsive interactions, the type-II eigenstates have
been associated with dark solitons due to the coincidence
between the yrast spectrum of the Lieb-Liniger model and the
dark soliton dispersion relation obtained within the mean-field
approach [78,79]. The conjecture was underpinned by other
strong arguments presented in many publications [80–89]. The
direct observation of the emergence of dark soliton signatures
during the successive measurement of positions of particles,
for the system initially prepared in the type-II eigenstate,
has been reported recently [38,39]. A similar analysis led
to the identification of dark solitonlike eigenstates of the
Lieb-Liniger model in the presence of an infinite square well
potential [41].

For periodic boundary conditions, all energy eigenstates
are invariant under translations of all particles by the same
distance. Therefore, the reduced single-particle density is uni-
form and cannot display any soliton signature. Such a feature
of the type-II eigenstates was the main impediment during
the investigations of their soliton character. The unequivocal
connection between dark solitons and yrast excitations in
the Lieb-Liniger model resulted in a broader examination
of the solitonic nature of yrast states. An ultracold balanced
(unpolarized) gas of spin- 1

2 fermions can be described within
the Yang-Gaudin model [62,65–67,69–77]. In the presence of
attractive interaction, two fermions with opposite spins tend
to create a two-particle bound state. In the many-body case,
there are two physically different regimes corresponding to
weak and strong interaction limits. The first one refers to the
BCS-like Cooper pair formation, for which the size of the
pairs is larger than the mean pair separation. Tightly bound
pairs can be observed in the second case when the attraction
is very strong. The thermodynamic description reveals that
the strongly attractive Yang-Gaudin model is closely related
to a strongly interacting gas of bosonic dimers described by
the Lieb-Liniger model. That is, the ground-state energy of
tightly bound pairs of fermions coincides with the energy of
the attractive Bose gas, described by the Lieb-Liniger model,
which forms a highly excited super Tonks-Girardeau phase
[75–77,90–93]. The latter can be described by a system of
attractive hard rods [75]. In the limit of infinitely strong
interactions, the energy of the super Tonks-Girardeau phase
matches the ground-state energy of the Tonks-Girardeau gas
described by the Lieb-Liniger model of strongly repulsive
bosons [75]. Note that the pairing phenomenon in similar
systems confined in a harmonic trap was meticulously analyzed
in Ref. [94].

Although the link between the repulsive Lieb-Liniger gas
and the attractive Fermi system described by the Yang-Gaudin
Hamiltonian is not entirely understood, it is expected that the
yrast excitations of the Fermi gas in question may correspond
to dark solitons. The supposition is additionally supported by
recent results showing that the spectrum of yrast excitations in
the Yang-Gaudin model is very similar to the corresponding
type-II spectrum of the Lieb-Liniger model which, in turn,
matches the dispersion relation of dark solitons in the weak
interaction limit [77]. In analogy with the Bose case, eigen-
states of the Yang-Gaudin system are translationally invariant
when we impose periodic boundary conditions [77]. Hence,
we may expect that dark soliton signatures are hidden in the
translationally symmetric yrast states and may be observed
only by the analysis of higher-order correlation functions.

The present paper is devoted to the analysis of attrac-
tively interacting unpolarized systems of spin- 1

2 fermions
with attractive contact interactions between different spin
components, confined in a ring geometry. By applying the
Bethe ansatz approach, we investigate the formation of pairs
of ↓−↑ fermions and determine their size in a wide range
of interaction strengths when the system is prepared either
in the ground state or in the yrast state. As pointed out
in [77], we observe the crossover between two significantly
different physical regimes corresponding to a BCS-like gas
and a gas of impenetrable bosonic dimers when the relevant
dimensionless interaction parameter γ ≈ −1. Following the
Monte Carlo method [38,39,41], we repeatedly perform the
successive measurement of positions of particles, revealing the
dark soliton signatures, i.e., a density notch and a phase flip in
the wave function of the last anticipated pair of ↓−↑ fermions.
In addition, we analyze how the increasing number of particles
affects the soliton structure.

II. YANG-GAUDIN MODEL

A nonrelativistic ultracold gas of spin- 1
2 fermions with

intercomponent interactions given by a pointlike δ-function
potential in 1D can be described by the Yang-Gaudin model
[61,62,65,66,76,95,96]. Assuming that we deal with a sys-
tem at zero temperature containing N↓ � N↑ spin-down and
spin-up particles of equal masses m = m↓ = m↑ = 1

2 , the
Hamiltonian reads

H = −
N↓∑
j=1

∂2

∂x
↓2
j

−
N↑∑
s=1

∂2

∂x
↑2
s

+ 2c

N↓∑
j=1

N↑∑
s=1

δ(x↓
j − x↑

s ), (1)

where the units have been chosen such that h̄ = 1. The number
of particles in each single component N↓,↑ is a conserved
quantity. Note that the particles belonging to different spin
components can be distinguished because there is no spin-
flipping term in the Hamiltonian in Eq. (1). The interaction
strength is measured by the following dimensionless parame-
ter:

γ = c

n
, (2)

with n = N↓+N↑
L

denoting the average particle density in the
system of size L.
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While the Bethe ansatz formulation of the problem is very
simple, i.e., the eigenstates are superpositions of plane waves,
the structure of the resulting wave functions is very cumber-
some [61,62,65,66,74,76,95,96] and hard to use in numerical
calculations. Fortunately, solutions of the Yang-Gaudin model
can be rewritten in the determinant form [95,96]

�({x↓}, {x↑}, {k}, {�}) ∝
∑

π∈SN↑

sgn(π )Wπ,↑ det �, (3)

where

Wπ,↑ =
N↑∏
j<l

[i(�π (j ) − �π (l) ) + c sgn(x↑
l − x

↑
j )], (4)

and the (N↓ + N↑) × (N↓ + N↑) matrix �, represented by two
rectangular matrices separated by the vertical bar, reads

� =
⎛
⎝

⎡
⎣ N↑∏

s=1

Aj (�π (s), x
↓
l − x↑

s )eikj x
↓
l

⎤
⎦

∣∣∣∣∣∣
×

⎡
⎣ N↑∏

s �=m

Aj (�π (s), x
↑
m − x↑

s )eikj x
↑
m

⎤
⎦

⎞
⎠

j = 1, . . . , N↑ + N↓
l = 1, . . . , N↓
m = 1, . . . , N↑

,

(5)

with

Aj (�, x) = i(kj − �) + c

2
sgn(x). (6)

The summation in Eq. (3) is taken over all permutations π of
the permutation group SN↑ . The parity of the permutation π

is extracted by sgn(π ) = ±1, while, for real x, the function
sgn(x) = x/|x|. The eigenstates given by Eq. (3) are uniquely
parametrized by the sets of quasimomenta {kj }j=1,...,N↓+N↑ and
spin roots {�s}s=1,...,N↑ . The latter quantities are auxiliary and
appear due to the existence of two internal degrees of freedom
interpreted as opposite spin directions. Since the Hamiltonian
in Eq. (1) commutes with the total momentum operator

P = −i

N↓∑
j=1

∂

∂x
↓
j

− i

N↑∑
s=1

∂

∂x
↑
s

, (7)

the state � simultaneously satisfies the two eigenequations

H�{k} = E{k}�{k}, P�{k} = P{k}�{k}, (8)

where the eigenvalues E{k} and P{k} are simply given by the
quasimomenta kj [95,96],

E{k} =
N↓+N↑∑

j=1

k2
j , P{k} =

N↓+N↑∑
j=1

kj . (9)

The symmetry properties of the wave functions �,

�(ρσ {xσ }, {k}, {�}) = sgn(ρσ )�({xσ }, {k}, {�}), (10)

�({xσ }, τ {k}, {�}) = sgn(τ )�({xσ }, {k}, {�}), (11)

�({xσ }, {k}, η{�}) = sgn(η)�({xσ }, {k}, {�}), (12)

for arbitrary permutations ρσ=↓,↑ ∈ SN↓,↑ , τ ∈ SN↓ , and η ∈
SN↑ , are discussed in detail in Refs. [95,96].

Imposing periodic boundary conditions, i.e.,

∀
j=1,...,N↓,↑

: �(. . . , x↓,↑
j + L, . . .) = �(. . . , x↓,↑

j , . . .), (13)

we obtain the following set of so-called Bethe ansatz equa-
tions for the quasimomenta {k} and the spin roots {�}
[62,65,66,71,74,76,77]:

exp(ikjL) =
N↑∏
n=1

kj − �n + i c
2

kj − �n − i c
2

∣∣∣∣
j=1,...,N↓+N↑

, (14)

N↓+N↑∏
j=1

�m− kj + i c
2

�m− kj − i c
2

=
N↑∏

n = 1
n �= m

�m− �n+ ic

�m− �n− ic

∣∣∣∣
m=1,...,N↑

. (15)

III. NUMERICAL METHOD

Despite the fact that the many-body eigenstates � can be
cast into a superposition of determinants, the analysis of their
properties is very burdensome. In fact, it is intractable to extract
valuable physical information from every single determinant of
the � matrix. Moreover, the number of terms in the summation
that is present in Eq. (3) dramatically proliferates with N↑. In
order to investigate the features of �, we should examine the
corresponding correlation functions. For this purpose, we have
decided to numerically simulate the measurement of positions
of particles.

In general, the above-mentioned simulations are based on a
one-by-one process of particle detection. Such an approach
requires the calculation of conditional probability densities
for measurements of consecutive particles [21,23,38,97–99].
Numerically, this method is extremely expensive in the con-
sidered system. The result of the measurement of M =
N↓ + N↑ particles can also be obtained by another method,
i.e., by a direct sampling of the corresponding M-particle
probability density employing the Monte Carlo algorithm of
Metropolis et al. [100]. By using the analytical expression
for M-particle probability distribution |�(r1, . . . , rM )|2 and
following Refs. [39,41,101], we perform a so-called Marko-
vian walk in the configuration space, generating a sequence of
samples R = {r1, . . . , rM} called a Markov chain. In our case,
we assume that rj = x

↓
j for j = 1, . . . , N↓ and rN↓+j = x

↑
j

for j = 1, . . . , N↑. Technically speaking, if R is the last
element of the Markov chain, the next randomly chosen set
of positions of particles R′ is accepted with probability p =
min(1, |�(R′)|2/|�(R)|). If R′ is not accepted, we again
append the set R at the end of the Markov chain.

The Metropolis procedure increases significantly the nu-
merical efficiency but still allows for the studies of few-body
systems only. In order to investigate systems containing more
particles, one can employ numerical diagonalization of the
Hamiltonian given by Eq. (1) in a truncated Hilbert space.
Eigenstates of the system can be represented in the Fock
state basis [

∏smax
j=smin

|m↓
j 〉][∏smax

j=smin
|m↑

j 〉], where the j th single-
particle mode φj (x) = L−1/2exp[i2πjx/L] is occupied by
m

↓,↑
j = 0, 1 particles. The numbers smin and smax determine the

modes taken into account and have to be adjusted to reproduce
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FIG. 1. Sketch of the solutions of the Bethe equations (14) and
(15) in the complex plane for the balanced ground state with N↓ =
N↑ = N = 5. Left (right) panel corresponds to the regime of weak
(strong) attraction c → 0−(c → −∞). The resulting quasimomenta
form conjugate pairs kj,± = κj ± iμj . In both panels, the spin roots
�j are equal to κj . All units are dimensionless.

the examined eigenstate accurately. The Hamiltonian in Eq. (1)
commutes with P , Eq. (7), so in the chosen basis H is
partitioned into blocks referring to different values of the total
momentum P . Note that the following constraints have to be
satisfied:

smax∑
j=smin

mσ
j = Nσ , P =

∑
σ={↓,↑}

smax∑
j=smin

2π

L
jmσ

j = 2π

L
J , (16)

where J ∈ Z. By definition the yrast states correspond to the
lowest energy eigenvalue for a given total momentum (in fact,
given by J ).

The numerical diagonalization is used at the end of Sec. VI,
where influence of the total particle number on the soliton
structures is considered.

IV. ATTRACTIVE INTERACTIONS: THE GROUND STATE

We start our considerations with the ground state in the
presence of attractive interactions between different spin com-
ponents (c < 0). Additionally, we restrict the discussion to the
unpolarized system for which N↓ = N↑ = N < ∞. It has been
shown that in such a case, fermions with opposite spins tend to
form bound-state pairs which are reflected by the appearance of
conjugate pairs of quasimomenta kj,± = κj ± iμj , whereκj =
Re(kj,±), μj = |Im(kj,±)| (see, for example, [62,71,74,76]).
The ground-state solutions of the Bethe equations (14) and (15)
in the weakly (c → 0−) and strongly (c → −∞) interacting
limits are schematically depicted in Fig. 1.

The expansion of the Bethe equations leads to the obser-
vation that in the two regimes in question, the ground-state
solutions take the following forms:

lim
c → 0−

κj = lim
c → 0−

�j = 2π

L
nj , μj

c→0−≈
√

|c|
L

,

lim
c → −∞

κj = lim
c → −∞

�j = π

L
nj , μj

c→−∞≈ |c|
2

, (17)

with nj ∈ {−N−1
2 , . . . , N−3

2 , N−1
2 } [62,76]. The solutions can

be interpreted as filling a “Fermi sphere,” with the “Fermi sur-
face” referring to the “Fermi momentum” ±maxj (�j ). Note
that the corresponding binding energies per ↓−↑ pair, defined
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FIG. 2. Solutions of the Bethe equations (14) and (15) for the
ground state with N↑ = N↓ = N = 5 vs the coupling constant c

(γ = cL/2N ). While upper panels represent the real and imaginary
parts of the resulting quasimomenta kj , lower panels refer to the
spin-root �j solutions. Note that in the two limiting cases of weak
and strong interaction strengths, both quasimomenta and spin roots
follow the predictions given by Eqs. (17) depicted in Fig. 1. All units
are dimensionless.

as εB = − 1
N

∑
j [Im(kj )]2 = − 1

N

∑
j μ2

j , are the following:

εB

c→0−≈ −2
|c|
L

, εB

c→−∞≈ −c2

2
. (18)

In general, the Bethe equations are very difficult to solve for
arbitrary values of c < 0. Therefore, it is convenient to start
with one of the considered limits and, by employing a simple
linear approximation, consecutively increase or decrease the
coupling strength [77]. The results of this procedure applied to
the 5+5 particle ground state (N = 5) are presented in Fig. 2.
In the strongly attractive case, we can apply an additional
approximation and simplify the Bethe equations. That is,
one can replace kj,± by �j ± i c

2 and by simple algebraic
manipulations obtain [77,102]

2�mL = 2πlm − 2
N∑

n=1

arctan

(
�m− �n

c

)∣∣∣∣
m=1,...,N

, (19)

where the solutions are determined by distinct numbers lm. By
substituting lm = nm, cf. Eq. (17), we get the parametrization
of the ground state of the balanced gas of fermions.

Let us now analyze in detail the problem of pairing of
fermions belonging to different components. For this purpose,
we have decided to investigate histograms of the relative dis-
tance between particles that are obtained in many measurement
realizations. Dealing with the N↓ = N↑ = N = 5 system and
employing the Bethe ansatz solution, we perform numerical
simulations of the particle measurement process with the help
of the Metropolis routine (see Sec. III). In every single j th
realization of the detection procedure, we collect two sets
of positions of particles, i.e., Xσ

j = {xσ
j,1, x

σ
j,2, . . . , x

σ
j,5} with

σ = ↓,↑. The relative distance on a ring of size L can be
defined as follows:

�n
j = min(|x↓

j,n − x
↑
j,n|, |L − |x↓

j,n − x
↑
j,n||), (20)

where the j and n indices refer to the measurement realization
and to the particle number, respectively. By collecting all
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FIG. 3. Histograms of the relative distance �n
j [see Eq. (20)]

between fermions with opposite spins for different values of the
coupling constant c. The considered 5+5 particle system of size
L = 1 was prepared initially in the ground state. The measurement
of the positions of particles was performed with the help of the
Metropolis algorithm, as described in Sec. III. By increasing the
intercomponent attraction above c = −10 (γ = c/2N = −1), one
observes an escalation of small-sized ↓−↑ pairs occurrence. That
is, when γ < −1, the effective attraction causes the creation of
dimers of size smaller than their mean separation. The background
density ∼2 dominates in all cases for distances larger than the average
distance between particles belonging to the same spin component
δ̄ = L/N = 0.2. The histograms have been prepared from the data
collected from several millions of measurement realizations. All units
are dimensionless.

�n
j distances (for all j and n) after many realizations of

the particle detection process, one can prepare a histogram
of the relative distances between spin-up and spin-down
fermions. In Fig. 3, we compare such histograms for different
strengths of the intercomponent attraction. We stress that if
one collects many measurement realizations, it does not matter
which positions are taken in order to form pairs and calculate
the distances as in Eq. (20). In other words, the obtained
histograms will not change if we randomly permute particles.
This is the reason why the background density ≈ 2 appears
in the histograms independently of the attraction strength
(see Fig. 3).

The average distance between particles possessing the same
spin δ̄ = L/N (δ̄ = 0.2 for L = 1 and N = 5) is a reference
quantity. When γ = cL/2N � −1 the ↓−↑ pairing becomes
visible in Fig. 3. That is, if the attraction is strong enough, the
size of the pairs is smaller than δ̄. In this way we enter the
regime of tightly bound pairs of fermions with opposite spins.
On the other hand, we expect formation of Cooper-like pairs
of size greater than δ̄ when γ � −1 [77]. A careful analysis of
Fig. 3 reveals oscillations in the profiles of the distributions
with period ≈ δ̄. Moreover, in the strongly attractive case
c = −35 (γ = −3.5), one notices a density dip near the
relative distance 0.08. It is clear that in such a regime fermions
are tightly bound and we deal with a gas of impenetrable
bosonic dimers. The particles coming from the same spin
component feel the Pauli exclusion. Hence, the ↓−↑ molecules

tend to distribute themselves uniformly in space. This simple
mechanism is responsible for the oscillating behavior visible
in Fig. 3. The same features can be observed within the
BCS approach (see Ref. [103]) if we analyze the following
correlation function, 〈ψ̂†

↓(x)ψ̂†
↑(y)ψ̂↑(y)ψ̂↓(x)〉, where ψ̂σ (x)

are the canonical field operators and the average 〈.〉 is taken in
the BCS ground state.

The above discussion concerning the creation of tightly
bound molecules when γ � −1 stays in very good agreement
with the results which can be obtained for the two-body prob-
lem. The relative distribution of two distinguishable particles
interacting via a contact attractive potential is well known
[76,104,105],

|ψ (r )|2 ∝ e−|c|r , (21)

where r = |x↓ − x↑| is the relative distance of the two parti-
cles. By rewriting c = 2γN/L = 2γ /δ̄, one obtains |ψ (r )|2 ∝
exp( − 2|γ |r/δ̄). Then the molecule size is given by δ̄/|γ |. We
will see that this simple two-body result matches the results
obtained in the many-body simulations. Furthermore, it is now
straightforward that the state in Eq. (21) fits in the system of
size L = Nδ̄ for γ � −1.

Armed with this knowledge, we can investigate the pairing
phenomenon in the strongly attractive regime (when γ � −1)
in detail. In order to check how the pairing depends on
the attraction strength, we have decided to determine which
fermions belonging to the measurement collections {X↓

j } and

{X↑
j } are actually paired. For this purpose, for every single

j th realization of the measurement process, we found the
permutation τ ∈ SN↑ minimizing the sum

∑
n �̃n

j , where �̃n
j

is defined as

�̃n
j = min(|x↓

j,n − x
↑
j,τ (n)|, |L − |x↓

j,n − x
↑
j,τ (n)||), (22)

and measures the relative distance between paired fermions. As
before, we collect all the distances �̃n

j and prepare histograms
corresponding to the distributions of the relative distances
between fermions with opposite spins that are paired. It
turns out that the obtained results match quite well with the
normalized two-particle solutions [see Eq. (21)]. Such an
agreement confirms that the system is dominated by two-body
physics for γ � −1. The many-body numerical outcomes
and the above-mentioned two-body results are presented in
Fig. 4. We expect that the result holds true even for large
N because γ � −1 guarantees that the size of the ↓−↑
molecules is smaller than δ̄. Note that the same analysis in
the presence of weak attraction cannot be performed. That
is, when the size of the anticipated ↓−↑ pairs is larger than
the average dimer separation δ̄, we do not have any practical
tool to determine which fermions in the considered gas are
paired.

V. ATTRACTIVE CASE: YRAST EXCITATION

Let us now consider an yrast eigenstate of the balanced
system containing N↓ = N↑ = N = 5 particles. It turns out
that in the present case the weak and strong interaction regimes
are separated by a bifurcation of the solutions of the Bethe
ansatz equations. Following the discussion presented in [77],
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FIG. 4. Distributions of the relative distance between paired
fermions belonging to different spin components. Normalized his-
tograms represent the results obtained from many-body simulations
that are based on the �̃n

j quantities defined in Eq. (22). Red dashed
lines depict the corresponding two-body probability densities given
by Eq. (21). Note that the many-body results follow quite well the
simple two-body solutions, indicating domination of the two-body
physics for γ � −1. The system was prepared initially in the ground
state. The size of the 1D space is L = 1, and the number of particles
N↓ = N↑ = 5. All units are dimensionless.

we have chosen the yrast excitation corresponding to the total
momentum P = 6π

L
.

In the small |c| limit, where the binding energy in Eq. (18)
changes linearly with |c|, one immediately notices that in
order to excite the lowest energy eigenstate belonging to the
subspace of P = 6π

L
, it is energetically favorable to break

the pair of quasimomenta k = ±i
√|c|/L from the ground-

state parametrization (see Fig. 1) and set one of them to
k = 0 and the other one to 6π

L
. Such a maneuver fulfills the

total momentum requirement, but still it is not clear what
is the structure of the corresponding spin roots. As before,
by numerical investigations and the expansion of the Bethe
equations (14), (15), we easily find the limiting values of the
quasimomenta and the spin roots for the yrast state in question
(see the left panel of Fig. 5). Note that the scheme of the
yrast excitation resembles the collective excitation of a single-
component Fermi gas discussed in [52,53,106]. Indeed, for the
very weakly interacting 5+5 particle system, the considered
yrast state is represented by the following superposition:

|�〉 ≈
√

2

2
(|{y}〉↓|{g}〉↑ + |{g}〉↓|{y}〉↑), (23)

where the Fock states (σ = ↓,↑)

|{g}〉σ = |. . . , 0−3, 1−2, 1−1, 10, 11, 12, 03, . . .〉,
|{y}〉σ = |. . . , 0−3, 1−2, 1−1, 00, 11, 12, 13, 04, . . .〉, (24)

describe the occupation (i.e., 0j or 1j ) of single-particle mo-
mentum states ∝ exp[i2πjx/L]. This result stays in agreement
with the BCS prediction that in the weakly interacting case,
only one component of the Fermi gas has to be collectively
excited in order to reproduce dark soliton features [58]. We
stress that the BCS regime, where the Cooper pairs are much
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FIG. 5. Scheme of the limiting solutions of the Bethe equations
(14) and (15) corresponding to the yrast state with total momentum
P = 6π

L
obtained for an unpolarized system containing N = 5 parti-

cles in each component. Left (right) plots in the complex plane refer
to the weakly (strongly) attractive limit c → 0−(c → −∞). Filled
circles and diamonds show the resulting quasimomenta and spin roots,
respectively. In comparison to the ground-state solutions (see Fig. 1),
just a few values (indicated by empty symbols) have been modified.
All units are dimensionless.

larger than the average interparticle distance, is very hard to
simulate numerically within the Bethe approach. Indeed, in
order to deal with such Cooper pairs the system must be much
larger, i.e., the total number of particles N � 5, which is not
attainable with current computer resources.

On the other hand, in the strongly attractive limit, the
binding energy increases very quickly, ∼c2. Hence, to deal
with the yrast state one cannot break any pair of the
ground-state quasimomenta. This case is closely related to
the type-II excitations known from the Lieb-Liniger model
[38,39,60,61,63,64,86–88]. It was also pointed out in Ref. [77]
that, in the c → −∞ limit, the yrast excitation relies on the
shift of a pair of quasimomenta just above the Fermi surface.
The same thing has to be done with the corresponding spin
root. In our case, the pair k = ±i c

2 and the spin root � = 0,
related to the ground state, have to be moved to the values
k = 3π

L
± i c

2 and � = 3π
L

(see the right panel of Fig. 5). Such
an excitation scenario is very similar to the one-hole excitation
in the Lieb-Liniger model that reveals totally dark soliton
structures [38,39]. That is, when the momentum per boson
of an yrast excitation approaches ±π

L
, one expects a single

point in configuration space where the wave function of the
last boson reveals a phase flip by π indicating the presence of
a dark soliton density notch. Therefore, we have chosen the
total momentum 6π

5L
per dimer in the hope of observing clearly

visible dark soliton signatures in the two-component Fermi gas.
The structure of the Bethe solutions for the yrast eigenstate

changes dramatically between weakly and strongly attractive
regimes. Following the step-by-step procedure [77] mentioned
in Sec. IV, we obtained the yrast solutions of Eqs. (14) and (15)
for N = 5 and P = 6π

L
in a wide range of attraction strengths

(see Fig. 6). The resulting quasimomenta reveal a bifurcation
around cL ≈ −9.05 (γ ≈ −0.905), where we observe a tran-
sition between two different parametrization scenarios of the
same yrast eigenstate. The bifurcation point coincides with
the interaction strength where the pairing of fermions starts to
be dominated by two-body physics. Indeed, we have justified
in Sec. IV that the size of dimers is comparable to the mean
separation between fermions of the same kind when γ ≈ −1
and the pairing is dominated by two-body physics for γ � −1.
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FIG. 6. Quasimomenta and spin-root solutions of the Bethe equa-
tions (14) and (15) corresponding to the unpolarized 5+5 particle
yrast state with total momentum P = 6π

L
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to real (imaginary) parts of kj and �j versus the coupling constant
c. Note that the results approach to the limiting solutions shown
in Fig. 5. Vertical dashed lines indicate the interaction strength
[cL ≈ −9.05 (γ ≈ −0.905)] where the bifurcation takes place. All
units are dimensionless.

We expect that tightly bound ↓−↑ molecules appear for
γ � −1. For the considered yrast state, we can carry out
the approach used for the ground state, i.e., by collecting �̃,
defined in Eq. (22), in many realizations, we can compute the
distributions of relative distance between paired fermions. The
dimer size is determined by the expectation value of �̃2. That
is, the quantity

ξ = 2

√√√√1

n

n∑
j=1

�̃2
j , (25)

where n denotes the number of collected �̃ distances, is
related to the width of the two-body probability distribution
in Eq. (21). The quantity ξ has been calculated in a wide range
of interaction strengths for the ground state and for the yrast
state with P = 6π

L
. It turns out that for c � −25 (γ � −2.5),

the results for both states overlap, as one can see in Fig. 7.
For c � −25 (γ � −2.5), we enter the stronger interaction
regime where the pairing is definitely dominated by two-body
physics. Then the average dimer size ξ is slightly larger for the
yrast state than for the ground state. Such a behavior can be
attributed to the fact that there is much more kinetic energy in
the excited eigenstate than in the ground state.

The very strongly attractive regime is very difficult to study
numerically. To satisfy the periodic boundary conditions, we
have to operate with quadruple precision, which turns out to
be insufficient when γ < −7. Such requirements come from
the fact that in the analytical expression, presented in Eq. (3),
of the wave function �, there are exponentials eikj x

σ
n for

complex quasimomenta Im(kj ) ≈ ±i c
2 with a large c, where

the quadruple precision is insufficient. Moreover, in order to
properly reproduce the investigated distributions by means of
the Metropolis procedure, one needs more steps of a Markovian
walk for strong attraction. Hence, we restrict our further studies
to γ � −7.
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FIG. 7. Dependence of the pair size ξ defined in Eq. (25) versus
the interaction strength c = 10γ in the unpolarized N↑ = N↓ = N =
5 particle system of size L = 1 prepared in the ground state (red
curve with filled circles) and in the yrast state (blue curve with filled
diamonds) with P = 6π . Note that both curves overlap for c � −25
(γ � −2.5). For stronger interactions, the pair size is slightly larger
for the yrast eigenstate than for the ground state. The average distance
between dimers δ̄ = L/N = 0.2 is indicated by the black dashed line.
All units are dimensionless.

VI. YRAST STATE: EMERGENCE OF DARK
SOLITON SIGNATURES

Yrast states in the Yang-Gaudin model are expected to
be strictly connected with dark solitons [77]. Because of
the ring geometry of the system, the eigenstates are trans-
lationally invariant. Therefore, starting with an eigenstate of
a translationally invariant system, the corresponding reduced
single-particle probability density cannot possess any soli-
tonlike features. We expect that dark soliton structures can
emerge due to the spontaneous breaking of the translational
symmetry induced by measurements of positions of particles,
like in the Lieb-Liniger model [38,39,41]. Starting with the
yrast eigenstate of the balanced N↓ = N↑ = N system, we
have performed numerical simulations of the measurement of
positions of N↑ − 1 spin-up fermions and of N↓ − 1 spin-down
fermions. Then we know the positions of 2N − 2 particles,
x̃

↓,↑
j=1,...,N−1, and the wave function of the last two fermions

reads

�2(x↓, x↑) = �({̃x↓
1,...,N−1, x

↓}, {̃x↑
1,...,N−1, x

↑}). (26)

In the following we analyze properties of the above Eq. (26).
We consider two different ways of measuring the positions of
2N − 2 particles:

(1) We can assume that the measurement takes place when
two fermions with spin up and down are detected at the same
positions, i.e., x

↓
s = x

↑
s for s = 1, 2, . . . , N − 1. It resembles

the rapid ramp technique used in experiments where a sweep
across a Feshbach resonance leads to the creation of tightly
bound molecules [107–117] and a subsequent measurement
of the molecular density is performed. We will call this
measurement “zero size,” because in this case the size of pairs
of ↓−↑ fermions is zero.
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FIG. 8. Wave function �2(x↓, x↑) = |�2|eiφ2 for the last two
fermions with opposite spins in the 5+5 particles system on a ring
of length L = 1. We consider the yrast state corresponding to total
momentum P = 6π for different coupling strengths, i.e., −70 � c �
−0.1 (−7 � γ � −0.01). It is assumed that four pairs of spin-up and
-down fermions (of zero size) have been measured at the positions
corresponding to the maximal probability density, e.g., x̃

↓
j = x̃

↑
j =

j−1
5 for j = 1, 2, 3, 4. The resulting amplitudes (left panels) and phase

(right panels) of the wave function of the last two fermions show

(2) We can perform the measurement of positions of par-
ticles by sampling the many-body probability density without
any constraint. In other words, we do not measure the pairs but
single particles. This kind of the measurement will be dubbed
“any size,” because we assume that pairs of fermions can have
any size.

Let us start with an analysis of a single realization of the
zero-size measurement process. We consider an unpolarized
system of N↓ = N↑ = N = 5 particles, L = 1, and a wide
range of interaction strengths, i.e., −70 � c � −0.1 (−7 �
γ � −0.01). The system is prepared initially in the yrast state
with total momentum P = 6π , which is analyzed in Sec. V.
The structures of the observed two-body wave function defined
in Eq. (26) depend on the positions where the first 2N − 2
particles are measured. For a small particle number, a single
realization of the measurement process may result in a two-
particle wave function in Eq. (26) which does not clearly show
dark soliton signatures. Therefore, we have decided to choose
optimal positions of the measured pairs of fermions, that is, a
configuration of the pairs that corresponds to the maximal value
of the probability density, e.g., x̃

↓
j = x̃

↑
j = 1

5 (j − 1) for j =
1, 2, 3, 4. This choice means that due to the Pauli exclusion rule
the last remaining pair of fermions is likely to be detected in
the largest free space interval, namely, between x↓ = x↑ = 0.6
and 1. The phase flip is expected to be observed at around x =
0.8 because it minimizes the energy. The modulus and phase of
the resulting two-body wave functions �2(x↓, x↑) = |�2|eiφ2 ,
see Eq. (26), are presented in Fig. 8. It turns out that in such
a case, the amplitudes |�2| and phase distributions φ2 reveal a
clearly visible density notch and a phase jump localized around
the expected position x↓ ≈ x↑ ≈ 0.8 both for weak and strong
attraction. Such dark soliton signatures do not emerge in the
course of the particle detection process when we start with the
ground state (for comparison, see top panels of Fig. 8). Note
that, as expected, the stronger the interactions we deal with,
the more dominant are the diagonal elements of the density.
Furthermore, thanks to the Pauli exclusion principle, in the
plots of the phase distributions, one notices a nodal structure at
the positions of the initially measured zero-sized pairs of ↓−↑
fermions. Such nodal structures are present for any interaction
strength, both for the ground state and the yrast eigenstate,
and can be explained by a simple reasoning. That is, the wave
function describing two identical noninteracting fermions can
be cast into the form

ϕ(x, x + ε) ∝ eiαxei α
2 ε sin (βε), α ∈ R, β ∈ R+, (27)

which simply reveals the π -phase flip at x when ε passes
through zero.

Figure 9 shows cuts along the diagonals of the two-
dimensional plots shown in Fig. 8, i.e., we present the prob-
ability density and the phase of �2(x, x). We observe dark

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a density notch and a phase flip along the diagonal, respectively.
Such dark solitonlike signatures appear at around x↓ ≈ x↑ ≈ 0.8,
i.e., exactly between most distant dimers that have been measured.
For comparison, the ground-state wave function �2(x↓, x↑), which
can be chosen as a real-valued function, is depicted in the first row.
All units are dimensionless.
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FIG. 9. Diagonal part of |�2(x↓, x↑)|2 shown in Fig. 8. The inset
presents the corresponding diagonal phase distribution φ2, which is
identical for all coupling constants c < 0. The density notch is clearly
visible at around x = 0.8, and its position coincides with the position
of the phase flip. For comparison, the same numerical experiment was
performed for the ground state for weak attraction c = −0.1 (γ =
−0.01) when no solitonlike structure can be observed at around
x = 0.8. All units are dimensionless.

soliton signatures like density notch and phase flip at x = 0.8,

and also notice that the distance between the two main peaks
of probability density at around x = 0.8 slightly increases
when γ becomes more negative. Note that the yrast state
for very weak interactions corresponds to a single fermion
excitation [see Eqs. (23) and (24), as well as the left panel
of Fig. 5], while, in the strong attraction limit, it is related
to the excitation of a single pair of fermions (cf. right panel
of Fig. 5). In order to keep the same total momentum P ,
the momentum of a single fermion in the former case has
to be twice larger than the momentum of each fermion in
the latter case, cf. Fig. 5. Consequently, we deal with longer
wavelengths for strong interaction, which can be responsible
for the observed increase of the distance between the two
peaks around the density notch. In other words, the shorter
the wavelengths we deal with, the narrower the structures
that can be reproduced in the density. Since one deals with
a Fermi system, the wave function �2(x, x) vanishes at the
positions of the initially measured dimers. For comparison,
we also depict the results for the ground state in the weakly
interacting case, for γ = −0.01. One immediately notices that
no soliton signature around x = 0.8 can be observed in this
case.

So far we have analyzed dark soliton signatures in the wave
function of the last pair of fermions when the N − 1 pairs
of zero size are assumed to be measured at the equidistant
positions. Such a configuration allows us to observe clearly
the dark soliton signatures. However, in experiments pairs
of fermions or fermions themselves are detected at random
positions according to the probability density of the yrast
state. Now, preparing the system initially in the same yrast
state as before, we investigate the diagonal probability density
and the phase distribution for the last pair of ↓−↑ fermions
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FIG. 10. Diagonal probability densities and phase distributions
for the last pair of ↓−↑ fermions averaged over many (about ten
millions) realizations of the detection process for a system of N↓ =
N↑ = 5 fermions prepared in the yrast state with total momentum P =
6π (the system size L = 1). Upper panels show the averaged densities
for different attraction strengths obtained using two alternative initial
measurement schemes: left (right) panel corresponds to zero size
(any size) of fermionic pairs. Lower panels display the averaged
phases obtained within different detection schemes and for different
attraction strengths. Note that they are almost identical independently
of γ and of the applied detection scheme. They reveal down (J = 0)
and up (J = 1) phase flips. All units are dimensionless.

averaged over many realizations of the particle detection
process. By employing the Metropolis routine and the Bethe
ansatz approach, we have performed numerical simulations
of the measurement of N − 1 = 4 dimers assuming that
they have either zero size or any size (i.e., measurement
of particles without any additional restrictions). By the fact
that we deal with periodic boundary conditions the position
of the phase flip, indicating the solitonlike structure, varies
randomly from one measurement realization to another one.
In order to determine average distributions, we shift all the
results so that the corresponding phase flip is always located at
L
2 = 0.5. In every single realization of the detection process,
the diagonal phase distribution φ2(x, x) of the last ↓−↑ pair
reveals a flip. To satisfy the periodic boundary conditions
the relation φ2(L,L) − φ2(0, 0) = 2πJ , where in general
J ∈ Z, has to be fulfilled. In the limiting case where the
soliton is completely dark (i.e., when the density drops to
zero like in Fig. 9), the phase flip occurs abruptly at a single
point, i.e., limε→0 [φ2(xS +ε, xS +ε) − φ2(xS −ε, xS −ε)] =
±π modulo 2π , where xS is the soliton position. Then all J ∈
Z become equivalent and cannot be distinguished. Therefore,
in such a case we show the phase plot corresponding to J = 0
only (see the inset in Fig. 9).

The results presented in the upper panels of Fig. 10 show
the density notches in the diagonal probability density for the
last fermions |�2(x, x)|2 defined as in Eq. (26), averaged over
many realizations of the measurement of 2N − 2 fermions.
The notches are clearly visible for all interaction strengths
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FIG. 11. Average probability density for the last zero-size pair of
↓−↑ fermions for different initial numbers of particles N = N↓ =
N↑ = 5, 9, 13. The system of size L = 1 was initially prepared in the
yrast state with total momentum P = π (N + 1). The more particles
in the system, the narrower the density notch visible at the center
of the plot. The inset displays the corresponding (nearly identical
for all N considered here) average phase distributions of two kinds:
facing up (with J = 1) and down (J = 0). All the calculations were
performed in the presence of weak attraction γ = −0.01. All units
are dimensionless.

independently of the measurement scheme (zero size or any
size) of the detected fermionic pairs. Moreover, we always
observe phase flips of two types, facing up (J = 1) and down
(J = 0), that are collected separately in the lower panels of
Fig. 10. In contrast to the case of the equidistant measurement
of zero-size dimers, cf. Figs. 8 and 9, the average density
notches do not drop to zero, i.e., the soliton structure is not
completely dark. The shape of the average density notch
depends on the measurement scheme: the density notch is
sharper with the zero-size scheme than for the any-size one.
Like in Fig. 9, the distance between the two main peaks around
the density notch increases with the interaction strength. This
is related to a decrease of accessible momenta in the yrast state.
Surprisingly, the measurement scheme and the interaction
strength almost do not affect the shape of the average phase
distribution.

The last thing we would like to consider is the influence of
the particle number N = N↓ = N↑ on the soliton structures.
For weak interactions, systems containing more than N = 5
particles in each component can be studied by numerical
diagonalization of the Hamiltonian in Eq. (1) (see Sec. III).
In order to compare N > 5 particle systems with the N =
5 results explored so far in this paper, we have to choose
exactly the same type of yrast excitation. For this purpose,
we investigate odd numbers of particles in each component
up to N = 13. The yrast excitation corresponds to the total
momentum P = π (N + 1) for the system of size L = 1.
Converged results can be obtained only for weak attraction.
By comparing with results obtained using the Bethe ansatz,
we found that current computer resources allow us to study
N = 5 systems via numerical diagonalization up to γ � −0.2
only. By investigating the wave function for the last pair of
↓−↑ fermions we, in fact, calculate higher-order correlation

functions. If so, the eigenstate corresponding to the yrast
state has to be determined very accurately to avoid significant
numerical errors in the final results. The number of basis states
that have to be taken into account for fixed γ proliferates
dramatically with the increase of N . Such demand eliminates
the possibility of analysis for interactions stronger than γ ≈
−0.2. Therefore, we restrict ourselves to γ = −0.01. We
have decided to apply only the any-size measurement scheme
because, for weak interactions, the average size of a ↓−↑
pair is larger than the mean interparticle separation. In the
weak-coupling regime, in order to create the yrast excitation,
we need to break the pair of the quasimomenta with zero
real part and translate one of those quasimomenta just above
the Fermi surface. The Fermi momentum increases with N ;
hence, the yrast excitation requires the “injection” of a larger
momentum if there are more particles in the system. The fact
that with an increase of N we deal with a larger momentum
“injection” and thus with shorter wavelengths is consistent with
the results presented in Fig. 11, where the width of the density
notch decreases with N . We also observe the phase flips with
winding numbers J = 0 and J = 1.

VII. CONCLUSIONS

We have considered a one-dimensional two-component
gas of ultracold fermions interacting via an attractive Dirac
δ potential with periodic boundary conditions. The system
is described by the Yang-Gaudin Hamiltonian [see Eq. (1)],
which can be solved analytically with the help of the Bethe
ansatz. Since the Hamiltonian is invariant under spatial trans-
lations of all particles, one cannot observe any feature of the
eigenstates by looking at the reduced single-particle density
only. Therefore, by employing the Metropolis algorithm, we
performed numerical simulations of the measurement of po-
sitions of particles. Starting with the unpolarized 5+5 particle
system in the ground state, we investigated the formation of
dimers in a wide range of the attraction strengths. The analysis
showed that the average size of pairs of ↓−↑ fermions becomes
smaller than the mean dimer separation δ̄ when the effective
dimensionless interaction parameterγ � −1. In such a regime,
the many-body distribution of the relative distance between
fermions follows the two-body prediction given by Eq. (21).
When the attraction between fermions with opposite spins is
weak (i.e., when γ � −1), one enters the regime where the
size of the Cooper-like pairs is larger than δ̄.

The key element of this paper is an analysis of yrast
eigenstates in the context of the anticipated emergence of dark
soliton signatures. For this purpose, we studied a particular
yrast state with total momentum P = π (N + 1)/L. By succes-
sive particle detections, we analyzed the wave function for the
last pair of fermions. Here, we decided to examine two different
schemes of initialN − 1 pair measurements: either detection of
zero-size dimers or without restriction on measured positions
of spin-up and spin-down fermions. The results clearly show
the dark soliton signatures (density notches and phase flips) in
the wave function of the last remaining pair of fermions, for all
interaction strengths and for both detection schemes. However,
the choice of the detection schemes has an influence on the
shape of the average probability densities. Surprisingly, the
interaction strengths and the detection schemes almost do not
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affect the shape of the average phase distributions, revealing
a clearly visible phase flip. Such a resistance of the phase flip
to parameter changes resembles the behavior observed for a
Bose gas described by the Lieb-Liniger model [38,39,41].
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26005 (2015).

[95] C. Recher, Dissertation Duisburg Essen Universitätsbibliothek,
Duisburg-Essen, 2013.

[96] C. Recher and H. Kohler, arXiv:1306.6377.
[97] J. Javanainen and S. M. Yoo, Phys. Rev. Lett. 76, 161 (1996).
[98] D. Dagnino, N. Barberán, and M. Lewenstein, Phys. Rev. A 80,

053611 (2009).
[99] K. Sakmann and M. Kasevich, Nat. Phys. 12, 451 (2016).

[100] M. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

[101] M. Gajda, J. Mostowski, T. Sowiński, and M. Załuska-Kotur,
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