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Spontaneous breaking of continuous time translation symmetry into a discrete one is related to time crystal
formation. While the phenomenon is not possible in the ground state of a time-independent many-body system,
it can occur in an excited eigenstate. Here, we concentrate on bosons on a ring with attractive contact interactions
and analyze a quantum quench from the time crystal regime to the noninteracting regime. We show that dynamical
quantum phase transitions can be observed where the return probability of the system to the initial state before
the quench reveals a nonanalytical behavior in time. The problem we consider constitutes an example of the
dynamical quantum phase transitions in a system where both time and space continuous translation symmetries
are broken.
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I. INTRODUCTION

Spontaneous symmetry breaking is related to a phenomenon
where equations describing a system possess a certain sym-
metry, but a system chooses spontaneously a solution that
breaks this symmetry. It can be associated with the fragility
of exact symmetric eigenstates against infinitesimally weak
perturbations. Spontaneous symmetry breaking is responsible
for a wide class of phenomena, e.g., nonzero magnetization of
a ferromagnetic material or formation of space or time crystals
[1]. Usually, spontaneous symmetry breaking is accompanied
by a phase transition. That is, there is a critical value of a
control parameter of systems, which separates symmetric and
symmetry broken phases.

While the equilibrium phase transitions are quite well
understood, the same cannot be said about nonequilibrium
dynamics of quantum many-body systems [2,3]. Most notably,
the pioneering works of Kibble and Zurek [4,5] led to the
discovery of dynamical creation of topological defects in
systems driven through a quantum critical point at a finite rate
[6–15]. Subsequently, it has been recently shown that real-time
evolution of time-independent many-body systems after a
quantum quench, i.e., a sudden change of a control parameter
of systems, across a critical value can reveal nonanalytical
behavior at certain moments of time [16–34]. The critical
behavior in time evolution has been also observed for quenches
within the same phase [35,36]. These phenomena are dubbed
dynamical quantum phase transitions and they have been
already demonstrated in experiments [37,38], for review see
Ref. [39].

In 2012 Wilczek identified spontaneous breaking of contin-
uous time translation symmetry into a discrete time translation
symmetry by a quantum many-body system with the formation
of a time crystal [40]. Wilczek’s original idea was proven to
be impossible to realize, because he assumed a system in its

ground state [41–46]. Nevertheless, soon the so-called discrete
time crystals were proposed [47], where periodically driven
quantum many-body systems can spontaneously choose mo-
tion with a period different from the driving period. Subsequent
works [48–59] eventually led to the experimental observation
of the formation of this kind of crystalline structures in time in
quantum many-body spin systems [60–66]. (See also a recent
work on experimental conditions needed for the realization of
a time crystal with ultracold atoms bouncing on an oscillating
mirror [67].) It should be mentioned that in the classical regime
spontaneous breaking of discrete time translation symmetry in
atomic systems was also demonstrated in a laboratory [68,69].

The new research area initiated by Wilczek attracts substan-
tial scientific attention. Recent progress in the field contains
analysis of time quasicrystals [70,71], phase-space crystals
[72–75], topological time crystals [76,77], and analogs of
condensed matter phenomena in the time domain [78–84],
for review see Ref. [1]. Also, it turns out that the concept of
the dynamical quantum phase transitions can be extended to
periodically driven quantum many-body systems [85]. That is,
the return probability of a periodically evolving discrete time
crystal reveals nonanalytical behavior at a critical moment of
time after a quench to the noninteracting regime.

In the present paper we return to Wilczek’s original idea
[40] of spontaneous breaking of continuous time translation
symmetry. It has been shown that in the Wilczek model,
spontaneous breaking of continuous time translation symmetry
can be observed if one restricts to specific excited eigenstates
of the system [43]. That is, the system prepared in a so-called
yrast state is able to break spontaneously both space and time
translation symmetries and the localized center of mass of the
many-body system reveals periodic motion, which lasts forever
if the number of particles N → ∞.

Here, we show that a quantum quench from the time
crystal regime to the regime of the symmetric phase induces
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nonanalytical behavior of the return probability of the system to
the initial state at the critical moments of time. In other words,
we show that the dynamical quantum phase transition occurs
in systems with simultaneously broken continuous time and
space translation symmetries. For other works on dynamical
quantum phase transitions in systems with continuous symme-
try breaking see Refs. [30,86–88]. The paper is organized as
follows. In Sec. II we describe the Wilczek model and introduce
the so-called continuum description of the system [89]. In
Sec. III the analysis of dynamical quantum phase transitions is
presented and we conclude in Sec. IV.

II. TIME CRYSTAL

Let us consider the Hamiltonian of N bosons moving on a
ring of a unit length,

Ĥ =
∫ 1

0
dx ψ̂†

(
−1

2
∂2
x + g0

2
ψ̂†ψ̂

)
ψ̂, (1)

where we put m = 1, h̄ = 1, and where ψ̂ (x) is the standard
bosonic field operator and g0 < 0 determines the strength of
the attractive contact interactions between particles.

In the mean-field approach the ground state of the system
is a Bose-Einstein condensate described by the product state
ψ0(x1, . . . , xN ) = ∏N

i=1 φ0(xi ) where φ0 is the lowest-energy
solution of the Gross-Pitaevskii equation [90],(− 1

2∂2
x + g0(N − 1)|φ0|2

)
φ0 = μφ0, (2)

with μ being the chemical potential of the system. If the
particles’ interactions are very weak, thenφ0 = 1 is the ground-
state solution of Eq. (2). However, when g0(N − 1) < −π2,
the mean-field ground state becomes nonuniform and for
g0(N − 1) → −∞ it is well approximated by the bright soliton
solution [91]

φ0(x) ∝ 1

cosh [g0(N − 1)(x − xCM)/2]
. (3)

The position, xCM, of the center of mass of the system is
arbitrary and it is determined in the process of spontaneous
breaking of continuous space translation symmetry [43]. In-
deed, the exact many-body ground state, which corresponds to
the total momentum P = 0, is also an eigenstate of the unitary
operator, which translates all particles by the same distance
because such an operator commutes with the N -body Hamil-
tonian (1). However, the symmetric ground state is vulnerable
to a perturbation and it is practically impossible to prepare it in
an experiment if N is large. Instead, experimentalists usually
deal with the symmetry broken mean-field solution φ0.

In 2012 Wilczek proposed to introduce a magnetic flux
through the ring along which particles are moving [40].
Provided that the flux is appropriately chosen, he argued
that a time crystal would form in the ground state. In other
words, spontaneous breaking of space translation symmetry
and formation of a bright soliton would result also in the
breaking of the time translation symmetry because the soliton
was expected to move periodically along the ring. Recently it
has been shown that whatever the flux is chosen, the bright
soliton will never move if we consider the limit N → ∞
[1,41,42]. However, the spontaneous formation of the bright
soliton, which moves periodically along the ring does occur

if the system is initially prepared in a yrast state, i.e., in the
lowest-energy eigenstate within the subspace corresponding
to the total momentum P = 2πN [43]. The lifetime of such a
time crystal goes to infinity with N → ∞.

Thus, when we restrict to the Hilbert subspace with P =
2πN , the critical value of the interaction strength, g0(N −
1) = −π2, separates the regimes where both time and space
translation symmetries are either preserved or can be spon-
taneously broken. In Sec. III we show that a quantum quench
from the symmetry broken regime to the noninteracting regime
results in the dynamical quantum phase transition that is ob-
served in the nonanalytical evolution of the return probability
of the system. If we start close to the critical value of the
interaction strength, i.e., g0(N − 1) ≈ −π2, in order to obtain
analytical predictions, we can apply the so-called continuum
approximation [89]. Otherwise, we have to refer to numerical
simulations or the mean-field treatment. In the following when
we consider a large number of particles we often assume that
g0(N − 1) ≈ g0N .

For g0N � −π2, the eigenstate of the Hamiltonian (1)
corresponding to P = 2πN is not a Bose-Einstein condensate
because the reduced single-particle density matrix does not
correspond to a pure state. However, only three single-particle
modes are substantially occupied by particles: the condensate
mode corresponding to the momentum k0 = 2π and the two
neighboring ones, i.e., k0 ± 2π . Therefore, we can truncate
the expansion of the bosonic field operator to three terms
only, ψ̂ (x) ≈ eik0x (â0 + ei2πxâ+ + e−i2πxâ−), where â’s are
the standard bosonic annihilation operators. In the limit of large
N , â0 can be approximated by

√
N − â

†
+â+ − â

†
−â− and the

Hamiltonian (1) reduces to [89]

Ĥ

2π2
≈ p̂2

c + p̂2
s

2
+ Veff (x̂c, x̂s ) + const., (4)

Veff = 1 + α0

2

(
x̂2

c + x̂2
s

) − 7α0

32N

(
x̂2

c + x̂2
s

)2
, (5)

where

α0 = g0N

π2
, (6)

and we have substituted

â± = 1
2 (x̂c ± ix̂s + ip̂c ∓ p̂s ). (7)

The conservation of the total momentum

P̂ = 2π (N+â
†
+â+−â

†
−â−) = 2π(N+x̂s p̂c−x̂cp̂s ), (8)

of the system is reflected by the rotational symmetry of the
effective potential (5).

Eventually, the initial many-body problem has been reduced
to the Schrödinger equation of a fictitious particle in the two-
dimensional space,

i

2π2
∂tψ = −1

2
∇2ψ + Veff (r )ψ, (9)

where we have defined r̂2 = x̂2
c + x̂2

s [89]. For large N we
can approximate 〈r̂2〉/2 � 〈n̂c + n̂s〉 � 〈dN̂〉 where 〈dN̂〉 is
the average number of particles depleted from the condensate
[89]. The wave function of a fictitious particle ψ (r, t ) provides
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information about the distribution of number of particles
depleted from the condensate and we can interpret p(r, t )dr ,
where

p(r, t ) = 2πr|ψ (r, t )|2, (10)

is the probability of finding 2 dN particles out of the
condensate.

III. DYNAMICAL QUANTUM PHASE TRANSITION

In this section we analyze the dynamical quantum phase
transition in the system of N bosons with contact interactions
(1). Specifically, we assume that the system is prepared in
the lowest-energy eigenstate within the P = 2πN subspace
and consider a quench from the time crystal regime to the
noninteracting regime.

A. Continuum approximation

Let us start with the system in the vicinity of the critical point
of the equilibrium quantum phase transition g0N � −π2. For
large number of particles N , the many-body Hamiltonian (1)
reduces to the effective Hamiltonian (4), and the evolution of
the system can be described by the effective two-dimensional
(2D) Schrödinger equation (9) [89]. In the subspace with
the total momentum P = 2πN , the lowest-energy state, also
known as the yrast state, can be well approximated by the
harmonic oscillator ground state through the expansion of (5)
around a local minimum

ψ (r, t = 0) ∝ e−(r−r0 )2/(2b2 ), (11)

where

b = [−2(1 + α0)]−1/4, (12)

r0 =
√

8N (α0 + 1)

7α0
≡

√
N r̃0, (13)

and α0, given by (6), is the renormalized interaction strength.
The state (11) is peaked around r0, which accounts for

low fluctuations of number of particles depleted from the
condensate around the mean value 〈dN̂〉. It is the eigenstate
of the total momentum and consequently an eigenstate of the
unitary operator, which translates all particles by the same
distance. Its time evolution is trivial and therefore it possesses
also time translation symmetry. Since the interaction strength
g0N exceeds the critical value g0N = −π2, we expect that any
small perturbation, such as the measurement of the position
of one particle, can lead to the breakdown of space and time
translation symmetries, and consequently the formation of a
time crystal [43].

Here, we do not consider the time crystal formation, but
instead we choose (11) as our initial state, and at t = 0 we
perform a quench to the noninteracting regime, g0N = 0. For
large N , the time evolution of (11) can be found analytically
(see the Appendix)

ψ (r, t ) ∝ e−i r2

2 cot(2π2t )[h(+)(r, t ) + h(−)(r, t )], (14)

where

h(±)(r, t ) = e∓iπ/4
H−3/2

(− γ (±) (r,t )
2
√

α(t )

)
√

r sin(2π2t )α(t )3/2
, (15)

γ (±)(r, t ) = r0

b2
± i

r

sin(2π2t )
, (16)

α(t ) = 1
2 [b−2 − i cot(2π2t )], (17)

and H−3/2(z) is a Hermite function of degree −3/2 [92].
Following Heyl et al. [16] we associate the dynamical quan-

tum phase transition with the nonanalyticity of the Loschmidt
echo

L(t ) = |〈ψ (0)|ψ (t )〉|2, (18)

i.e., the return probability of |ψ (t )〉 to the initial state |ψ (0)〉
after the quench. As the Loschmidt echo decays exponentially
with the system size [39], it is convenient to analyze the rate
function

λ(t ) ≡ − lim
N→∞

λ(N )(t ) = − lim
N→∞

1

N
lnL(t ), (19)

which can be measured in experiments [37,85]. Within the
three mode approximation near the equilibrium critical point
we find that (see Appendix)

λ(t ) ≈ min[λ+(t ), λ−(t )], (20)

where

λ+(t ) = 2r̃2
0 b2

[b4 + tan2(π2t )]
,

λ−(t ) = 2r̃2
0 b2

[b4 + cot2(π2t )]
, (21)

and b and r̃0 are given in (12)–(13). Since the rate function
in the limit N → ∞ is given by a minimum of two functions
λ±(t ), it has the nonanalytic cusps at the critical time tc =
1/4π when λ+(tc ) = λ−(tc ), which is illustrated in Fig. 1. The
nonanalyticity of the rate function results in the discontinuity
of the first time derivative and appear at t = tc = 1/4π

|λ̇+(tc ) − λ̇−(tc )| = 16π2r̃2
0 b2

(1 + b4)2
. (22)

In Ref. [85] dynamical quantum phase transitions in discrete
time crystals have been investigated. There, it has been pointed
out that not only the Loschmidt echo has nonanalytic points,
but also the von Neuman entropy of the reduced density
matrix is discontinuous in the thermodynamic limit at the same
critical time tc. The latter can be identified with the momentary
increase of purity of the many-body quantum state. Here, we
observe a very similar behavior. In Fig. 2 (top panel) we plot
the probability density p(r, t ) (10) at three different moments
of time t = 0.8 tc, t = 0.94 tc and t = tc. In the course of
time evolution the probability density p(r, t ) can be well
approximated by a normal distribution with an almost constant
variance and the mean value, which approaches the center
of the effective potential. Eventually, at t = tc the fictitious
particle reaches the center, which accounts for the interference
fringes visible in the plot of p(r, tc ). Following the discussion
in Sec. II, we can interpret p(r, t ) as the probability distribution
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FIG. 1. The rate function of the Loschmidt echo for two values of
the initial interaction strength g0N = −10.5 (red solid) and g0N =
−11 (black solid). The rate function can be approximated by λ(t ) ≈
min[λ+(t ), λ−(t )], where λ±(t ) (red and black circles) are auxiliary
functions, Eq. (21). Since the rate λ(t ) is given by a minimum of
λ±(t ), it is not differentiable at their crossing at the critical moment
of time tc = 1/4π , indicated by vertical dotted line, which can be
associate with a dynamical quantum phase transition. All quantities
are dimensionless.

of number of particles depleted from the condensate. Hence,
the interference fringes in Fig. 2 (top panel) are related to
a drastic reduction of uncertainty of the number of particles
depleted from the condensate what reflects an increase of
purity of the many-body state. As a measure of the purity we
investigate the normalized inverse participation ratio (IPR),
i.e.,

IPR(t ) =
∫

dr p(r, t )2 =
∫

dr r2|ψ (r, t )|4, (23)

which is a measure of localization of states: larger values of
IPR correspond to more localized states. In Fig. 2 (bottom
panel) we plot IPR in the vicinity of the critical time tc for
three different total number of particles N = 103, N = 5×103

and N = 2×104. Indeed, IPR is sharply peaked around t = tc
and the peak is the narrower, the larger N is.

B. Numerical results

The continuum approximation allows us to study the case
of interparticle interactions that are very close to the critical
point only, i.e., g0(N − 1) ≈ −π2. In order to examine the
Loschmidt echo farther away from the critical point we employ
the numerical simulations of the many-body system (1) in
a truncated Hilbert space. The yrast state corresponding to
the total momentum P = 2πN can be represented in the
Fock state basis |{n}〉 = ∏J

j=−J |nj 〉, where nj denotes the
number of particles occupying a single-particle state ϕj (x) =
exp[i2π (j + 1)x], and the parameter J has to be chosen
sufficiently big in order to achieve converged results.

Similarly as in the case of the continuum approximation we
are interested in a behavior of the Loschmidt echo L(t ) after
the quench from the time crystal regime to the noninteracting
regime if the many-body system is initially prepared in the
yrast state with P = 2πN . Although, within the numerical
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r
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p(
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t = 0.8 tc
t = 0.94 tc
t = tc

0.2 0.25 0.3
tπ

0.5

0.9

1.3

1.7

2.1
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R
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N = 103
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N = 2 ×104

FIG. 2. Increase of the purity of the many-body state at the
critical time tc. Top: The probability density p(r, t ) = 2πr|ψ (r, t )|2 at
three different moments of time t = 0.8 tc (dashed black), t = 0.94 tc
(dotted blue), and t = tc (solid red) for N = 104. The interference
fringes visible in the plot corresponding to t = tc result in the decrease
of uncertainty of the number of particles depleted from the condensate,
hence, the increase of the purity of the many-body state. Bottom:
The normalized inverse participation ratio (IPR) near the critical time
tc = 1/4π , indicated by vertical dotted line, for three different total
numbers of particles N = 103 (dashed black), N = 5×103 (dotted
blue) and N = 2×104 (solid red). The change of IPR becomes more
rapid with increasing N . All quantities are dimensionless.

simulations the thermodynamic limit is not attainable, we
show that the rates λ(N )(t ) = −N−1 lnL(t ) obtained for finite
numbers of particles N resemble the cusplike nonanalytic
behavior, see Fig. 3 and the discussion in Sec. III C. Note that
while the tails of the rates are almost insensitive to a change
of the total particle number, the shape of λ(N )(t ) can vary
quite quickly in the vicinity of the critical point. Moreover,
the rates tend to diverge for some specific values of N . The
latter phenomenon has been also observed in other systems
[39,85].

C. Symmetry broken state

So far we have analyzed the return probability of the
system after the quench from the time crystal regime to
the noninteracting regime starting with the yrast state, i.e.,
with a state that preserves both time and space translation
symmetries. However, such an yrast state is very fragile
and any perturbation of the system can lead to spontaneous
breaking of the translation symmetries and to the time crystal
formation [43].
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FIG. 3. The rate function λ(N )(t ) for different initial values of
interparticle attractions far from the critical point, i.e., from left top
to right bottom g0(N − 1) = −13, −15, −20, −25. In each panel we
compare the results obtained for different number of particles N . Note
that the rates λ(N )(t ) can change quite quickly with N in the vicinity
of the anticipated critical time tc = 1/4π that is marked with vertical
dotted line. The rates tend to diverge for some specific values of N ,
which has been also observed in other systems [39,85]. All quantities
are dimensionless.

Let us assume now that the system containing a large
number of particles is initially prepared in the symmetry
broken state, i.e., ψ = �N

i=1φ(xi, t ), where φ(x, t ) is the mean-
field bright soliton moving periodically on a ring of a unit
length with the momentum P/N = 2π . The single-particle
wave function φ(x, t ) is a solution of the Gross-Pitaevskii
equation and corresponds to the lowest-energy solution in
the frame rotating with the frequency 2π . For sufficiently
strong interactions the desired single-particle wave function
in the rotating frame may be approximated by φ̃xCM (x) =
ei2πxφ0(x) ∝ ei2πx/ cosh[g0N (x − xCM)/2]. Such a soliton is
parametrized by the center of mass position xCM, which can be
arbitrary and which is determined in a spontaneous symmetry
breaking process.

Similarly as in the previous sections we are interested in
the nonequilibrium dynamics of the system after the quench,
i.e., when g0N is suddenly set to zero. The initial symmetry
broken state ψ̃ = �N

i=1φ̃xCM (xi ) belongs to the degenerate
subspace parametrized by the continuous parameter xCM.
We are interested in the return probability of ψ̃ (t ) to the
degenerate ground-state manifold after the quench, i.e., when
at t = 0 the interactions between particles are turned off. A
natural generalization of the Loschmidt echo for the continuous
symmetry broken solutions is the following [30]:

LSB(t ) =
∫

dxCM|〈φ̃xCM |φ̃(t )〉|2N ∝ e−NλSB(t ), (24)

where φ̃(t ) evolves according to the Gross-Pitaevskii equa-
tion with g0 = 0. For simplicity we choose the initial state
φ̃(t = 0) = φ̃xCM to be localized around xCM = 0.
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0.1

0.2

0.3

0.4

0.5
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FIG. 4. The plots of the rate function λSB(t ), its first derivate
λ̇SB(t ), and the absolute value of the second |λ̈SB(t )| for two
interactions strengths g0N = −13 and g0N = −25 (left and right
column, respectively). The singularity at critical moments of time
are distinguished with a cusp of λSB(t ), discontinuity of λ̇(t ) and a
delta-kick of the second derivate λ̈SB(t ). For g0N = −13, we obtain
a single critical time tc = 1/4π , while for g0N = −25 we observe
a cascade of singular points, see the discussion in the main text.
The presented mean-field results correspond to N → ∞. Many-body
results for the system prepared in the symmetry-preserving state but
for a finite N are shown in Fig. 3. All quantities are dimensionless.

In the case of a system with M-fold degeneracy of the
ground-state level, the Loschmidt echo (18) for the symmetric
ground state is the same as the generalized Lochmidt echo (24)
defined for a symmetry broken state if the thermodynamic limit
is considered. Here, we deal with the continuous symmetry
breaking. Since the symmetry broken solitonic solutions corre-
sponding to different values of xCM are not mutually orthogonal
and forms an overcomplete basis, the two definitions (18) and
(24) might not be equivalent. In the following we point out that
although there are quantitative differences between the results
of (18) and (24), both of them reveal nonanalytical behavior
around critical moments of time.

Let us define λxCM (t ) = − ln |〈φ̃xCM |φ̃(t )〉|2 and estimate the
rate function (24) using the steepest descent method

λSB(t ) = − lim
N→∞

1

N
ln

∫
dxCMe−NλxCM (t )

≈ − lim
N→∞

1

N
ln

{
exp

[−N min
xCM∈[0,1)

λxCM (t )
]}

= min
xCM∈[0,1/2]

λxCM (t ). (25)

In Fig. 4 we present plots of: λSB(t ), its first time derivate
λ̇SB(t ) and the absolute value of the second derivate |λ̈SB(t )|
for two different interaction strength g0N = −13 and g0N =
−25. The rates are periodic with the period T = 1/2π , which
corresponds to the half of the revival time for noninteracting
particles on the ring. Within one period, for g0N = −13, we
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FIG. 5. Singular points of the absolute value of the second deriva-
tive of the rate function (25), i.e., |λ̈SB(t )|, in the space spanned by the
interaction strength g0N and time t . All quantities are dimensionless.

obtain a single critical time tc = 1/4π , which coincides with
tc observed in the previous sections. On the other hand, for
g0N = −25 there is a sequence of singularities. The presence
of the sequence of singularities is specific to the ring geometry.
After the quench to the noninteracting regime, the evolution of
λxCM (t ) can be easily calculated in the momentum space,

λxCM (t ) = − ln |〈φ̃xCM |φ̃(t )〉|2

= − ln

∣∣∣∣∣∣
∑
kn

|φ0(kn)|2e−ik2
nt/2+iknxCM

∣∣∣∣∣∣
2

, (26)

where kn = 2πn and φ0(k) is the Fourier transform of a
solitonic solution φ0(x) of the Gross-Pitaevskii equation,
which for g0N � −π2 is given by (3). For g0N � −π2, the
translational symmetry is merely broken, therefore φ0(x) ∝
1 + δ cos (2πx) where δ � 1. Consequently, for g0N � −π2

we obtain

λxCM (t ) � − ln[1 + 4δ2 cos(2π2t ) cos(2πxCM)] + const.,

(27)

which is minimized by xCM = 0 when t < 1/4π or by xCM =
1/2 when t > 1/4π . At t = tc the rate λSB(t ) given by (25)
is not differentiable what is associated with the dynamical
quantum phase transition. The approximate formula (27)
breaks down when we increase the interaction strength because
a larger number of momentum modes is required to describe the
evolution of λxCM (t ) if the soliton is initially strongly localized.
Consequently different rates λxCM (t ) corresponding to different
xCM become minimal for different moments of time and the
sequence of critical moments of time, visible in Fig. 4, turns
up. For g0N � −20, there is a single critical time at tc = 1/4π ,
which disappears for g0N ≈ −40, see Fig. 5. For g0N � −20
a virtual cascade of singular points in time develops due to the
narrowing of the solitonic solution, cf. Fig. 5.

If we start with the symmetry broken state but close to the
critical point, we also observe a nonanalytical behavior in time
but the obtained values of λSB(t ) (25) do not precisely match
λ(t ) (20).

IV. SUMMARY

We have analyzed bosons on a ring with attractive contact
interactions, i.e., a many-body system, which is able to break
spontaneously continuous time and space translation symme-
tries. The system is related to the Wilczek model of a time
crystal, but contrary to the original Wilczek idea, we do not
consider the ground state of the system but the lowest-energy
eigenstate within a subspace of a nonzero total momentum, the
so-called yrast state.

When the attractive interactions between bosons are suffi-
ciently strong, the mean-field description predicts formation
of a bright soliton, which can move periodically on the ring. In
the full many-body approach, the corresponding many-body
eigenstate is the yrast state with a nonzero total momentum.
The many-body eigenstate fulfills continuous time and space
translation symmetries but in the limit when N → ∞ it
is extremely fragile and breaks the symmetries under an
infinitesimally weak perturbation and thus spontaneously. The
symmetry breaking leads to the formation of a bright soliton,
which is moving periodically on the ring, i.e., a time crystal
emerges.

We have analyzed dynamical quantum phase transitions
in the system when the interactions between particles are
suddenly turned off. Such a quantum quench from the time
crystal regime to the noninteracting regime results in a nonan-
alytical behavior of the return probability of the evolving state
to the initial yrast state. Starting close to the critical value
of the interaction strength for the bright soliton formation,
an analytical description of the dynamical quantum phase
transition has been carried out. Away from the critical point,
signatures of the dynamical quantum phase transitions have
been analyzed with the help of numerical simulations. We have
also investigated the quench to the noninteracting regime when
the system is initially prepared in the mean-field bright soliton
state, which breaks time and space translation symmetries.
The generalized return probability reveals also a nonanalytical
behavior, which becomes the more complex, the stronger
particle interactions are.

To conclude, the considered system is an experimentally
attainable system where time and space translation symmetries
can be spontaneously broken and dynamical quantum phase
transitions can be observed.

ACKNOWLEDGMENT

Support of the National Science Centre, Poland via Projects
No. 2016/21/B/ST2/01086 (A.K.), No. 2016/21/B/ST2/01095
(A.S.), and under QuantERA programme No. 2017/25/Z/
ST2/03027 (K.S.) is acknowledged.

APPENDIX

In a vicinity of the quantum critical point α0 = g0N/π2 �
−1, within the continuum approximation the yrast state with
the total momentum P = 2πN is described by a wave function
of a fictitious particle (9)

ψ (r, t = 0) = N e−(r−r0 )2/(2b2 ), (A1)
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where N is the normalization constant and

b = 1

[−2(1 + α0)]1/4 , (A2)

r0 =
√

8N (α0 + 1)

7α0
≡

√
Nr̃0. (A3)

After a quench across a quantum critical point to α0 = 0,
i.e., to the noninteracting systems, the effective potential (5) is
simply a harmonic potential. Hence, the evolution of (A1) is
given by

ψ (r, t ) =
∫ 2π

0
dφ′

∫ ∞

0
dr ′ r ′K (r, φ, t ; r ′, φ′)ψ0(r ′), (A4)

where

K (r, φ, t ; r ′, φ′) =
i exp

(
i cot(ωt )(r2+r ′2 )

2t
− rr ′ cos(φ−φ′ )

sin(ωt )

)
2π sin(ωt )

(A5)

is a 2D harmonic oscillator propagator in the polar coor-
dinates, and ω = 2π2. The integration over polar angle is

straightforward, as it gives the integral representation of the
zeroth-order Bessel function of the first kind J0(x)∫ 2π

0
dφ′ e−ix cos(φ−φ′ ) ≡ 2πJ0(x). (A6)

Consequently, we can write

ψ (r, t ) = N (t )χ (r, t )e−r2
0 /2b2

ei cot(ωt )r2/2, (A7)

χ (r, t ) =
∫ ∞

0
dr ′r ′J0

(
rr ′

sin(ωt )

)
eα(t )r ′2

eβr ′
, (A8)

where

α(t ) = 1/2b2 − i cot(ωt )/2 (A9)

and N (t ) = −i N / sin(ωt ), β = r0/b
2. The integration over

the radial part of (A8) can be performed efficiently by ap-
proximating the Bessel function with its asymptotic form

J0(x) ≈
√

2
πx

cos(x − π
4 ), which yields

χ (r, t ) ≈
√

sin(ωt )

2πr

∫ ∞

0
dr ′√re−α(t )r ′2

eβr ′
(e−i π

4 + irr′
sin(ωt ) + e

+i π
4 − irr′

sin(ωt ) )

=
√

sin(ωt )

4 r α(t )3/2

[
e−i π

4 H−3/2

(−γ+(r, t )

2
√

α(t )

)
+ e+i π

4 H−3/2

(−γ−(r, t )

2
√

α(t )

)]
, (A10)

where

γ (±)(r, t ) = r0/b
2 ± i r/ sin(2π2t ) (A11)

and Hν (z) is a Hermite function of degree ν [92]. In (A10) we
have employed the integral [93]∫ ∞

0
dxxν−1e−βx2−γ x = �(ν)

(2β )
ν
2
e

γ 2

8β D−ν

(
γ√
2β

)
, (A12)

where �(z) is the Euler gamma and Dν (z) is the parabolic
cylinder function, and we have made use of the identity [92]

Dν (z) = 2− ν
2 e− z2

4 Hν

(
z√
2

)
. (A13)

Now, we are ready to calculate the Loschmidt echo between
the initial yrast state ψ (r, t = 0) (A1) and the time-evolved
state ψ (r, t ) after the quench at t = 0. Let us write

L(t ) = |〈ψ (0)|ψ (t )〉|2 = 4π2N 4

sin2(ωt )
e−2r2

0 /b2 |I (t )|2, (A14)

where

I (t ) =
∫ ∞

0
dr re−α(t )r2+βrχ (r, t ). (A15)

Remembering that in the end we are interested in the rate
λ(t ) = − limN→∞ N−1 lnL(t ), we can approximate χ (t ) in
(A15) in the limit of large number of particles N . Since
for ωt �= 0 (mod π ) the argument of the Hermite function

in (A8) is proportional to
√

N , we can apply an asymptotic
representation of the Hermite functions [92]

Hν (z) ≈
√

π

�(−ν)
ez2

z−ν−1, (A16)

where we have dropped an irrelevant phase factor. Therefore,
for sufficiently large N we can write

|I (t )|2 ≈ | sin(ωt )|
2|α(t )|2 |I+(t ) + I−(t )|2 (A17)

≈ | sin(ωt )|
2|α(t )|2 max

(|I+(t )|2, |I−(t )|2), (A18)

where

|I±(t )| =
∣∣∣∣
∫ ∞

0
dr

√
−rγ±(r, t )e�±(r,t )

∣∣∣∣,
�±(r, t ) = −α(t )r2 + βr + γ 2

±(r, t )

4α(t )
. (A19)

As we shall see, |I±(t )| drop exponentially with N , therefore
the approximation made in (A18) is justified. Since the real
part of α(t ) ∝ 1 is positive and the argument minimizing
Re[�±(r, t )], i.e.,

rmin
± (t ) = r0

ξ (t ) ∓ cos(ωt )

ξ (t ) + 1
,

ξ (t ) = sin2(ωt )[1/b4 + cot2(ωt )], (A20)

023612-7



ARKADIUSZ KOSIOR, ANDRZEJ SYRWID, AND KRZYSZTOF SACHA PHYSICAL REVIEW A 98, 023612 (2018)

is proportional to r0 ∝ √
N , we can approximate

|I±(t )| ≈
∣∣∣∣
√

−rmin± (t )γ±[rmin± (t ), t]
∫ ∞

−∞
dre�±(r,t )

∣∣∣∣
=

∣∣∣∣∣∣
√

−rmin± (t )γ±[rmin± (t ), t]

c(t )
eζ±(t )

∣∣∣∣∣∣, (A21)

where

c(t ) = 1

2π

1 + b4 − 2ib2 cot(2ωt )

b2 − ib4 cot(2ωt )
, (A22)

and

ζ+(t ) = 1

b2

r2
0

1 − ib2 cot(ωt )
,

ζ−(t ) = 1

b2

r2
0

1 + ib2 tan(ωt )
. (A23)

Finally, after a straightforward calculation one gets

λ(t ) = − lim
N→∞

1

N
L(t )

≈ 2r̃2
0 /b2 − 2 min[Reζ+(t ), Reζ−(t )]

= min[λ+(t ), λ−(t )], (A24)

where

λ+(t ) = 2r̃2
0 b2

[b4 + tan2(π2t )]
, (A25)

λ−(t ) = 2r̃2
0 b2

[b4 + cot2(π2t )]
, (A26)

which is finite in the thermodynamic limit.
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