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Xiangguo Yin,1,2,* Xi-Wen Guan,3,4 Yunbo Zhang,1 Haibin Su,5 and Shizhong Zhang2

1Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
2Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
3State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,

Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
4Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University,

Canberra ACT 0200, Australia
5Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China

(Received 13 March 2018; published 7 August 2018)

We present a rigorous study of momentum distribution and p-wave contacts of one-dimensional spinless Fermi
gases with an attractive p-wave interaction. Using the Bethe ansatz wave function, we calculate analytically the
high-momentum tail and show that the leading (∼1/p2) and sub-leading terms (∼1/p4) are determined by two
contacts C2 and C4, which are related to the short-distance behavior of the two-body density matrix and its
derivatives. As one increases the one-dimensional scattering length, the contact C2 increases monotonically from
zero while C4 exhibits a peak at finite scattering length. In addition, we obtain analytic expressions for p-wave
contacts at finite temperature from the thermodynamic Bethe ansatz equations for both weak and strong attractive
interactions.
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I. INTRODUCTION

In the past few decades, experimental advances have made it
possible to engineer with high controllability one-dimensional
systems in ultracold atoms. Furthermore, the interactions
between atoms can be tuned by a variety of experimental
techniques, thus offering a promising opportunity to realize
one-dimensional (1D) models of interacting spins, bosons, and
fermions. It is well known that ultracold atomic gases in 1D
display a rich variety of few-body to many-body physics [1–4].
In contrast to the study of quantum many-body systems in
higher dimensions, many 1D systems can be treated in exact
manners, such as the Bethe ansatz approach [5,6], Bose-Fermi
mapping [7], and quantum field theory [8].

Exactly solvable models provide an important benchmark
understanding of quantum many-body phenomena, including
quantum correlations, quantum criticality, and quantum liquids
[9–12]. In this regard, the prototypical exactly solvable model
of the Lieb-Liniger Bose gas provides a deep understanding
of quantum statistics, thermodynamics, and quantum critical
phenomena [13,14]; see review [15]. The Bethe ansatz solution
of this model is not only widely used to perform analytical
calculations of important physical quantities which shed light
on universal behavior of many-body systems, but also presents
a test ground to explore equilibrium and nonequilibrium
physics in experiment, for example, Tonks-Girardeau gases
[3,4], super Tonks-Girardeau gases [16], quantum liquids [17],
and thermalization of 1D ensembles of cold atoms [18,19].
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By using optical lattices, low-dimensional quantum gases
with rich internal degrees of freedom can be realized. These
advances in experiments stimulate growing theoretical inter-
ests in 1D quantum spinor gases with high spin symmetries and
high partial wave interactions. In the strong-coupling regime,
these systems display very different patterns of spin-charge
separations depending on the statistics of constituent particles
[20–27].

A universal theme in the study of dilute atomic gas is the
correspondence between two-body and many-body correla-
tions at short distance [28–33]. This correspondence manifests
itself in the relation between various physical quantities for
which the so-called contact plays a central role. These relations
include the adiabatic sweep relation, the high-momentum tails,
the derivative of the free energy with respect to scattering
length, the virial theorem, pressure relation, and so on. A nice
feature of these relations is that they apply to both bosons and
fermions in any dimensions, in both high and low temperatures,
irrespective of the states of the system.

Very recently, universal relations are found in systems
of ultracold atoms with p-wave interactions [34–41]. For
spinless Fermi gas, there is no s-wave interaction and p-wave
interaction dominates. At low energies, the phase shift δp(k)
of p-wave interaction in three-dimensional (3D) space can be
expressed as

k3 cot δp(k) = −1

v
− k2

R
+ O(k4), (1)

where k is the relative momentum of colliding atoms and v is
the p-wave scattering volume and R the effective range. An
important difference from the s-wave contact theory is that
in the p-wave case, the effective range R is also a relevant
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parameter that needs to be taken into account on the same
footing as v [35].

The p-wave contact theory has also been extended to 1D.
In Ref. [38], the operator production method is employed
to derive the universal relations using a two-channel model,
including both effects of v and R. As in the 3D case, a
set of universal relations is established. However, no explicit
calculation is given for the values of contacts except for a
two-body calculation. On the other hand, Sekino et al. [36]
used Bose-Fermi mapping to establish relations of correlations
functions in 1D Bose and Fermi gas models, and consequently,
the relation between contacts in Bose and Fermi models. In
their calculation, they have ignored the effects of effective
range (which is not as important in 1D as in 3D).

In this paper, we aim to obtain explicitly, using Bethe ansatz
(BA), the expressions for contacts for a 1D p-wave Fermi gas,
including the effects of effective range. In addition, we aim
to verify, through explicit computation, the various universal
relations derived on general grounds. In particular, we show
that the leading and subleading terms (∼1/p2 and ∼1/p4) of
the high-momentum tail give rise to two contacts C2 and C4,
respectively, which are determined by the two-body density
matrix and its derivative in the short range.

The paper is organized as follows. In Sec. II we discuss
the interaction boundary condition and the BA solution of
of the 1D spinless Fermi gases with a p-wave interaction. In
Sec. III, we present our main results of the p-wave contacts,
the high-momentum asymptotic of the momentum distribution.
We find that the coefficients of the universal leading 1/p2 and
subleading 1/p4 tails are related to the two-body correlation
function and its derivative, respectively. In Sec. IV we calculate
the two-body correlation function and contacts in the weak-
coupling regime, and test the relationship between correlation
function and energy derivatives. We also show the consistence
between the statistical approach and the thermodynamic Bethe
ansatz (TBA) method. In addition, we discuss the contacts in
the strong attractive regime. We conclude the result of our work
in Sec. V.

II. MODEL

We consider a 1D system composed of spinless Fermi
gas with a p-wave interaction, which implies the following
boundary condition for wave function ψ (�z) [42,43]:

lim
z=zj −zi→0+

(
1

a1D
p

+ ∂z − R1D∂2
z

)
ψ (�z) = 0, (2)

where �z = z1, . . . , zN are coordinates of N fermions. Under
a strong two-dimensional harmonic confinement, only the
lowest transverse mode is occupied, and the 1D scattering
length a1D

p and 1D effective range R1D are related to the 3D
scattering volume v and 3D effective range R through [42]

a1D
p = 3a⊥

[
a3

⊥
v

− 3
√

2ζ (−1/2)

]−1

, R1D = a2
⊥

3R
, (3)

respectively. Here 3
√

2ζ (−1/2) ≈ −0.88. The relations in
(3) require that the momentum of scattering fermions satisfy
ka⊥ � 1. As usual, a⊥ = √

h̄/mω⊥ is the transverse oscillator
length, m is the atomic mass, and ω⊥ is the transverse trapping

frequency. The derivation of 1D scattering length and 1D
effective range is related to solution of Lippmann-Schwinger
equation in cylindrical coordinates [42].

By using the above boundary condition (2) and the asymp-
totic Bethe ansatz, the eigenvalues and eigenfunctions of the
uniform system have been exactly obtained [43,44]. The wave
function in the domain {0 � z1 � · · · � zN � L} is given in
terms of the superpositions of N ! plane waves,

ψ (�z) =
∑
P

a(P ) exp

(
i

N∑
l=1

λPl
zl

)
, (4)

where λ1, . . . , λN are quasimomenta. In the above equation,
the summation accounts for all permutations P s of the N

numbers 1, 2, . . . , N , and a(P ) stands for the coefficients
depending on the quasimomenta, p-wave interaction param-
eters, i.e., the scattering length a1D

p and the effective range
R1D. The wave function in other domains can be obtained by
symmetry considerations. The energy of system is given by
E = h̄2/(2m)

∑N
i=1 λ2

i . In the following calculation, we take
the units h̄ = 2m = 1.

Using the interaction boundary condition (2) and the wave
function with periodic boundary conditions (4), we obtain the
amplitudes

a(P ) = (−1)P
N∏

i<j=1

[S(λPi
− λPj

)]1/2, (5)

where

S(x) = ξpx2 − 1/
∣∣lp∣∣+ ix

ξpx2 − 1/
∣∣lp∣∣− ix

. (6)

Here we denote the scattering length lp = a1D
p /2 and the

effective range ξp = R1D/2. Note that (−1)P = +1 (−1) for
an even (odd) permutation. It follows that the BA equations
read [43]

exp(iλiL) =
N∏

j=1

S(λi − λj ), i = 1, 2, . . . , N, (7)

which determines the value of quasimomenta λ1, . . . , λN . The
BA equations provide exact ground state and excitations of the
1D spinless fermions with p-wave interactions. For lp = 0,
the BA equations (7) naturally reduce to the quasimomenta
of free fermions, for which the wave function ψ (�z) is given
by Slater determinant, whereas at p-wave resonance, i.e., lp =
∞, the BA equations (7) reduce to those of the Lieb-Liniger
Bose gas [13] with coupling constant cB = 1/ξp. At the p-
wave resonance, a large value of ξp drives the p-wave spinless
Fermi gas into the regime of the weakly interacting bosons.
This gives a very interesting physical regime and is likely to
be reachable in experiment. In contrast, for ξp = 0, the BA
equations (7) reduce to the ones for the 1D Lieb-Liniger Bose
gas with interacting strength c = 1/|lp|, reversing the Bose-
Fermi mapping. The instability of this model was discussed
in [45]. In this paper, we only focus the case of a1D

p < 0 and
R1D > 0, for which the solutions of quasimomenta are real.
The general solutions to the BA equations (7) are much more
complicated. As usual, by taking logarithm of both sides of the
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equations (7), the roots are determined by

λiL = 2πJi −
N∑

j=1

θ (λi − λj ), (8)

where the phase shift is given by

θ (λ) = 2 arg(iλ − ξpλ2 + 1/|lp|). (9)

In the above equations, the quantum numbers Ji take an
integer (half an integer) for odd (even) particle number N .
The thermodynamics of this model is presented in [46].

III. MOMENTUM DISTRIBUTION

We are interested in the asymptotic behavior of the mo-
mentum distribution, which determines the p-wave contacts.
The dominant contribution in the high-momentum tail involves
the singular behavior of the wave function in the vicinity
of the interaction point, i.e., zij = zi − zj → 0. In order to
evaluate it, here we generalize the method for calculating
the high-momentum distribution [36,47] and the method for
calculating the multiparticle local correlation functions [48].
To this end, three major steps are needed: (a) a short-range
expansion of the wave function in the vicinity of the interaction
point; (b) the asymptotics of Fourier integral of the wave
function; and (c) two-body correlation functions. We discuss
the major step for calculating the correlation function in the
next section.

A short-range expansion of the wave function. Without
losing generality, we consider the interaction point of the
first and the ith particles. The wave function in the domain
{0 � z2 < z3 < · · · < zN � L} can be expanded in terms of
zi1 ≡ z1 − zj :

ψ (z1, . . . , zN ) = ψ0(Zi )sgn(zi1) + ψ1(Zi )zi1

+ψ2(Zi )sgn(zi1)z2
i1 + O

(
z3
i1

)
, (10)

with

ψ0(Zi ) = (−1)i
∑
P

a(P )J (P,Zi ), (11)

ψ1(Zi ) = (−1)i
∑
P

a(P )J (P,Zi )

(
i

2

)
(kPi

− kPi−1 ), (12)

ψ2(Zi ) = (−1)i
∑
P

a(P )J (P,Zi )

(
−1

8

)
(kPi

− kPi−1 )2.

(13)

Here J (P,Zi ) = exp{i[(kPi−1 + kPi
)Zi1 +∑i−2

j=1 kPj
zj+1 +∑N

j=i+1 kPj
zj ]}, Zi1 = (zi + z1)/2, and zi1 = zi − z1

are the center-of-mass and relative coordinates of the
(1i) pair of particles, respectively. We will denote by
Zi = {Zi1, z2, . . . , zi−1, zi+1, . . . , zN } the center-of-mass
coordinate of the first and ith particles and the coordinates of
all the rest of the particles. In the above equations the sign
function is defined as sgn(z) = −1 for z < 0, sgn(z) = 0 for
z = 0, and sgn(z) = +1 for z > 0. Due to the Pauli exclusion
principle, the wave function is zero at the interaction point,
and it is not continuous due to the p-wave interaction for the
1D spinless Fermi gas with an attractive p-wave interaction.

The wave function in the other domains has a similar result
by taking into account its antisymmetry.

The asymptotics of the Fourier integral of the wave
function. In general, for periodic functions sgn(z0 − z)F (z),
(z0 − z)F (z), and sgn(z0 − z)(z0 − z)2F (z), which are de-
fined on the interval [0, L], where F (z) is a regular function,
we can directly calculate their Fourier transforms through
integration by parts. Up to the order of 1/p3, we obtain
asymptotics of the Fourier transforms of these functions,

∫ L

0
dz e−ipzsgn(z0 − z)F (z)

=
[(

2i

p
+ 2

p2
∂z − 2i

p3
∂2
z

)
F (z)

]
z=z0

e−ipz0 + O

(
1

p4

)
,

(14)∫ L

0
dz e−ipz(z0 − z)F (z) = 0, (15)∫ L

0
dz e−ipzsgn(z0 − z)(z0 − z)2F (z)

= − 4i

p3
e−ipz0F (z0) + O

(
1

p4

)
, (16)

where p = 2πs/L and s is an integer. For multiple singular
points, the asymptotic of the Fourier transform of the wave
function is given by the sum of the corresponding terms (14),
(15), and (16). Using (10), and (14), (15), (16), the momentum
representation of the wave function with respect to the first
particle reads

ψ (p, z2, ..., zN )

= 1√
2π

∫ L

0
dz1 e−ipz1ψ (�z)

≈ 1√
2π

∫ L

0
dz1 e−ipz1

N∑
i=2

[
ψ0(Zi )sgn(zi1)

+ψ1(Zi )zi1 + ψ2(Zi )sgn(zi1)z2
i1 + · · · ]

≈
N∑

i=2

1√
2π

e−ipzi

[(
2i

p
+ 2

p2
∂z1 − 2i

p3
∂2
z1

)
ψ0(Zi )

− 4i

p3
ψ2(Zi )

]
z1=zi−ε

, (17)

which can be used to compute the momentum distribution in
an analytical way. Here ε is positive infinitesimal, and the last
two expressions are the approximate results for |p| → ∞.

The momentum distribution is obtained by a multiple
integral of |ψ (p, z2, ..., zN )|2 with respect to z2, z3, . . . , zN :

w(p) = N

∫ L

0
dz2 · · ·

∫ L

0
dzN |ψ (p, z2, ..., zN )|2

|p|→∞≈ C2

p2
+ C3

p3
+ C4

p4
, (18)

023605-3



YIN, GUAN, ZHANG, SU, AND ZHANG PHYSICAL REVIEW A 98, 023605 (2018)

where the coefficients C’s are regarded as the contacts [28],
namely,

C2 = D

∫ L

0
dz2 · · ·

∫ L

0
dzN |ψ0(Z2)|2z1=z2−ε, (19)

C3 = 2D

∫ L

0
dz2 · · ·

∫ L

0
dzN Im[ψ∗

0 (Z2)∂z1ψ0(Z2)]|z1=z2−ε,

(20)

C4 = D

∫ L

0
dz2 · · ·

∫ L

0
dzN

[|∂z1ψ0(Z2)|2

− 2Re
(
ψ∗

0 (Z2)
[
∂2
z1
ψ0(Z2) + 2ψ2(Z2)

])]
z1=z2−ε

. (21)

Here D = 2N (N − 1)/π , and Re(x), Im(x) denote the real
part and imaginary part of the function x, respectively. In
deriving formula (18), we have retained the direct terms but
dropped the cross terms with respect to the summation over i in
Eq. (17). In the high-momentum limit, the integrand functions
include oscillatory exponential functions in the cross terms that
approach to zero upon integration and can be dropped.

In order to evaluate the high-momentum tail, we define the
two-body correlation function

g2(y1, y2; z1, z2)

N (N − 1)

=
∫ L

0dz3 · · ·∫ L

0dzNψ∗(y1, y2, z3, . . . , zN )ψ (�z)∫ L

0dz1 · · ·∫ L

0dzN |ψ (�z)|2
. (22)

Due to the antisymmetry of the wave function, the local two-
body correlation function g2(0, 0; 0, 0) vanishes. However, the
p-wave boundary conditions [Eq. (2)] impose a discontinuity
of the wave function in the vicinity of the interaction point.
As a result, the quasilocal two-body correlation function
limε→0 g2(0, ε; 0, ε) reveals the nature of the p-wave contacts.
It gives the probability of finding two fermions staying in a
short distance ε. It appears to be nonzero for finite interaction
strength. For the homogeneous system, the two-body corre-
lation function is translational invariant, and therefore C2 is
proportional to the quasilocal two-body correlation function.
Whereas the other contacts C3 and C4 = Cc

4 + Cr
4 can be

expressed in terms of derivatives of the two-body correlation
function, namely,

C2 = 2L

π
g2(0, ε; 0, ε), (23)

C3 = 2L

π
[Im∂z2 ]g2(y2, y2 + ε; z2, z2 + ε)|y2=z2=0, (24)

Cc
4 = L

2π

[
∂y2∂z2 − 2Re∂2

z2

]
× g2(y2, y2 + ε; z2, z2 + ε)|y2=z2=0, (25)

Cr
4 = −L

π
[Re(∂z2 − ∂z1 )2]

× g2(y2, y2 + ε; z1, z2 + ε)|y2=z2=z1=0. (26)

Here Cc
4 is related to the derivatives of correlation function

with respect to its two coordinates together, which is related to
the center-of-mass movements of the pairs, while Cr

4 is related
to the difference of the derivatives of correlation function with
respect to z1 and z2, indicating a contribution from the relative

|l
p
|/L
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FIG. 1. The contacts of C2 and C4 at the ground state of the
model with particle numberN = 4. The symbols denote the numerical
curves determined from Eqs. (23), (25), and (26), whereas the dashed
lines are the strong-coupling result from (65).

motion of the pairs. For the ground state or thermodynamic
equilibrium state without breaking inversion symmetry, the
momentum distribution is symmetric about p = 0, and it is
obvious that C3 = 0, which is indeed the case after explicit
calculations. Consequently, the momentum distribution at a
high-momentum tail has two terms,

w(p)
|p|→∞= C2

p2
+ C4

p4
, (27)

which determines the two p-wave contacts.
In Fig. 1 we show the numerical result of C2 and C4 for

the ground state of the model with four particles. When the
scattering length lp = 0, the model behaves as the ideal Fermi
gas with the zero values of contacts C2 = C4 = 0. When
the scattering length |lp| increases, the fermions prefer to
stay together due to the attractive interaction that leads to an
increase of the contact C2. Here we observe that C2 increases
more quickly for a larger value of the range ξp. When lp → ∞,
C2 saturates to the limit of strongly interacting case, which are
the same for various ξp’s. On the other hand, with the increase
of |lp|, C4 first grows to a maximal value and then decreases
rapidly to zero. The peak positions of C4 move to small values
of |lp| for increasing values of the effective range ξp.

IV. CORRELATION FUNCTION

In this section, we present a straightforward calculation
of the contact C2 and C4 for weak interaction regime, i.e.,
|lp| � 1/2πn and ξp < 1/2πn, where the particle number
density n = N/L. Following the method used for calculating
high-order local and nonlocal correlation functions of 1D
strong interaction Bose gas [48], we may directly calculate
the correlation functions of the 1D p-wave Fermi gases up to
the second order of |lp|.
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A. Weak interaction

For weak interaction, i.e., |lp| � 1/2πn and ξp < 1/2πn,
the coefficients a(P ) in the wave function can be expanded up
to the second order of |lp| with the following form:

a(P ) ≈ (−1)P
N∏

i<j=1

(
1 − |lp|iλPiPj

− 1

2
l2
pλ2

PiPj
[1 + 2iξpλPiPj

]

)
, (28)

with λml = λm − λl and as a result the wave function in the
domain {0 � z1 � · · · � zN � L} for z2 = z1 + ε has the new
form

ψ (�z) = ψ (1)(�z)|lp| + ψ (2)(�z)l2
p , (29)

in which the wave function to the first order and the second
order of |lp| are given by

ψ (1)(�z) = (∂z2 − ∂z1 )ψ (0)(�z), (30)

ψ (2)(�z) = −
[
ξp(∂z2 − ∂z1 )2 + (N − 2)(∂z2 + ∂z1 )

+
N∑

i=3

(N + 1 − 2i)∂zi

]
ψ (1)(�z), (31)

respectively. Here the zeroth-order wave function ψ (0) has the

form of a Slater determinant ψ (0)(�z) =∑P (−1)P e
i
∑N

j=1 λPj
zj .

Without loss of generality we shall assume that λ1 < λ2 <

· · · < λN . Using the wave function (29), we show that up to
the order of |lp|3, the numerator of the two-body correlation
function (22) for a positive infinitesimal ε reads (for details,
see calculation in Appendix A)

g2(y1, y2; z1, z2) = {1 − |lp|ξp[(∂y2 − ∂y1 )2 + (∂z2 − ∂z1 )2]}
× g

(2)
2 (y1, y2; z1, z2). (32)

Here the second-order correlation function is defined as the
following derivatives:

g
(2)
2 (y1, y2; z1, z2) = l2

p(∂y2 − ∂y1 )(∂z2 − ∂z1 )

× g
(0)
2 (y1, y2; z1, z2). (33)

In the above calculation, we have omitted terms of higher order
in |lp|ξp. We define the zeroth-order correlation function

g
(0)
2 (y1, y2; z1, z2) =

∫ L

0
dz3 · · ·

∫ L

0
dzNψ (0)(�z)

× [ψ (0)(y1, y2, z3, . . . , zN )]∗. (34)

This zeroth-order correlation function goes to zero when we
take the short-distance limit ε → 0 [due to the vanishing of the
zeroth-order wave function ψ (0)(�z)]. However, its derivatives
give nonzero results when taking the limit ε → 0.

From BA equations (7) with the weak interaction, we
can obtain the solution λi = λF

i α for total momentum∑
i λi = 0, where λF

i = 2πJi/L, α = 1 − 2|lp|n, and the Ji

are (half-)integers satisfying J1 < J2 < · · · < JN . Under the
scaling zi = zF

i /α, the zeroth-order wave function ψ (0)(�z)

is identical to the form for ideal Fermi gas ψF (
−→
zF ) =∑

P (−1)P e
i
∑N

j=1 λF
Pj

zF
j with

−→
zF = zF

1 , . . . , zF
N . We also find the

normalization condition [48]∫ L

0
dz1 · · ·

∫ L

0
dzN |ψ (�z)|2

= α1−N

∫ L

0
dzF

1 · · ·
∫ L

0
dzF

N |ψF (
−→
zF )|2. (35)

Then the zeroth-order correlation function with a normaliza-
tion factor has the following form:

g
(0)
2 (y1, y2; z1, z2)

αN (N − 1)

=
∫ L

0dzF
3 · · ·∫ L

0dzF
N

[
ψF
(
yF

1 , yF
2 , zF

3 , . . . , zF
N

)]∗
ψF (

−→
zF )∫ L

0dzF
1 · · ·∫ L

0dzF
N |ψF (

−→
zF )|2

.

(36)

Since ψF (
−→
zF ) is a Slater determinant, one can use Wick’s

theorem [48],

g
(0)
2 (y1, y2; z1, z2) = α

[
G
(
yF

1 , zF
1

)
G
(
yF

2 , zF
2

)
−G

(
yF

1 , zF
2

)
G
(
yF

2 , zF
1

)]
, (37)

where the single-particle reduced density matrix of ideal
fermions is given by G(y, z) = 1

L

∑N
i=1 exp [−iλF

i (y − z)].
Substituting the above formula into expression (33), then
substituting (33) into Eq. (32) and after a lengthy calculation,
we obtain the two-body correlation function (for details, see
calculation in Appendix A),

g2(y1, y2; z1, z2) = l2
p

1

L2

N∑
i,j=1

[
α3
(
λF

i − λF
j

)2 + 2|lp|α5ξp

× (λF
i − λF

j

)4]
X
(
λF

i , λF
j

)
, (38)

where

X
(
λF

i , λF
j

) = exp
[− iλF

i

(
yF

1 − zF
1

)]
exp
[− iλF

j

(
yF

2 − zF
2

)]
+ exp

[− iλF
i

(
yF

1 − zF
2

)]
× exp

[− iλF
j

(
yF

2 − zF
1

)]
.

(39)

We will use this expression to calculate the p-wave contacts.

B. p-wave contacts

In the thermodynamic limit, we may use the Fermi distri-
bution function to evaluate the p-wave contacts through the
relations given in (23)–(26). The modified Fermi distribution
function with single-particle energy (λF α)

2
is given by

f (λF ) = 1

1 + exp([(λF α)2 − A]/T )
, (40)

where T and A are the temperature and the effective chemical
potential of the 1D Fermi gas, respectively, and we have set
the Boltzmann constant kB = 1. It satisfies the normalization
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condition
∫∞
−∞ f (λF ) L

2π
dλF = N , which includes the first-

order modification of |lp| and is equivalent to the correspond-
ing result from thermodynamic Bethe ansatz equations (see
Appendix C). Notice that the density of states, i.e., the number
of states with fermionic momentum in the interval (λF , λF +
dλF ), is (L/2π )f (λF )dλF , such that the summation in the
two-body correlation function (38) becomes an integral in the
following form:

g2(y1, y2; z1, z2) = l2
p

4π2

∫ ∞

−∞
dλF

1

∫ ∞

−∞
dλF

2 f
(
λF

1

)
f
(
λF

2

)
× [α3

(
λF

1 − λF
2

)2 + 2|lp|α5ξp

× (λF
1 − λF

2

)4]
X
(
λF

1 , λF
2

)
. (41)

For our convenience in calculation, we make a change of
variable λF

1,2 = 2πnx1,2 and then obtain

g2(y1, y2; z1, z2) = l2
p4π2n4

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2N (x1)N (x2)

× [α3(x1 − x2)2 + 2|lp|α5ξp(2πn)2

× (x1 − x2)4] × X(2πnx1, 2πnx2), (42)

where the function N (x) = f (2πnx) is subject to the nor-
malization condition

∫∞
−∞ N (x)dx = 1. Substituting the above

formula into Eqs. (23)–(26), we obtain explicitly the p-wave
contacts in terms of the scattering length |lp| and the effective
range ξp:

C2 = 32πNn3l2
p

[
(1 − 6|lp|n)f2 + 2|lp|ξp(2πn)2

(
f4 + 3f 2

2

)]
,

(43)

C4 = 32π3Nn5l2
p

[
(1 − 10|lp|n)

(
5f4 + 3f 2

2

)+ 2|lp|ξp

× (2πn)2(5f6 + 27f2f4)
]
, (44)

with fi = ∫∞
−∞ dxN (x)xi = 1

(2πnα)i+1

∫∞
0 dy

y (i−1)/2

1+e(y−A)/T . We ob-
serve that in the weak-coupling regime the p-wave contacts
C2 and C4 increase with both the scattering length |lp| and the
effective range ξp. In addition, we have checked that indeed
C3 = 0 for the ground state and equilibrium states.

At low temperature T � Td , here Td = h̄2n2

2mkB
is the degen-

eracy temperature, we can further calculate the contacts by the
Sommerfeld expansion,

C2 = 8

3
πNn3l2

p

[
(1 − 6|lp|n) + (1 + 2|lp|n)

1

4π2
τ 2

+ 16

5
|lp|ξp(πn)2

(
1 + 5

8π2
τ 2

)]
, (45)

C4 = 8

3
π3Nn5l2

p

[
(1 − 10|lp|n) + (1 − 2|lp|n)

3

4π2
τ 2

+ 132

35
|lp|ξp(πn)2

(
1 + 14

11π2
τ 2

)]
, (46)

with τ = T/Td (see Appendix B). This indicates a simple
relationship between the leading terms of C2 and C4, i.e.,
C4 = C2(nπ )2. In this weak-coupling regime, the contact C2

of the spinless p-wave Fermi gas behaves much like that of the

T/T
d

10-1 100 101

C
2
/N

10-1

100
ξ

p
=0

ξ
p
=0.05

ξ
p
=0.1

low T
high T

T/T
d

10-1 100 101

C
4
/N

100

102
ξ

p
=0

ξ
p
=0.05

ξ
p
=0.1

low T
high T

(a)

(b)

FIG. 2. The contacts for p-wave Fermi gas with weakly attractive
interaction in the thermodynamic limit for |lp| = 0.1 and n = 1. The
marked lines are exact results (43) and (44). The black dash-dotted
lines are for the low-temperature limit (45) and (46). The magenta
dotted lines are for the high-temperature limit (47) and (48). The
contacts C2 and C4 increase with both the temperature and the
effective range.

Lieb-Liniger Bose gas with strong repulsion [48]. The contacts
C2 andC4 increase smoothly as we increase the temperature. At
relative high temperatures T � Td , one can apply the Taylor
series expansion with the distribution function fi under the
condition exp (A/T ) � 1, and one obtains

C2 = 4

π
τNn3l2

p

[
(1 − 2|lp|n) + (1 − 4|lp|n)

√
2π

2
τ−1/2

+ 6|lp|ξpn2τ

(
1 + 7

√
2π

8
τ−1/2

)]
, (47)

C4 = 9

π
τ 2Nn5l2

p

[
(1 − 2|lp|n) + (1 − 4|lp|n)

19
√

2π

24
τ−1/2

+ 26

3
|lp|ξpn2τ

(
1 + 445

√
2π

416
τ−1/2

)]
. (48)

In the above calculation, the weak interaction conditions
require that |lp|/� � 1, where the thermal de Broglie wave-

length � =
√

4π
kBT

. Namely, we request T � Td/(lpn)2 and

C2/(Nn) � 1. We show the low- and high-temperature behav-
ior of the contacts of the spinless Fermi gases with an attractive
p-wave interaction in Fig. 2, where there is good agreement
between the numerical results and the exact results obtained
here.

C. Energy derivatives with respect to the scattering length

To relate the p-wave contact defined using asymptotic
behavior of the momentum distribution to other physical
observables, let us consider how C2 is related to the derivative
of energy with respect to lp. Since the subleading C4 term
involves two contacts Cr

4 and Cc
4, and only the former is related

to an energy derivative with respect to the effective range, we
shall not discuss the corresponding adiabatic relation in this
work. To that end, let us consider the p-wave pseudopotential
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of the following form [49,50]:

V (�z) = −a1D
p

∑
i<j

(
∂

∂zi

− ∂

∂zj

)
δ(zi − zj )

(
∂

∂zi

− ∂

∂zj

)
.

(49)

According to the Hellman-Feynman theorem, the two-body
correlation function is related to a derivative of energy with

respect to a1D
p , i.e., g2(0, ε; 0, ε) = (a1D

p )
2

2L
∂E

∂a1D
p

. Combining the

definition of contactC2 with the effective scattering length lp =
a1D

p /2, we may verify that the following relationship holds:
C2 = 1

π
∂E

∂ (−a1D
p )−1 . For a grand canonical ensemble, this relation

can be rewritten as

C2 = L

π

∂P

∂
(
a1D

p

)−1

∣∣∣∣∣
μ,T

, (50)

where the pressure P at finite temperatures and for general
interaction strength can be obtained by thermodynamic Bethe
ansatz (TBA); see Appendix C. By explicit calculation and
comparison, one can show that Eq. (50) exactly reproduces the
contact C2 given in (45) and (47).

We first study the ground energy and its corresponding
contact using the BA equations. When |lp| � L and ξp � L,
the BA equations (8) for the ground state give a class of
asymptotic solutions

λi = λF
i

{
1 − 2n|lp| + [4n2 − 2ξp(n

(
λF

i

)2 + 3EF /L)]l2
p

}
(51)

up to the second order of |lp|, where λF
i and EF are quasi-

momentum and energy for 1D ideal Fermi gases, respectively.
Consequently, we have the ground-state energy

E = EF
{
1 − 4n|lp|

+ 4

[
3n2 − ξp

(
n

N∑
i=1

(
λF

i

)4
/EF + 3EF /L

)]
l2
p

}
. (52)

Taking derivative of the ground-state energy with respect to
1D scattering length, we obtain the contact

C2 = 1

π
8nEF l2

p

[
1 − 6n|lp|

+ 2ξp|lp|
(

N∑
i=1

(λF
i )4/EF + 3EF /N )

)]
. (53)

In the thermodynamics limit, the contact C2 =
8
3πn3Nl2

p(1 − 6n|lp| + 16
5 ξp|lp|π2n2) is consistent with

expression given in (45) for the ground state.
In the following we consider the grand canonical ensemble

in order to confirm the relation (50). For lp < 0, all solutions
of the BA equations Eq. (7) are real. However, at finite
temperatures, the eigenstates become degenerate. Following
the approach introduced by Yang and Yang [51] in dealing
with the thermodynamics of the 1D Bose gas, we determine the
Gibbs free energy G = E − T S − μN for the spinless Fermi
gases with an attractive p-wave interaction by a minimization
G with respect to the BA root densities. In the Gibbs free

energy, S denotes entropy and μ is the chemical potential. It
follows that

ε(λ) = λ2 − μ − T

2π

∫ ∞

−∞
K (k − λ)ln{1 + exp[−ε(k)/T ]}dk,

(54)

where ε(λ) is the dressed energy characterizing the excitation
energy. In the above equation, the kernel function K (x) is given
by

K (x) = 2|lp|(|lp|ξpx2 + 1)

(|lp|ξpx2 − 1)2 + l2
px2

. (55)

The pressure P can then be expressed as

P = T

2π

∫ ∞

−∞
ln{1 + exp[−ε(λ)/T ]}dλ. (56)

This gives the equation of states, from which the particle
density and the compressibility are determined by n = ∂P

∂μ
and

κ = ∂n
∂μ

, respectively.
In the weak interaction limit (|lp| � 1), one can expand the

kernel function K (x) in powers of scattering length |lp|. Up
to the first few leading terms, the TBA equation (C1) can be
simplified as

ε(λ) = Bλ2 − A, (57)

where the effective chemical potential A = μ + 2Q0|lp| +
6ξpQ2l

2
p with the notations B = 1 − 6ξpQ0l

2
p and Qj =

T
2π

∫∞
−∞ kj ln{1 + exp[− ε(k)

T
]}dk.

In the low-temperature limit (T � Td ), the pressure P up
to the second order of |lp| reads

P = 2

3π
μ3/2

{
1 + 2

√
μ

π
|lp| +

(
14

3
+ 16π

5
√

μξp

)
μ

π2
l2
p

+ π2

8

T 2

μ2

[
1 + 4

3

√
μ

π
|lp|

+
(

10

3
+ 48π

5
√

μξp

)
μ

π2
l2
p

]}
. (58)

This gives an important indication of the deviation from the
free fermions. From the formula (50), the contact is calculated
in a straightforward way:

C2 = 8Ll2
p

3π3
μ2

{
1 +

(
14

3
+ 16π

5
√

μξp

)√
μ

π
|lp| + π2

12

T 2

μ2

×
[

1 +
(

5 + 72π

5
√

μξp

)√
μ

π
|lp|
]}

. (59)

In this expression, the chemical potential can be expressed in
terms of the particle density

μ = π2n2

{
1 − 16

3
n|lp| + 4n2l2

p

(
5 − 16π2

5
nξp

)

+ 1

12

T 2

π2n4

[
1 − 4n2l2

p(1 + 8π2nξp )
]}

. (60)

The expression for C2 in Eq. (59) is indeed consistent with
expression (45), which was obtained from the many-body
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wave function. This confirms the universal relation (50).
Furthermore, the compressibility has the analytical form

κ = 1

2nπ2

(
1 + 1

12π2

T 2

n4

){
1 +

(
8 + 2

3π2

T 2

n4

)
n|lp|

+
[

24 + 22

3π2

T 2

n4
+
(

32π2 + 4
T 2

n4

)
nξp

]
n2l2

p

}
. (61)

In the relative high-temperature regime, i.e., Td � T �
Td/(lpn)2, up to the second order of |lp|, the pressure is given
by

P = 1

2

ZT 3/2

√
π

{
1 −

√
2

4
Z + Z

√
T√

π

∣∣lp∣∣
(

1 − 3
√

2

4
Z

)

+ 3

2π
ZT l2

p

[
Z − 4

√
2

3
Z2

+ 2
√

πT ξp

(
1 − 9

√
2

16
Z

)]}
, (62)

where Z = exp (μ/T ) is the fugacity. From the relation (50),
the contact is given explicitly

C2 =T 2Z2l2
p

2π

{
1 − 3

√
2

4
Z + 3

√
T/π

∣∣lp∣∣
[
Z − 4

√
2

3
Z2

+ 2
√

πT ξp

(
1 − 9

√
2

16
Z

)]}
. (63)

It is obvious that this result is consistent with expression
(47) obtained from the many-body wave function (for details,
see calculation in Appendix C). This alternative procedure
provides a confirmation of the contact calculated by the many-
body wave function in terms of the leading and subleading
terms of the scattering length |lp|, see Fig. 2.

D. Strong interaction limit

The case lp → −∞ is known as the fermionic Tonks-
Girardeau gas [52,53] at the p-wave resonance. In addition,
if the effective range tends to zero, the wave function can
be constructed from the noninteracting Bose gas with a sign
function [52,53]. In the strong attraction regime, i.e., |lp| �
L + 2Nξp, the quasimomentum distribution is similar to the
1D weakly interacting Bose gas, see review [15]. In this
case, we assume that | − ξpλ2 + 1/|lp|| � |λ| and find that
the phase shift θ (λ) in the BA equations (7) is close to
±π , and thus the quasimomenta λi’s are proportional to the
square root of 1/|lp| in the form λi = βiH (ξp )/

√|lp| with
i = 1, . . . , N . Here {βi} with i = 1, 2, . . . , N are determined
by the sets of equations βi =∑N

j=1(j =i) 1/(βi − βj ), which are
equivalent to the roots of the Hermite polynomial of degree N .
H (ξp ) = √2/(L + 2Nξp ). The summation of all squares of βi

gives
∑N

i β2
i = N (N − 1)/2, so that the energy of system is

given by E = N (N − 1)/[(L + 2Nξp )|lp|]. It is obvious that
the energy decreases with an increase of the scattering length
|lp| and the effective range ξp.

The coefficients in the wave function can
be rewritten as a(P ) = exp (iB(P )/

√|lp|), with
B(P ) =∑i<j F (ξp, βPi

− βPj
) and F (ξp, β ) =

[1 − ξpH 2(ξp )β2]/[H (ξp )β]. The wave function in the

domain z1 � z2 � · · · � zN is reduced into the following
form:

ψ (�z) = N ! − 1

2

∑
P

⎡
⎣B(P ) + H (ξp )

N∑
j=1

βPj
zj

⎤
⎦

2

1

|lp|

+O(|lp|−3/2). (64)

By calculating the quasilocal correlation function (see Ap-
pendix D), one obtains the leading terms for C2 and C4 as
following

C2 = 2

π
n(N − 1), C4 = n

|lp|
4(N − 1)2

πL(1 + 2nξp )
. (65)

From the above expression, we see that the contact per particle
C2/N is a finite value that depends only on the particle density
in the thermodynamic limit. However, C4 decreases with an
increase of the scattering length |lp|, and it goes to zero at the
p-wave resonance |lp| → ∞. For ξp = 0, C2 is still given by
(65), which can also be obtained from the energy derivative
with respect to |lp|−1 [36,52,53].

V. CONCLUSION

In summary, using the exact many-body Bethe ansatz wave
function, we obtained the high-momentum tail of a spinless
Fermi gas interacting via p-wave scattering. We have found the
leading and subleading coefficients of 1/p2 and 1/p4, i.e., the
p-wave contacts, and give their analytic expressions in both
weak and strong interaction limit. We also show by explicit
calculation how the p-wave contacts are related to the short-
distance behavior of the two-body correlation functions. In
addition, we have obtained the energetics and contacts in both
the low- and high-temperature limits via thermodynamic Bethe
ansatz.
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APPENDIX A: CORRELATION FUNCTION

In the domain z1 � z2 � · · · � zN , the wave function has
the following form:

ψ (�z) =
∑
P

a(P )ei
∑N

j=1 λPj
zj . (A1)
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For weak interaction, the coefficients a(P ) in above
wave function can be expanded up to the second order
of |lp|:

a(P ) ≈ (−1)P
∏
i<j

{
1 − |lp|i(λPi

− λPj
) − 1

2
l2
p

× (λPi
− λPj

)2[1 + 2iξp(λPi
− λPj

)]

}
. (A2)

When z2 = z1 + ε, the coefficients a(P1P2P3...PN )
and a(P2P1P3...PN ) share the same plane wave

e
i(λP1 +λP2 )z1+i

∑N
j=3 λPj

zj , so we calculate the summation of
them

a(P1P2P3...PN ) + a(P2P1P3...PN )

≈ 2(−1)P
(

|lp|
i

λP12 + l2
pξp

i
λ3

P12

) ∏
i<j=3

(
1 + |lp|

i
λPij

)

≈ 2(−1)P

⎛
⎝ |lp|

i
λP12 + l2

pξp

i
λ3

P12
− l2

pλP12

∑
i<j=3

λPij

⎞
⎠

= 2(−1)P λP12

{ |lp|
i

+ l2
p

[
ξp

i
λ2

P12
− (N − 2)(λP1 + λP2 )

−
N∑

i=3

(N + 1 − 2i)λPi

]}
, (A3)

in which λPij
= λPi

− λPj
and

∑
i<j=3 λPij

=
(N − 2)(λP1 + λP2 ) +∑N

i=3 (N + 1 − 2i)λPi
. And then

the wave function for z2 = z1 + ε is rewritten as

ψ (�z) ≈
∑
P

(−1)P λP12

{ |lp|
i

+ l2
p

[
ξp

i
λ2

P12
− (N − 2)

× (λP1 + λP2 ) −
N∑

i=3

(N + 1 − 2i)λPi

]}
e
i
∑N

j=1 λPj
zj

= ψ (1)(�z)|lp| + ψ (2)(�z)l2
p, (A4)

in which the wave function to the first order and the second
order of |lp| are given by

ψ (1)(�z) =
∑
P

(−1)P
λP12

i
e
i
∑N

j=1 λPj
zj

=
∑
P

(−1)P (∂z2 − ∂z1 )ei
∑N

j=1 λPj
zj

= (∂z2 − ∂z1 )ψ (0)(�z), (A5)

ψ (2)(�z) =
∑
P

(−1)P λP12

[
ξp

i
λ2

P12
− (N − 2)(λP1 + λP2 )

−
N∑

i=3

(N + 1 − 2i)λPi

]
e
i
∑N

j=1 λPj
zj

=
∑
P

i(−1)P (∂z2 − ∂z1 )

[
iξp(∂z2 − ∂z1 )2

+ i(N − 2)(∂z2 + ∂z1 ) + i

N∑
i=3

(N + 1 − 2i)∂zi

]

× e
i
∑N

j=1 λPj
zj

= −
[
ξp(∂z2 − ∂z1 )2 + (N − 2)(∂z2 + ∂z1 )

+
N∑

i=3

(N + 1 − 2i)∂zi

]
ψ (1)(�z), (A6)

with the zeroth-order wave function ψ (0)(�z) =∑
P (−1)P e

i
∑N

j=1 λPj
zj .

The correlation function without normalization for infinites-
imal y1, y2; z1, z2 is calculated by the above wave function,

g2(y1, y2; z1, z2)

=
∫ L

0
dz3 · · ·

∫ L

0
dzNψ∗(y1, y2, z3, . . . )ψ (�z)

= (N − 2)!
∫

0�z3�···�zN�L

ψ∗(y1, y2, z3, . . . )ψ (�z)

≈ (N − 2)!ρ (�)l2
p − (N − 2)!

∣∣l3
p

∣∣{ξp[(∂z2 − ∂z1 )2

+ (∂y2 − ∂y1 )2] + (N − 2)(∂z2 + ∂z1 + ∂y2 + ∂y1 )}ρ (�)

− (N − 2)!
∣∣l3

p

∣∣ N∑
i=3

(N + 1 − 2i)
∫ L

0
∂zi

ρ
(�)
i (zi )dzi,

(A7)

in which

ρ (�) ≡
∫

0�z3�···�zN�L

ψ (1)∗(y1, y2, z3, . . . )ψ (1)(�z)dz3 . . . dzN , (A8)

ρ
(�)
l (zl ) ≡

∫
0�z3�···�zN�L

ψ (1)∗(y1, y2, z3, . . . )ψ (1)(�z)

× dz3 . . . dzl−1dzl+1 . . . dzN, (A9)

with 3 � l � N . For the first term in the correlation function
(A7), we define the following derivatives:

g
(2)
2 (y1, y2; z1, z2)

≡ (N − 2)!ρ (�)l2
p

= l2
p(∂y2 − ∂y1 )(∂z2 − ∂z1 )(N − 2)!

×
∫

0�z3�···�zN�L

ψ (0)∗(y1, y2, z3, . . . )ψ (0)(�z)dz3 . . . dzN

= l2
p(∂y2 − ∂y1 )(∂z2 − ∂z1 )g(0)

2 (y1, y2; z1, z2) (A10)

with

g
(0)
2 (y1, y2; z1, z2)

= (N − 2)
∫ L

0
dz3 · · ·

∫ L

0
dzN [ψ (0)(y1, y2, z3, . . . )]∗ψ (0)(�z).

(A11)

023605-9



YIN, GUAN, ZHANG, SU, AND ZHANG PHYSICAL REVIEW A 98, 023605 (2018)

The last term in the correlation function (A7) can be proved to
be zero with∫ L

0
∂zi

ρ
(�)
i (zi )dzi = ρ

(�)
i (L) − ρ

(�)
i (0) = 0. (A12)

At last, one can obtain the correlation function

g2(y1, y2; z1, z2) = {1 − |lp|ξp[(∂z2 − ∂z1 )2 + (∂y2 − ∂y1 )2]}
× g

(2)
2 (y1, y2; z1, z2). (A13)

The Bethe ansatz equations (8) for weak attractive interac-
tion (|lp| � L) exhibit the asymptotic solution λi = λF

i α for
total momentum

∑N
i=1 λi = 0, where λF

i = 2πJi/L, α = 1 −
2|lp|n, and Ji are (half-)integers satisfying J1 < J2 < · · · <

JN . Under the scaling zi = zF
i /α, the zeroth-order correlation

function is simplified to

g0
2 (y1, y2; z1, z2) ≈ α2−N

∫ L

0
ψF
(
yF

1 , yF
2 , ..., zF

N

)
×ψF (

−→
zF )dzF

3 · · · dzF
N, (A14)

with the wave function of the ideal Fermi gas ψF (
−→
zF ) =∑

Q (−1)Qe
i
∑N

j=1 kF
Qj

zF
j . Meanwhile, using the normalization

factor [48],∫ L

0
dz1 · · ·

∫ L

0
dzN |�(�z)|2

= α1−N

∫ L

0
dz1 · · ·

∫ L

0
dzN |ψ (0)(�z)|2

≈ α1−N

∫ L

0
dzF

1 · · ·
∫ L

0
dzF

N |ψF (
−→
zF )|2, (A15)

the zeroth-order correlation function with normalization factor
has the following form:

g0
2 (y1, y2; z1, z2)

αN (N − 1)

=
∫ L

0 dzF
3 · · · ∫ L

0 dzF
NψF

(
yF

1 , yF
2 , ..., zF

N

)
ψF (

−→
zF )∫ L

0 dzF
1 · · · ∫ L

0 dzF
N |ψF (

−→
zF )|2

.

(A16)

Since ψF (
−→
zF ) is a Slater determinant, thus one can obtain the

following result by Wick’s theorem:

g0
2 (y1, y2; z1, z2) = α

[
G
(
yF

1 , zF
1

)
G
(
yF

2 , zF
2

)
−G

(
yF

1 , zF
2

)
G
(
yF

2 , zF
1

)]
, (A17)

where the single-particle reduced density matrix of ideal
fermions is given by G(y, z) = 1

L

∑N
i=1 exp [−iλF

i (y − z)].
By using the above result, the two-body correlation function
has the following form:

g
(2)
2 (y1, y2; z1, z2)

= l2
p(∂y2 − ∂y1 )(∂z2 − ∂z1 )g(0)

2 (y1, y2; z1, z2)

= l2
pα3(∂yF

2
− ∂yF

1

)(
∂zF

2
− ∂zF

1

)[
G
(
yF

1 , zF
1

)
G
(
yF

2 , zF
2

)
−G

(
yF

1 , zF
2

)
G
(
yF

2 , zF
1

)]

= l2
p

1

L2

N∑
i,j=1

α3(λF
i − λF

j

)2
X
(
λF

i , λF
j

)
, (A18)

where

X
(
λF

i , λF
j

) = exp
[− iλF

i

(
yF

1 − zF
1

)]
exp
[− iλF

j

(
yF

2 − zF
2

)]
+ exp

[− iλF
i

(
yF

1 − zF
2

)]
× exp

[− iλF
j

(
yF

2 − zF
1

)]
. (A19)

Finally, we have the two-body correlation function (38) in the
main text, namely,

g2(y1, y2; z1, z2) = l2
p

1

L2

N∑
i,j=1

[
α3(λF

i − λF
j

)2 + 2|lp|α5ξp

× (λF
i − λF

j

)4]
X
(
λF

i , λF
j

)
. (A20)

APPENDIX B: p-WAVE CONTACTS, C2 AND C4

For the low temperature, A/T � 1, according to Som-
merfeld expansion, the function fi = ∫∞

−∞ dxN (x)xi =
1

(2πnα)i+1

∫∞
0 dy

y (i−1)/2

1+e(y−A)/T is expanded with respect to the tem-
perature

fi = 1

(2πnα)i+1

[
2

i + 1
A(i+1)/2

+ π2(i − 1)

12
T 2A(i−3)/2 + · · ·

]
. (B1)

From the normalization condition f0 = 1, the effective chem-
ical potential A can be solved by the iteration method

A ≈ (πnα)2

(
1 + 1

12π2

τ 2

α4

)
(B2)

with τ = T/n2. And putting the effective chemical potential
into fi , fi is expressed with τ and α,

fi = 1

(i + 1)2i

[
1 + i(i + 1)

24π2

τ 2

α4
+ · · ·

]
, (B3)

and then one can obtain the contact C2 and C4,

C2 = 8

3
|lp|2πn3N

[
(1 − 6|lp|n) + (1 + 2|lp|n)

1

4π2
τ 2

+ 16

5
|lp|ξp(πn)2

(
1 + 5

8π2
τ 2

)]
, (B4)

C4 = 8

3
|lp|2π3n5N

[
(1 − 10|lp|n) + (1 − 2|lp|n)

3

4π2
τ 2

+ 132

35
|lp|ξp(πn)2

(
1 + 14

11π2
τ 2

)]
. (B5)

For the relative high temperature which requires effective
fugacity ZA ≡ exp (A/T ) � 1, the integral fi is expanded by
effective fugacity:

fi ≈ 1

(2πnα)i+1

∫ ∞

0
dyy (i−1)/2ZAe−y/T (1 − ZAe−y/T )

= T (i+1)/2

(2πnα)i+1
�

(
i + 1

2

)
ZA(1 − 2−(i+1)/2ZA). (B6)
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From the normalization condition f0 = 1, the effective fugac-
ity can be solved by the iteration method,

ZA ≈ 2
√

πα

τ 1/2

(
1 +

√
2πα

τ 1/2

)
, (B7)

and then one obtains the contact C2 and C4:

C2 = 4

π
l2
pNn3τ

[
(1 − 2|lp|n) + (1 − 4|lp|n)

√
2π

2
τ−1/2

+ 6|lp|ξpT

(
1 + 7

√
2π

8
τ−1/2

)]
, (B8)

C4 = 9

π
l2
pNn3τ 2

[(
1 − 2

∣∣lp∣∣n)+ (1 − 4
∣∣lp∣∣n)19

√
2π

24
τ−1/2

+ 26

3

∣∣lp∣∣ξpT

(
1 + 445

√
2π

416
τ−1/2

)]
. (B9)

APPENDIX C: THE THERMODYNAMIC
BETHE ANSATZ EQUATIONS

The thermodynamic Bethe ansatz equation for p-wave
fermions in one dimension can be written as

ε(λ) = λ2−μ − T

2π

∫ ∞

−∞
K (k−λ) ln

{
1+exp

[
−ε(k)

T

]}
dk,

(C1)

with K (x) = 2|lp |(|lp |ξpx2+1)
(|lp |ξpx2−1)2+l2

px2 . The pressure is defined as

P = T

2π

∫ ∞

−∞
ln{1 + exp[−ε(λ)/T ]}dλ. (C2)

The grand canonical potential, the particle density per length,
and the contact are given by � = −PL, n = ∂P

∂μ
, and C2 =

2L
π

l2
p

∂P
∂|lp | .

For weak interaction, |lp| < 1/n, the kernel in the integral
function of Eq. (C1) is expanded up to the second order of |lp|,
K (k − λ) ≈ 2|lp| + 6ξp|lp|2λ2 + 12ξp|lp|2λk + 6ξp|lp|2k2,

(C3)

and then the TBA equation (C1) is simplified as

ε(λ) = Bλ2 − A, (C4)

with the effective chemical potential A = μ + 2|lp|Q0 +
6Q2ξp|lp|2 with the notations B = 1 − 6Q0ξp|lp|2 and Qj =
T
2π

∫∞
−∞ kj ln{1 + exp[− ε(k)

T
]}dk. Using the integral in part, Qj

can be expressed by the polylogarithm

Qj = −
(

T

B

) j+1
2 T

π (j + 1)
�

(
j + 3

2

)
Li j+3

2
(−eA/T ), (C5)

and using the properties of the polylogarithm Lii (−eA/T ),
one obtains pressure, particle density, and contact with the
following forms:

P = − T 3/2

2
√

π
Li 3

2
(−e

A
T )

[
1 − 3T 3/2

2
√

π
Li 3

2
(−e

A
T )ξp|lp|2

]
, (C6)

n = − T 1/2

2
√

π
Li 1

2
(−e

A
T )(1 + 2|lp|n), (C7)

C2 = 2L

π
l2
pn

{
2P −

[
3T 5/2

√
π

Li 5
2
(−e

A
T ) − 6P 2

n

]
ξp|lp|

}
,

(C8)

in which the expression of particle density is equivalent to
previous normalization conditions of the modified Fermi-Dirac
distribution function, and the contact C2 is also consistent with
the previous result from the many-body wave function.

In the low-temperature limit (T � Td ), according to Som-
merfeld expansion, Qj is expanded with respect to tempera-
ture:

Qj ≈
(

1

B

) j+1
2 1

π (j + 1)

[
2

j + 3
A(j+3)/2

+ j + 1

2

π2

6
T 2A(j−1)/2

]
. (C9)

When the iteration method is applied, the pressure is rewritten
as

P = 2

3π
μ3/2

{
1 + 2

√
μ

π
|lp| +

(
14

3
+ 16π

5
√

μξp

)
μ

π2
l2
p

× π2

8

T 2

μ2

[
1 + 4

3

√
μ

π
|lp|

+
(

10

3
+ 48π

5
√

μξp

)
μ

π2
l2
p

]}
. (C10)

According to formula C2 = 2L
π

l2
p

∂P
∂|lp | , the contact is

C2 = 8Ll2
p

3π3
μ2

{
1 +

(
14

3
+ 16π

5
√

μξp

)√
μ

π
|lp| + π2

12

T 2

μ2

×
[

1 +
(

5 + 72π

5
√

μξp

)√
μ

π
|lp|
]}

, (C11)

in which chemical potential can be expressed by particle
density with the form

μ = π2n2

[
1 − 16

3
n|lp| + 1

12

T 2

π2n4

]
. (C12)

At last one obtains the contact

C2 = 8

3
πl2

pn3N

[
(1 − 6|lp|n) + 1

4

T 2

π2n4
(1 + 2|lp|n)

+ 16

5
n2π2ξp|lp|

(
1 + 5

8

T 2

π2n4

)]
. (C13)

This result is consistent with that from many-body wave
function.

For the relative high temperature, the fugacityZ=eμ/T �1,
Qj can be expanded by the fugacity

Qj =
(

T

B

) j+1
2 T

π (j + 1)
�

(
j + 3

2

)
eA/T [1 − 2−(j+3)/2

× eA/T + e2A/T 3−(j+3)/2 − e3A/T 4−(j+3)/2]. (C14)
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When the iteration method is applied, the pressure is rewritten
as

P = 1

2

ZT 3/2

√
π

[
1 −

√
2

4
Z + Z

√
T√

π
|lp|
(

1 − 3
√

2

4
Z

)
+ 3

2
Z2

× T

π
l2
p

(
1 − 4

√
2

3
Z

)
+ 3ZT 3/2

√
π

l2
pξp

(
1 − 9

√
2

16
Z

)]
.

(C15)

According to the formula C2 = 2L
π

l2
p

∂P
∂|lp | , the contact is

C2 = Ll2
pZ2T 2

π2

[
1 − 3

4

√
2Z +

(
1 − 4

√
2

3
Z

)
3Z

√
T√

π
|lp|

+ 6|lp|ξpT

(
1 − 9

16

√
2Z

)]
, (C16)

in which fugacity can be expressed in particle density

Z = 2
√

πn√
T

(
1 +

√
2πn√
T

)
−
(

1 + 7
√

2πn

4
√

T

)
8
√

πn√
T

|lp|n.

(C17)

At last, one can obtain the contact

C2 = 4l2
pT nN

π

[
1 − 2n|lp| + (1 − 4n|lp|)

√
2π

2

n√
T

+ 6|lp|ξpT

(
1 + 7

√
2π

8

n√
T

)]
, (C18)

which is also consistent with that from the many-body wave
function.

APPENDIX D: STRONG-COUPLING LIMIT

The energy of system composed of N spinless fermions
can be expressed as E =∑N

i λ2
i , and the quasimomentum λi

satisfies the BA equation for real λi ,

λiL = 2πni −
N∑

j=1

θ (λi − λj ). (D1)

Here the phase shift θ (λ) is a monotonic antisymmetric
function defined by

θ (λ) = 2 arg(iλ − ξpλ2 + 1/|lp|) (D2)

and ni = i − (N + 1)/2 for the ground state. In the strong
attractive limit |lp| � 1/L, and we assume that |−ξpλ2 +
1/|lp|| � |λ|, and then phase shift approaches ±π with
θ (λ) ≈ πλ/|λ| − 2( x

λ
− ξpλ) andx ≡ 1/|lp|. And then the BA

equation becomes the new form,

λiL =
N∑

j=1(j =i)

[
2x

λi − λj

− 2ξp(λi − λj )

]
. (D3)

For the ground state, the total momentum is zero, which means∑
j λj = 0, so the BA equation can be simplified as the new

form

(L + 2Nξp )λi =
N∑

j=1(j =i)

2x

λi − λj

. (D4)

The solution of the above equation has the following form:

λi =
√

2x
L+2Nξp

βi , with constant βi which is determined by a set

of equations βi =∑N
j=1(j =i)

1
βi−βj

. The previous assumption

|−ξpλ2 + 1/|lp|| � |λ| requires that |lp| � L + 2Nξp, which
is the strong-coupling condition for the above solution. With
the above solution, the energy of the system is

E = 2/|lp|
L + 2Nξp

∑
i

β2
i = N (N − 1)/|lp|

L + 2Nξp

. (D5)

The coefficients in the wave function can be written as

a(P ) = (−1)P
∏
i<j

{exp[−iθ (λPi
− λPj

)]}1/2

= exp

⎡
⎣i

π

2
(1 − (−1)P ) − i

2

∑
i<j

θ (λPi
− λPj

)

⎤
⎦.

(D6)

In the strong attractive interaction limit, λi = H (ξp )√
|lp |βi

with H (ξp ) =
√

2
L+2Nξp

, and the phase shift θ (λ) ≈ λ
|λ|π −

2F (ξp, β ) 1√
|lp | , with F (ξp, β ) = 1√

2
L+2Nξp

β
(1 − 2ξp

L+2Nξp
β2),

and F (ξp,−β ) = −F (ξp, β ). The coefficient has the follow-
ing form:

a(P ) = exp

[
i√|lp|B(P )

]
(D7)

with B(P ) =∑i<j F (ξp, βPi
− βPj

). The wave function in
the domain z1 � z2 � · · · � zN can be simplified as

ψ (�z)

=
∑
P

exp

[
i√|lp|B(P )

]
exp

⎡
⎣ i√|lp|H (ξp )

N∑
j=1

βPj
zj

⎤
⎦

≈ N ! − Y (�z, ξp )

|lp| , (D8)

with Y (�z, ξp ) = 1
2

∑
P [B(P ) + H (ξp )

∑N
j=1 βPj

zj ]
2
. The

correlation function can be written as

g2(y1, y2; z1, z2)

= N (N − 1)
∫ L

0 dz3 · · · ∫ L

0 dzNψ∗(y1, y2, z3, ...)ψ (�z)∫ L

0 dz1...
∫ L

0 dzN |�(�z)|2

≈ N (N − 1)[(N − 2)!]N !

(N !)2LN

∫
0�z3�···�zN�L

dz3 · · · dzN

×
[
N ! − Y (y1, y2, z3, ..., zN , ξp )

|lp| − Y (�z, ξp )

|lp|
]
, (D9)
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in which we suppose that y1, y2, z1, z2 is close to zero. The
leading terms of contacts C2, Cr

4, Cc
4, and C4 have the following

results:

C2 = 2L

π
g2(0, ε; 0, ε)

≈ 2L

π

N (N − 1)(N !)2LN−2

(N !)2LN

= 2

π

N (N − 1)

L
, (D10)

Cr
4 = −L

π
[Re(∂z2 − ∂z1 )2g2(y2 − ε, y2; z1, z2)]y2=z2=z1+ε

≈ −L

π

−1
|lp | (N !)2LN−2 2N

L+2Nξp
N (N − 1)

(N !)2LN

= 1

π

1

|lp|
2nN (N − 1)

L + 2Nξp

, (D11)

Cc
4 = L

2π

[(
∂y2∂z2 − 2Re∂2

z2

)
g2(y2 − ε, y2; z2 − ε, z2)

]
y2=z2

≈ 1

|lp|
2N (N − 1)(N − 2)

πL(L + 2Nξp )
, (D12)

C4 = Cc
4 + Cr

4 = 1

|lp|
4N (N − 1)2

πL(L + 2Nξp )
. (D13)
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