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Bunching-antibunching crossover in harmonically trapped few-body Bose-Fermi mixtures
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We investigate the ground state of a few-body Bose-Fermi mixture in a one-dimensional harmonic trap with
varying interaction strengths and mass ratio. A bunching-antibunching crossover of the bosonic species for
increasing interspecies’ repulsion is observed within our fully correlated ab initio studies. Interestingly, this
crossover is suppressed if the bosonic repulsion exceeds a critical value which strongly depends on the mass ratio.
In order to unveil the physical origin of this crossover, we employ different levels of approximations: while a
species mean-field approach can account for the antibunching, only the inclusion of the interspecies correlations
can lead to the bunching. We show that these correlations effectively create an induced bosonic interaction, which
in turn elucidates the occurrence of the bosonic bunching. Finally, we derive a two-site extended Bose-Hubbard
model which reveals the low-energy physics of the bosons for the case of much heavier fermions.
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I. INTRODUCTION

Experimental achievements in ultracold atomic systems
opened up a new era for the studies of quantum many-body
systems [1]. Owning to the extraordinary controllability of the
trapping geometries as well as the atomic interaction strengths,
experiments allow for investigations of enormous diversities of
aspects of ultracold atomic ensembles. A prominent example
is the observation of the superfluid to Mott insulator phase
transition of bosons in optical lattices [2–4].

With the aid of sympathetic cooling, the realization of
ultracold atomic mixtures has been put forward [5–20]. In
comparison to a single-species system, the interplay between
intra- and interspecies interactions can provide features which
are inaccessible for a single species. Examples are the phase
separation in a dual-species BEC [5], the collapse of the
degenerate Fermi gas in a Bose-Fermi mixture [14] and the
celebrated BCS-BEC crossover in a Fermi-Fermi mixture
[19,20]. Those intriguing features also stimulated enormous
efforts on the theoretical side, revealing, for example, the
phase separation and phase diagram [21–28], the stability
conditions [29–32], and the collective excitations [33–35] in
various atomic mixtures.

Among them, the one-dimensional (1D) Bose-Fermi mix-
tures are interesting in their own rights because, on one hand,
the presence of two kinds of statistics among the particles
can bring about significant differences on a “macroscopic”
level as compared to the other types of mixtures, such as
the density profiles and the stability condition [36,37]. On the
other hand, the 1D nature yields new features compared to the
physics in higher dimensions. For instance, a 1D Bose-Fermi
mixture can be described by the Gaudin-Yang model [38,39]
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in the strongly interacting Tonks-Girardeau (TG) regime, with
the exact eigenstates obtained by the Bose-Fermi mapping
[40,41]. Besides, the low-energy physics can be described by
the Tomonaga-Luttinger liquid theory making it resemble a
liquid of polarons [42–44].

Stimulated by the recent experimental progresses on few-
body ensembles [45–50], significant theoretical effort also
focuses on the 1D few-body mixtures [51–62], revealing for
example the density profiles and correlation functions [51–55],
dynamical properties [56–59], and the equivalence to a spin-
chain model in the strongly interacting regime [60–62]. Note,
however, that while most of the discussions focus on either the
strongly interacting limit or are limited to certain observables,
studies which systematically explore the mixture properties
from the many-body perspective are still rare [55–57].

In the present work, we investigate the few-body ensemble
of a 1D ultracold Bose-Fermi mixture with harmonic confine-
ment. Particular emphasis is put on how the interactions and
the mass ratio affect the system. The discussions cover a large
range of varying mass ratio rather than a specific situation
in the strongly mass-imbalanced regimes [58,59]. Moreover,
we have a focus on an effective intraspecies description
from the perspective of the interspecies correlations. To this
end, we employ the recently developed ab initio multilayer
multiconfiguration time-dependent Hartree method for mix-
tures (ML-MCTDHX) [63–65]. By means of the imaginary
time propagation [66], it enables us to obtain the ground-
state wave function which takes all correlations (both intra-
and interspecies correlations) into account. We first present
our main observation which is the bunching-antibunching
crossover of the bosonic species encoded, e.g., in the reduced
two-body density. In particular, we find an increased bosonic
bunching tendency with increasing interspecies Bose-Fermi
repulsion. Interestingly, the bunching process is suppressed
above a critical value of the repulsive bosonic interaction.
In the latter regime the increase of interspecies interaction
leads to a bosonic antibunching within the parameter window
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studied and this critical bosonic repulsion reveals a strong
mass imbalance dependency. In order to elucidate the physical
origin of this crossover, we apply two approximate methods
yielding direct insights into the structure of the many-body
wave function and the mechanism of the crossover. First, we
adopt a species mean-field (SMF) description excluding all
the interspecies correlations. Through the buildup of a mean-
field induced potential, the SMF description can qualitatively
account for the antibunching regime, while it fails to describe
the bunching regime. Second, we employ a beyond SMF
description developed in Ref. [67], which accounts for the
interspecies correlations to first order. In this way, we arrive
at an effective single-species Hamiltonian containing, besides
the induced potential, an additional induced Bose-Bose inter-
action. Importantly, such an induced interaction successfully
explains the occurrence of the bosonic bunching. Finally, in
the framework of the beyond SMF description, we derive a
two-site extended Bose-Hubbard model which directly reveals
the low-energy physics present among the bosons in the case
where the fermions are much heavier.

This paper is organized as follows. In Sec. II, we introduce
our setup including the Hamiltonian and our computational
approach. In Sec. III, we first present our main observation: the
bunching-antibunching crossover for the bosonic species. To
elucidate the crossover mechanism, we adopt the SMF and the
beyond SMF descriptions. Furthermore, based on the profile
of the effective potential, we introduce a two-site extended
Bose-Hubbard model which enables us to describe the low-
energy physics effectively present among the bosons in the
strong mass-imbalanced regimes. Finally, our conclusions and
outlook are provided in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we briefly describe our setup including the
Hamiltonian and our computational approach. We focus on a
few-body ensemble consisting of two bosons and two fermions
in a one-dimensional harmonic trap. The ground state of this
mixture is obtained from ab initio ML-MCTDHX simulations
which include all correlations.

A. Hamiltonian

The Hamiltonian of our 1D harmonically trapped ultracold
Bose-Fermi mixture is given by Ĥ = Ĥb + Ĥf + Ĥbf , where

Ĥb =
∫

dxbψ̂
†
b (xb )hb(xb )ψ̂b(xb )

+ gb

2

∫
dxbψ̂

†
b (xb )ψ̂†

b (xb )ψ̂b(xb )ψ̂b(xb ),

Ĥf =
∫

dxf ψ̂
†
f (xf )hf (xf )ψ̂f (xf ),

Ĥbf = gbf

∫
dx ψ̂

†
f (x)ψ̂†

b (x)ψ̂b(x)ψ̂f (x), (1)

and hσ (xσ ) = − h̄2

2mσ

∂2

∂x2
σ

+ 1
2mσω2x2

σ is the single-particle
Hamiltonian for the harmonic confinement of the σ = b(f )
species. ψ̂†

σ (xσ ) [ψ̂σ (xσ )] is the field operator that creates
(annihilates) a σ -species particle at position xσ . For simplicity,
we consider here equal trapping frequencies for both species.

Moreover, we assume that the Bose-Bose (intraspecies) as well
as the Bose-Fermi (interspecies) interactions are of zero range
and can be modeled by contact potentials of strengths [58,68]

gb = 4h̄2ab

mba
2
⊥,b

[
1 − C

ab

a⊥,b

]−1

, (2)

gbf = 2h̄2abf

μa2
⊥,bf

[
1 − C

abf

a⊥,bf

]−1

. (3)

Here ab (abf ) is the 3D Bose-Bose (Bose-Fermi) s-wave
scattering length and C ≈ 1.4603 is a constant. The param-
eters a⊥,b = √

2h̄/mbω⊥ and a⊥,bf = √
h̄/μω⊥ describe the

transverse confinement, with μ = mbmf /(mb + mf ) being
the reduced mass and we assume the transverse trapping
frequency ω⊥ to be equal for both species. Moreover, we focus
on the repulsive interaction regime, i.e., gb (gbf ) � 0. It should
be pointed out that, due to the Pauli-exclusion principle, the
s-wave contributions to the fermionic scattering vanish and,
hence, (spin-polarized) fermions become noninteracting at low
collision energies. In the following discussion, we rescale
the Hamiltonian (1) for the units of the energy and length
with η = h̄ω and ξ = √

h̄/mbω, respectively. We explore a
mixture made of two fermions and two bosons, i.e., Nf =
Nb = 2 and investigate the ground-state properties in both the
mass-balanced (β = 1) and the mass-imbalanced (β = 5, 25)
regimes, withβ = mf /mb being the mass ratio. Let us note that
such a 1D mixture is experimentally accessible by imposing
strong transverse and weak longitudinal confinement for a
binary mixture made of 7Li- 6Li (β ≈ 1) [10,11], 171Yb- 39K,
40K- 7Li (β ≈ 5), or 171Yb- 7Li (β ≈ 25). Moreover, the con-
tact interaction strengths can be controlled experimentally
by tuning the s-wave scattering lengths via Feshbach or
confinement-induced resonances [68–70].

B. Computational approach

In order to explore our few-body system described by Ĥ

from first principles, we employ the very recently developed
ML-MCTDHX method [63–65]. Its efficient wave-function
representation scheme allows one to compute eigenstates
as well as the temporal evolution of a many-body system
including all correlations.

To this end, the state of the 1D Bose-Fermi mixture |�(t )〉 is
first expanded as |�(t )〉 = ∑M

i,j=1 Aij (t )|ψf

i (t )〉|ψb
j (t )〉, with

{|ψσ
i (t )〉}i=M

i=1 being the states for σ species, which form a set
of orthonormal functions. It is important to note that both
the coefficients Aij (t ) and the species states {|ψσ

i (t )〉} are
time dependent. Furthermore, each species state |ψσ

i (t )〉 is ex-
pressed as linear combinations of the number states according
to |ψσ

i (t )〉 = ∑
n|Nσ

Cσ
i,n(t )|n〉σt , where |n〉σt = |nσ1, nσ2, . . .〉

are the number states for the σ species under the constraint
of particle number conservation

∑
i nσ i = Nσ . Moreover,

these number states |n〉σt are built by time-dependent single-
particle functions (SPFs) {|φσ

k (t )〉}sσ

k=1. Using the Lagrangian
variational principle results in the coupled integro-differential
equations of motion for both coefficients Aij (t ) and Cσ

i,n(t )
as well as the SPFs |φσ

k (t )〉, which allows us to obtain the
variationally optimized SPFs |φσ

k (t )〉 and accordingly the state
|�(t )〉.
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Finally, we note that the numbers sσ and M are the
main control parameters for the numerical simulations, in
which sσ truncates the dimension of the single-particle Hilbert
space, leading to individual species spaces of size Kσ =
(Nσ + sσ − 1

sσ − 1 )[Kσ = ( sσ

Nσ
)] for Nσ bosons (fermions). The value of

M � min{KA,KB} defines how many species states are used
to construct the full many-body Hilbert space.

III. GROUND-STATE PROPERTIES AND THEIR
EFFECTIVE DESCRIPTIONS

In this section, we investigate the ground-state properties
of the mixture via the numerically obtained ground-state wave
function of corresponding ML-MCTDHX simulations. The
latter includes in principle all correlations. We begin with the
presentation of our main result, the bunching-antibunching
crossover of the bosonic species induced by the interaction
with the fermions. This crossover is in particular signified in
the reduced two-body density [see Eq. (4)]. Having detected
the crossover from the ab initio ML-MCTDHX simulations,
we explore its physical origin by some effective descriptions.
To do so, we first adopt a SMF description, which assumes
the wave function of the mixture to be of product form
taking into account the intraspecies correlations but excluding
the interspecies correlations. While the SMF description can
qualitatively describe the antibunching regime through the
buildup of a mean-field induced potential, it fails to describe
the bunching regime. Secondly, we go beyond the SMF
approximation by including the interspecies correlations to first
order [67]. In this way, we arrive at an effective single-species
Hamiltonian which contains, besides an induced potential, an
additional induced interaction. Importantly, such an induced
interaction unravels the profound physical insights ignored by
the SMF description. In particular, it successfully explains the
occurrence of the bosonic bunching. Finally, by adopting a
single-band approximation in the strongly mass-imbalanced
regime, we demonstrate the low-energy physics for the bosonic
species via a two-site extended Bose-Hubbard model.

A. Bosonic bunching-antibunching crossover

A particular feature which we observed for our mixture is
the bunching-antibunching crossover for the bosonic species,
which occurs as a function of the inter- and the intraspecies in-
teraction strengths. Indeed, for a fixed gbf one detects a bunch-
ing to antibunching transition by increasing gb (cf. Fig. 1),
while for a fixed gb one finds the reverse transition for
increasing gbf (cf. Fig. 2). In order to visualize this crossover,
we introduce the reduced two-body density for the bosonic
species

ρb
2 (x1, x2) = 〈�|ψ̂†

b (x1)ψ̂†
b (x2)ψ̂b(x2)ψ̂b(x1)|�〉. (4)

The physical meaning of ρb
2 (x1, x2) is the probability of finding

one boson at position x1 while the second one is at x2,
which naturally describes the spatial correlations between two
bosons. Experimentally the spatial profile of the reduced two-
body density can be measured via in situ absorption imaging
(see [71] and references therein).

As an exemplary case, we elaborate how the bosonic species
undergoes a transition from bunching to antibunching for fixed

FIG. 1. Spatial profiles of the bosonic reduced two-body density
ρb

2 (x1, x2) for various gb with fixed gbf = 2.0 and β = 5, in which (a)
gb = 0, (b) gb = 0.6, and (c) gb = 2.0. In addition, the corresponding
profiles of the one-body density for the bosonic species are depicted in
(d), where the red solid, blue dashed, and orange dash-dot line stands
for gb = 0.0, 0.6, and 2.0, respectively.

gbf = 2.0 and increasing gb. The reduced two-body densities
are depicted in Fig. 1 for the mass-imbalanced case of β = 5,
together with the corresponding reduced one-body densities
ρb

1 (x) = ∫
ρb

2 (x, x ′)dx ′. Let us note that during the transition
the two fermions are localized at the trap center due to the
large mass ratio (see below). For the case gb = 0, we observe
that the bosons are bunching at either the left or right side of
the trap, represented by the two dominant peaks around x1 =
x2 ≈ ±1 in the reduced two-body density. With increasing
gb, the bunching becomes energetically unfavorable, which
immediately ramps down (up) the density in the vicinity
of the diagonal (x1 = x2) [off-diagonal (x1 = −x2)] regions

FIG. 2. Spatial profiles of the bosonic reduced two-body density
ρb

2 (x1, x2) for various gbf with fixed gb = 0.4 and β = 5, in which
(a) gbf = 0, (b) gbf = 1.4, and (c) gbf = 2.0. In addition, the corre-
sponding profiles of the one-body density for the bosonic species are
depicted in (d), where the red solid, blue dashed, and orange dash-dot
line stands for gbf = 0.0, 1.4, and 2.0, respectively.
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FIG. 3. Two-body density imbalance for various interaction strengths and mass ratios, (a) β = 1, (b) β = 5, and (c) β = 25. All colored
solid lines are the results obtained from the ab initio ML-MCTDHX simulations. In addition, the P values for gb = 0.0, 0.4, and 0.8, obtained
from the simulations of the SMF (gray dotted lines) and beyond SMF effective theory (colored dotted lines) are presented as well.

[cf. Fig. 1(b)]. Finally, for the case gb = 2.0, the bosons
completely antibunch such that each boson resides on one side
of the trap. Let us highlight that the reduced one-body density
fails to capture the above crossover. For increasing gb, we
observe only a slight change of ρb

1 (x) with a minor broadening
of the density distribution owing to the increment of the bosonic
repulsion [cf. Fig. 1(d)]. Since ρb

1 (x) is obtained by the partial
trace of one particle over the corresponding reduced two-body
density, which inevitably loses the two-particle correlations.
Complementarily, the transition of the antibunching to the
bunching behavior with the increase of gbf is presented as well
(cf. Fig. 2). For increasing gbf and fixed gb, we observe that
the reduced two-body density evolves from the original profile
with dominant populations on the off diagonal to the case of
dominant populations on the diagonal. Similarly, this transition
is not captured by the corresponding reduced one-body density
as well, resulting in a deep dent of the density distribution from
the original Gaussian profile with increasing the Bose-Fermi
repulsion [cf. Fig. 2(d)].

In order to quantify the degree of the bosonic bunching
(antibunching), we introduce the two-body density imbalance
as P = Ps − Pd , where

Ps = 2
∫ ∞

0
dx1

∫ ∞

0
dx2ρ

b
2 (x1, x2),

Pd = 2
∫ 0

−∞
dx1

∫ ∞

0
dx2ρ

b
2 (x1, x2), (5)

with Ps (Pd ) being the probability of finding two bosons at the
same side (different sides) of the trap. Thereby the two-body
density imbalance directly reveals the probability difference
between these two situations. Here, the prefactor 2 originates
from the parity symmetry of the Hamiltonian Ĥ . Importantly,
based on the observations for the spatial profiles of the bosonic
reduced two-body densities, we arrive at the criteria of bosonic
bunching (antibunching) as P > 0 (P < 0). Moreover, due
to the normalization condition

∫
dx1dx2ρ

b
2 (x1, x2) = 1, the

two-body density imbalance takes values within the interval
[−1, 1].

In Figs. 3(a)–3(c), we present the two-body density imbal-
ance P as a function of gbf for a set of discrete values of gb

and various fixed values of β (colored solid lines). Note, here,
that the presented results are obtained from the ab initio ML-
MCTDHX simulations, which differ from the results using the
adopted approximations and effective descriptions (see below).
As expected, the increase of gb always reduces the P value
since the bosonic repulsion favors antibunching. However, the
situation becomes more complicated once additionally gbf

and β are varied. For the equal-mass case, we observe that
the increase of gbf leads to a monotonous increase of the P

value, whereas, in the mass-imbalanced regimes, an increase
or decrease of the P value depending on the value of gb being
below or above a critical value gc

b takes place [cf. Figs. 3(b)
and 3(c)]. Interestingly, the gc

b decreases for increasing mass
ratio, fromgc

b ≈ 0.6 forβ = 5 togc
b ≈ 0.2 forβ = 25. Besides,

the mass ratio has also a significant impact on the absolute
range of P values with P ∈ (−0.3, 0.1) for β = 1, while
becoming P ∈ (−0.8, 0.4) and P ∈ (−0.9, 0.1) for β = 5 and
25, respectively.

Before closing this section, let us briefly discuss the spatial
profiles of the reduced one-body density ρσ

1 (x), which denotes
the probability of finding a σ -species particle at position x. In
Fig. 4, we present ρσ

1 (x) for both species for changing gbf

and β and gb = 0. Despite the fact that ρσ
1 (x) depends on the

value of gb as well, we observe the increase of gb (gb ∈ [0, 2])
only slightly affects these density profiles, resulting in a minor
broadening of the bosonic density distribution owing to the
increment of the bosonic repulsion (results are not shown here).
For increasing β, we find the fermionic density distribution
shrinks dramatically while the bosonic one is less affected. This
observation can be quantitatively understood via the harmonic
confinement encoded in the length scale lσ = √

h̄/mσω [58].
A mass difference leads to different confinement lengths with
the relative ratio lb/ lf = √

β, and thereby results in a smaller
spatial overlap of the density profiles. By contrast, the increase
of gbf has a large impact on both species, resulting in stronger
demixing or phase separation of the two species.

B. Effective theoretical descriptions

In order to elucidate the origin of the above-analyzed
bunching-antibunching crossover, hereafter, we present
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FIG. 4. Spatial profiles of the one-body densities with fixed gb =
0 for fermionic (a)–(c) and bosonic species (d)–(f). The upper, middle,
and lower panels are for the mass ratio β = 1, β = 5, and β = 25,
respectively. Moreover, the solid, dashed, and dash-dot lines stand for
the cases with gbf = 0, gbf = 1.0, and gbf = 2.0, respectively.

effective theoretical descriptions based on the fact that mixture
is weakly entangled (see below). The ground-state wave func-
tion of the 1D Bose-Fermi mixture can be written in the form

|�〉 =
∞∑
i=1

√
λi

∣∣ψf

i

〉∣∣ψb
i

〉
, (6)

according to the Schmidt decomposition [72], where λi are the
Schmidt numbers with descending order, i.e., λ1 > λ2 > · · · ,
which are real positive numbers and obey the constraint∑

i λi = 1 due to the normalization of the wave function |�〉.
Here |ψσ

i 〉 denotes the ith Schmidt state for species σ . In addi-
tion, all the Schmidt states {|ψσ

i 〉} form an orthonormal basis.
We emphasize that the Schmidt numbers directly reveal the
interspecies correlations as S = −∑

i λi log2λi , with S being

the entanglement entropy [72]. Moreover, the case λ1 = 1,
i.e., λi 
=1 = 0, results in S = 0, indicating that the mixture is
nonentangled.

In order to quantitatively evaluate the interspecies correla-
tions, we introduce the species depletion as κ = 1 − λ1, and
depict it as a function of both gb and gbf for various fixed
mass ratios (cf. Fig. 5). Albeit the fact that the increase of gbf

always ramps up the species depletion, however, the κ value is
also affected by both gb and β. For instance, for a fixed gbf , the
increase of gb significantly decreases the κ value for β = 5, 25,
while it has minor impact on the case where the atoms possess
the same mass, leaving the κ value more or less unchanged. On
the other hand, for fixed interaction strengths, the mass ratio
can lead to dramatic variations of the species depletion. For
the cases gb = 0 and gbf = 2.0, the κ value is 0.134 (β = 5),
0.047 (β = 1), and 0.024 (β = 25). Finally, we stress that the
investigated Bose-Fermi mixture essentially remains within
the weak entanglement regime (κ � 1); here about 100%,
86%, and 100% of the parameter space for β = 1, 5, and
25, respectively, exhibit a species depletion below κ = 0.05.
It is this fact that we can exploit in the following to obtain
an effective theoretical description for the bosonic species
accounting for the bunching-antibunching crossover.

1. Species mean-field approximation

Here, we adopt the species mean-field (SMF) approxima-
tion, which assumes the wave function of the Bose-Fermi
mixture to be of product form, i.e., |�〉 = |ψf

SMF〉|ψb
SMF〉,

while excluding the interspecies correlations completely. Be
aware that the SMF description still allows for arbitrarily
large intraspecies correlations, which is of course beyond the
mean-field approximation for mixtures, since the latter simply
assigns a single permanent (Slater determinant) to bosonic
(fermionic) species, while keeping the total wave function of
the form as |�〉 = |ψf

MF〉|ψb
MF〉 [36,37]. Variation of the species

state |ψb
SMF〉 immediately allows one to derive the effective

Hamiltonian for bosonic species as Ĥ b
eff-SMF = Ĥb + V̂ b

SMF. It
contains, besides the original single-species Hamiltonian Ĥb,
an additional induced potential given by

V̂ b
SMF = 〈

ψ
f

SMF

∣∣Ĥbf

∣∣ψf

SMF

〉

=
∫

dx V b
SMF(x)ψ̂†(x)ψ̂ (x), (7)

FIG. 5. Species depletion κ as a function of gb and gbf for (a) β = 1, (b) β = 5, and (c) β = 25, respectively.
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FIG. 6. Effective potentials (in units of η) for the bosonic species for gb = 0 and gbf = 0.2 (upper panels), 1.0 (middle panels), and 2.0
(lower panels). Besides, the left, middle, and right column belongs to the mass ratio β = 1, β = 5, and β = 25, respectively. The green solid
lines represent the harmonic trap; the red dashed lines as well as the blue dash-dot lines are the profiles of V b

eff-SMF(x ) and V b
eff(x ). Furthermore,

the straight horizontal lines indicate the lowest two single-particle energy levels [ε1,2 (in units of η)] for the harmonic trap (gray dashed lines),
the SMF effective potential (purple dash-dot lines), and the V b

eff(x ) (brown solid lines). For illustrational purposes, we shift the energy levels of
the V b

eff-SMF(x ) as well as of the V b
eff(x ) such that the ground-state energy matches the one of the harmonic trap (ε1 = 0.5).

with V b
SMF(x) = gbf ρ

f

1−SMF(x) and ρ
f

1−SMF(x) =
〈ψf

SMF|ψ̂†
f (x)ψ̂f (x)|ψf

SMF〉 being the SMF induced potential
and the reduced one-body density for fermonic species
obtained from the SMF simulations. At this point, we
conclude that the SMF description incorporates the impact
of the interspecies interactions onto the bosonic species as
a mean-field induced potential. Albeit the fact that the SMF
description is only exact for κ = 0, it can be qualitatively
valid in the case when κ is small enough. Compared to the ab
initio ML-MCTDHX results, the P value obtained from the
SMF approximation possesses a qualitative agreement in the
regimes of P < 0 (results are not shown here). However, large
discrepancies occur for small gb, in particular, when gbf � gb

[cf. Fig. 3 (gray dotted lines)]. Note that the presented P values
using the SMF description are for gb = 0.0, 0.4, and 0.8.
For the other cases, both methods have minor discrepancies.

Since the SMF description reduces the interspecies physics
to an additional potential, we investigate the SMF effective
potential as V b

eff-SMF(x) = 1
2x2 + V b

SMF(x), which depicts the
net confinement that a boson feels, and present it in Fig. 6

(red dashed lines). For increasing gbf , we observe that the
SMF effective potential deviates significantly from the original
harmonic confinement (green solid lines), forming either a
tighter confinement for β = 1 [cf. Figs. 6(a)–6(c)] or a double-
well pattern for β = 5, 25 [cf. Figs. 6(d)–6(f) and 6(g)–6(i)].
Here, we note that the changes of gb (gb ∈ [0, 2]) only slightly
affect the shapes of the SMF effective potential. In comparison
to the harmonic trap, a tighter confinement enlarges the energy
difference between the lowest two single-particle energy levels
δε = ε2 − ε1

1 [cf. Fig. 6 (brown solid lines)], which suppresses
excitations of bosons by the intraspecies repulsion. Hence, for
β = 1, the effective potential always reinforces the bosonic
coherence leading to an increase of the P value [cf. Fig. 3(a)].
In contrast, in the unequal mass cases, a double-well potential
suppresses the particle hopping between two sides of the

1For illustrational purposes, we shift the energy levels of the
V b

eff-SMF(x ) and the V b
eff(x ) such that the ground-state energy matches

the one of the harmonic trap (ε1 = 0.5).
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effective potential due to the presence of the central barrier.
For increasing gbf , the barrier height grows correspondingly,
reducing δε and facilitating the bosonic antibunching due to the
bosonic repulsion. This can be clearly seen by the continuous
decrease of the P value in the mass-imbalanced regimes
[cf. Figs. 3(b) and 3(c)].

It is worth noting that, since the SMF description only
results in an effective potential for the bosons, the repulsive
intraspecies interaction restricts the two-body density imbal-
ance to P < 0, which can be clearly seen in Fig. 3 (gray dotted
lines). Consequently, the SMF description fails to account for
the occurrence of the bosonic bunching.

2. Beyond the SMF description

In order to go beyond the SMF description and understand
the role of the interspecies entanglement on the bunching-
antibunching crossover, we adopt the approach developed in
Ref. [67], which incorporates the interspecies correlations to
first order into the effective single-species description. The
resulting effective Hamiltonian for σ species is

Ĥ σ
eff = H σ̄

11 +
∑
i 
=1

√
λiH σ̄

1iH
σ̄
i1

t1i

, (8)

with σ̄ = f (b) for σ = b(f ). Moreover, H σ̄
1i = 〈ψσ̄

1 |Ĥ |ψσ̄
i 〉

and t1i = 〈ψσ
1 |〈ψσ̄

1 |Ĥ |ψσ̄
i 〉|ψσ

i 〉 representing the transition
amplitude between the Schmidt-state products |ψσ̄

1 〉|ψσ
1 〉 and

|ψσ̄
i 〉|ψσ

i 〉. It is worth noting that such an effective descrip-
tion focuses on the weak-entanglement regime described by
the conditions

√
λ1 ≈ 1 and

√
λi 
=1 � 1. In this spirit, the

first Schmidt state contains the dominant contribution to the
properties of the many-body state while all the terms of order
(
√

λi 
=1)2 are negligible. In contrast to the SMF effective
Hamiltonian, Ĥ σ

eff contains an additional interaction effectively
present among the particles of the same type which origi-
nates from the interspecies correlations. For our Bose-Fermi
mixture, we highlight that in particular for the case gb = 0,
this induced interaction plays a crucial role (see below).
We can rewrite the effective Hamiltonian for the bosonic
species as

Ĥ b
eff = Ĥb + V̂ b

ind + Ĥ b
ind, (9)

with

V̂ b
ind =

∫
dx

[
V b

1 (x) + V b
no(x)

]
ψ̂

†
b (x)ψ̂b(x), (10)

Ĥ b
ind = 1

2

∫
dx1dx2Hb

ind(x1, x2)ψ̂†
b (x1)ψ̂†

b (x2)ψ̂b(x2)ψ̂b(x1)

(11)

representing the induced potential and induced interaction,
respectively. Here V b

1 (x) and V b
no(x) stand for the contributions

to the induced potential from the SMF approximation and the
normal ordering of the induced interaction (see below). Note
that we obtain the induced interactions and the induced poten-
tials from the ab initio ML-MXTDHX simulations [63,67].
The computed two-body density imbalance for gb = 0, 0.4
and gb = 0.8 using the effective single-species Hamiltonian
(9) is presented in Fig. 3 as well (colored dotted lines).

Compared to the results obtained from the SMF approximation
[cf. Fig. 3 (gray dotted line)], the P values using the beyond
SMF description possess only minor discrepancy with the ones
obtained from the ab initio ML-MCTDHX simulations. Im-
portantly, the beyond SMF description successfully accounts
for both the bunching and antibunching regimes; in particular,
it quantitatively captures the critical bosonic repulsion gc

b in
the mass-imbalanced regime, which manifests its applicability.
We note again that the computed P values from the SMF
approximation, the beyond SMF description, and the ab initio
ML-MCTDHX simulations have a good agreement for the
other values of gb (results are not shown here).

Let us now inspect in more detail the induced potential and
induced interaction in Eq. (9). We first focus on the induced
potential V̂ b

ind, which consists of two terms where the first
one

V b
1 (x) = gbf γ

f

11(x) (12)

represents the SMF contribution. Here γ
f

11(x) =
〈ψf

1 |ψ̂†
f (x)ψ̂f (x)|ψf

1 〉 is the one-body transition matrix
element for the fermionic species, which is the contribution
from the first Schmidt state to the one-body density. Indeed, in
the weak-entanglement regime we have γ

f

11(x) ≈ ρ
f

1−SMF(x);
therefore, V b

1 (x) highly resembles the SMF induced potential
(results are not shown here). The second term V b

no(x) is
given by

V b
no(x) = gbf

∑
i 
=1

√
λi

t̃1i

[
γ

f

1i (x)γ f

i1 (x) + 2β
f

1iγ
f

i1 (x)
]
, (13)

with t̃1i = ∫
dx γ b

1i (x)γ f

1i (x) and β
f

1i = 〈ψf

1 |Ĥf |ψf

i 〉. Here the
first part γ

f

1i (x)γ f

i1 (x) is a result of the normal ordering of the
term 〈ψf

1 |Ĥbf |ψf

i 〉〈ψf

i |Ĥbf |ψf

1 〉 in Eq. (8), while β
f

1iγ
f

i1 (x)
stems from cross terms such as 〈ψf

1 |Ĥf |ψf

i 〉〈ψf

i |Ĥbf |ψf

1 〉.
Note, however, that V b

no(x) is a small correction compared to
V b

1 (x) due to the proportionality to
√

λi 
=1. Similar to the SMF
description, we introduce the effective potential as V b

eff(x) =
1
2x2 + V b

ind(x). We find that its profile highly resembles the one
obtained from the SMF simulations incorporating in general
only minor corrections [cf. Fig. 6 (blue dash-dot lines)].
Interestingly, this correction always mitigates the effects of
the induced potentials which are, hence, overestimated by
the SMF description. This results in a narrower (broader)
energy difference δε in the mass-balanced (mass-imbalanced)
regime [cf. Fig. 6 (purple dash-dot lines and brown solid
lines)].

Now we turn to the induced interaction, which reads

Hb
ind(x1, x2) = gbf

∑
i 
=1

2
√

λi

t̃1i

γ
f

1i (x1)γ f

i1 (x2). (14)

In Fig. 7, we present the induced interaction among the bosons
for both the mass-balanced case and the mass-imbalanced
cases. Importantly, the computed induced interaction preserves
the particle exchange symmetry Hb

ind(x1, x2) = Hb
ind(x2, x1)

for indistinguishable particles as well as the parity symmetry
Hb

ind(x1, x2) = Hb
ind(−x1,−x2) stemming from the original

Hamiltonian [see Eq. (1)]. Moreover, we observe that, un-
like the original zero-range bosonic repulsion, the induced
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FIG. 7. Induced interactions for the bosonic species for gb = 0 and gbf = 1.0 with (a) β = 1, (b) β = 5, and (c) β = 25, respectively.

interaction is long ranged and becomes, depending on the
relative coordinate r = x1 − x2, attractive for small particle
distances r , repulsive for larger r , and vanishes at large r .
Besides, the induced interaction also depends on the center-of-
mass coordinate R = (x1 + x2)/2 owing to the inhomogeneity
of the system. These features are drastically different from
the situation in homogenous systems, where only the relative
coordinate is involved and the induced interaction is overall
attractive [73,74]. Furthermore, we stress that, albeit the similar
features, the induced interactions for various mass ratios differ
from each other with respect to their strength and range due
to the localization of the fermionic density. For instance, as
compared to the equal mass case, the induced interaction for
β = 25 has an almost twice as large maximal value while being
of smaller range.

The induced interaction paves the way to qualitatively
exploit the physical impact of the interspecies correlations
ignored by the SMF description. In particular, it enables us
to understand the occurrence of the bosonic bunching. Based
on its profile, we realize that the attractive part of the induced
interaction supports the configuration that one boson stays in
the vicinity of the other and even suppresses configurations
with both bosons being apart from each other. Based on the
above two aspects, we conclude that the induced interaction
enforces the bunching for the bosonic species. These findings
result in the following important outcomes. (i) For the case with
gb = 0, the induced interaction among the bosons leads to the
rising trend of the two-body density imbalance. (ii) For the
case of a nonvanishing gb, there exists a competition between
the induced interaction and the contact bosonic repulsion.
For small enough gb, the induced interaction is dominant
thereby resulting in a similar behavior of P as the case for
gb = 0. However, once gb exceeds a critical value, the net
interaction between two bosons becomes repulsive, leading
to a continuous decrease of the two-body density imbalance in
the mass-imbalanced cases. Note that this competition is not
captured in the mass-balanced regime for the parameter regime
under investigation. (iii) Moreover, the strength and range
of the induced interaction highly depends on the mass ratio,
therefore, resulting in a strong mass imbalance dependency of
the critical bosonic repulsion gc

b.

C. Two-site extended Bose-Hubbard model

The above effective descriptions introduce significant in-
sights in the study of mixtures while, at the same time,
enable us to explore the physics effectively present in a

single species. This is why we have been able to see that
the effective potential in the strong mass-imbalanced regimes
becomes a double well [cf. Figs. 6(g)–6(i)], which offers the
opportunity to map the effective Hamiltonian for the bosonic
species to a lattice model. In order to elucidate this lattice
model, we focus on the situation for β = 25 in the following
discussions. Furthermore, in Figs. 6(g)–6(i), we clearly see
that the presence of a central barrier induces the formation
of bands with a small energy spacing δε between the two
lowest single-particle eigenstates. Importantly, a large gap to
the next band severely suppresses particle excitations to the
higher bands. In this way, the bosons mainly populate the
lowest band. With this knowledge, we adopt the single-band
approximation and obtain the Hamiltonian for the two-site
extended Bose-Hubbard (EBH) model for the two bosons as
(for a corresponding derivation please see the Appendix)

ĤEBH = − J (â†
LâR + â

†
RâL) + V N̂LN̂R

+ U

2
[N̂L(N̂L − 1) + N̂R (N̂R − 1)], (15)

where â
†
R/L (âR/L) denote the creation (annihilation) operators

for the right or left site and the coefficients J , U , and V repre-
sent the hopping amplitude and the on-site interaction, as well
as the nearest-neighbor interaction, respectively. Compared
to the conventional Bose-Hubbard model, the EBH model
possesses richer phases including the density-wave phases and
the Haldane insulator phase, in addition to the superfluid and
the Mott insulating phase [75,76].

Before proceeding, it is instructive to note that the discus-
sions on the two-site EBH model as well as the computed
coefficients are in the framework of the beyond SMF descrip-
tion. Let us first briefly comment on the roles of both gb and
gbf with respect to the above two-site EBH model. The role
of gb is relatively simple since the increment of the bosonic
repulsion mainly increases the on-site repulsion, resulting in
the increase of the U value. In comparison, the role of gbf is
more complicated. On one hand, the increase of gbf leads to a
rapid increase of the height of the central barrier which, in turn,
leads to a monotonous decrease of the hopping amplitude J .
On the other hand, it also increases the strength of the induced
interaction resulting in an increase of the on-site attraction, as
well as the off-site repulsion.

The computed coefficients for the two-site EBH model are
presented in Fig. 8. As anticipated, the increase of gbf leads
to a decrease of the hopping amplitude J since the increment
of the lattice depth severely suppresses the particle hopping
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FIG. 8. Coefficients (in units of η) for the two-site EBH model
for β = 25. (a) gb = 0; (b) gb = 1.0. The inset shows the on-site and
nearest-neighbor interaction for gb = 0 and gbf ∈ [1, 2]. Results are
obtained from the ab initio ML-MCTDHX simulations.

between the two sites. In contrast, the coefficients of both
on-site and nearest-neighbor interactions are defined by the in-
terplay between the induced interaction and the bosonic contact
repulsion. For the case gb = 0 [cf. Fig. 8(a)], the induced inter-
action creates attractive on-site and repulsive nearest-neighbor
interactions due to the long-range behavior of the spatial profile
[cf. Fig. 7(c)]. Importantly, the on-site attraction combined
with a weak hopping amplitude facilitates the “cat-state-like”
phase [77], with the wave function |�〉 = 1/

√
2(|2, 0〉 +

|0, 2〉), which corresponds to the bosonic bunching. Here
|NL,NR〉 = 1/

√
NL! NR!(â†

L)NL (â†
R )NR |vac〉, with NL(R) be-

ing the particle number of the left (right) site under the
constraint of particle conservation NL + NR = 2. In contrast,
for the cases with a large bosonic repulsion [cf. Fig. 8(b)],
the on-site repulsion dominates and, in turn, supports the
formation of a “Mott-state-like” phase, which corresponds to
the antibunching of the bosons. As a result, the above two-
site EBH model supports a transition from the cat-state-like
phase to the Mott-state-like phase, which coincides with the
bunching-antibunching crossover of the more general binary
mixture system investigated above.

In order to quantitatively judge the validity of the two-site
EBH model, we inspect the corresponding two-body density
imbalance

PEBH =
∑

i=L,R

1

NL! NR!
〈�EBH|â†

i â
†
i âi âi |�EBH〉

− 〈�EBH|â†
Lâ

†
RâRâL|�EBH〉, (16)

denoting the probability difference between finding two bosons
on the same site and finding them on different sites. More-
over, the ground state |�EBH〉 is obtained by diagonalizing
the Hamiltonian ĤEBH in the space spanned by the basis
{|2, 0〉, |1, 1〉, |0, 2〉}. In Fig. 9(a), we present the computed
PEBH for gb = 0.0, 0.4, and 0.8 (red dashed lines). As com-
pared to the results obtained from the ab initio ML-MCTDHX
simulations (blue solid lines), the PEBH values possess only
minor discrepancies. Importantly, using the two-site EBH
model one can even quantitatively capture the critical bosonic
repulsion gc

b that we discussed before, which manifests its
applicability. Meanwhile, we also clearly see that the obtained
lattice model successfully accounts for the transition from
bunching to antibunching with increasing bosonic repulsion
[cf. Fig. 9(b)].
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FIG. 9. Computed two-body density imbalance for β = 25 using
the two-site EBH model (red dashed lines) and the ab initio ML-
MCTDHX simulations (blue solid lines) for (a) gb = 0.0, 0.4, 0.8
and gbf ∈ [0, 2] and (b) gbf = 2.0 and gb ∈ [0, 2].

IV. CONCLUSIONS AND OUTLOOK

We have investigated a few-body mixture of ultracold
bosons and fermions in a one-dimensional harmonic confine-
ment. In particular, we focus on the analysis and discussion
of the ground-state properties for various interaction strengths
and mass ratios. By employing the ab initio ML-MCTDHX
approach, we obtain the ground-state wave function including
all correlations. We first present our main observation of
the bunching-antibunching crossover of the bosonic species
induced by the interspecies correlations, which can be observed
via the bosonic two-body density. Particularly, in the mass-
imbalanced regimes, we observe the existence of a critical
value of the bosonic repulsion, below or above which the
increment of Bose-Fermi repulsion will lead the bosons into a
bunching or antibunching regime.

In order to unveil the physical origin of this crossover, we
apply two approximate methods. First, we adopt a species
mean-field description which excludes (includes) all the inter-
species (intraspecies) correlations and incorporates the impact
of the fermionic species into a mean-field induced potential.
Albeit the SMF description can qualitatively account for the
antibunching regime, it fails to describe the bunching regime.
Second, we employ a beyond SMF description, which accounts
for the interspecies correlations to first order and results in an
effective single-species Hamiltonian containing, besides the
induced potential, an additional induced bosonic interaction.
Such an induced interaction enables us to understand the
emergence of the bosonic bunching. Finally, in the strongly
mass imbalanced regime, we derive a two-site extended Bose-
Hubbard model which accounts for the low-energy effective
physics of the bosons.

Our work presents the rich physics of the 1D few-body
Bose-Fermi mixture. In particular, the provided effective
single-species descriptions allow for gaining physical insights
into the mechanisms behind certain observations which offers
an intriguing approach for the studies of mixtures. Concerning
future investigations, it is of specific interest how the system
properties, in particular the bunching-antibunching crossover,
depend on the spatial dimensions and in particular the particle
number. Moreover, it is also interesting to analyze the form of
the induced interaction depending on the particle statistics and
the underlying interspecies coupling.
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APPENDIX: DERIVATION OF THE TWO-SITE
EXTENDED BOSE-HUBBARD MODEL

We present here the detailed derivations for the two-site
EBH model provided in Eq. (15). According to Eq. (9), the
effective Hamiltonian for the bosonic species is given by

Ĥ b
eff =

∫
dx ψ̂

†
b (x)hb

eff(x)ψ̂b(x)

+ gb

2

∫
dx ψ̂

†
b (x)ψ̂†

b (x)ψ̂b(x)ψ̂b(x) + 1

2

∫
dx1dx2

× Hb
ind(x1, x2)ψ̂†

σ (x1)ψ̂†
σ (x2)ψ̂σ (x2)ψ̂σ (x1). (A1)

Here hb
eff(x) = − 1

2
∂2

∂x2 + V b
eff(x) is the single-particle Hamil-

tonian with the effective potential. To obtain the two-site
extended Bose-Hubbard model, we first expand the field
operator as

ψ̂b(x) = φ1(x)â1 + φ2(x)â2, (A2)

with φ1(x) [φ2(x)] being the single-particle ground (first
excited) state of the effective potential V b

eff(x). Substituting
Eq. (A2) into Eq. (A1) yields

Ĥ b
eff =

2∑
i=1

εiN̂i + Pi

(
N̂2

i − N̂i

)

+ P12[(â†
1â2)2 + (â†

2â1)2] + P3N̂1N̂2, (A3)

with

εi =
∫

dx φi (x)hb
eff(x)φi (x),

Ti = gb

2

∫
dx φ4

i (x) + Hb
iiii ,

T12 = gb

2

∫
dx φ2

1 (x)φ2
2 (x) + Hb

1122,

T3 = 2

[
gb

∫
dx φ2

1 (x)φ2
2 (x) + Hb

1212 + Hb
1221

]
, (A4)

and

Hb
ijkl = 1

2

∫
dx1dx2φi (x1)φj (x2)Hb

ind(x1, x2)φk (x1)φl (x2).

(A5)

We emphasize that the terms such as Hb
iiij (i 
= j ) are elim-

inated by making use of the parity symmetry of the induced
interaction.

Next, we project the Hamiltonian (A3) onto the Wannier
basis, which is the linear combinations of φ1 and φ2 as
φL/R (x) = 1√

2
[φ1(x) ± φ2(x)], and finally we arrive at

ĤEBH = −J (â†
LâR + â

†
RâL) − �[(â†

LâR )2 + (â†
RâL)2]

+ U

2
[N̂L(N̂L − 1) + N̂R (N̂R − 1)] + V N̂LN̂R,

(A6)

with

J = ε2 − ε1

2
+ T2 − T1

2
(Nb − 1),

U = T1 + T2 + 2T12 + T3

2
,

� = T1 + T2 + 2T12 − T3

4
,

V = T1 + T2 − 2T12 (A7)

being the coefficients for the hopping amplitude, on-site inter-
action, and pair-tunneling amplitude, as well as the nearest-
neighbor interaction, respectively. It is worth noting that the
amplitude of the pair tunneling � is one order of magnitude
smaller as compared to the other coefficients, and we therefore
omit it in Eq. (15).
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