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Optimal control of an inhomogeneous spin ensemble coupled to a cavity
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We apply optimal-control techniques to an inhomogeneous spin ensemble coupled to a cavity. A general
procedure is proposed for designing the control strategies. We numerically show the extent to which optimal-
control fields robust against system uncertainties help enhance the sensitivity of the detection process. The
parameters of the numerical simulations are taken from recent electron spin resonance experiments. The low and
high cooperativity regimes are explored.
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I. INTRODUCTION

Quantum optimal control theory (QOCT) is aimed at finding
a way to bring a quantum system from one state to another with
minimum expenditure of time and resources [1–7]. Intense
progress has been realized recently in the development of such
techniques [1,2]. Several optimization algorithms [8–11] have
been proposed to design control fields suited to different exper-
imental setups and constraints or robust against experimental
uncertainties and modeling imperfections [12–20]. QOCT was
first developed in molecular physics to steer chemical reactions
[2,6,21,22] and in nuclear magnetic resonance (NMR) or
magnetic resonance imaging for controlling spin dynamics
[8,23–30]. OCT is nowadays attracting a lot of effort in
the context of quantum-information processing [31–34] and
has been recognized as one of the cornerstones for enabling
quantum technologies [1].

In NMR, spin dynamics are governed by the Bloch equation
and controlled by a radio-frequency magnetic field which is
assumed to be a piecewise constant function adjustable in
time. This approximation corresponds to a standard framework
in QOCT [8]. The situation is not so simple in electron spin
resonance (ESR) and specific experimental constraints due to
technical limitations of the spectrometer have to be accounted
for. For instance, the role of the microwave resonator cannot
be neglected and the field applied to the spins is distorted by
the response function of the cavity [35,36]. The main exper-
imental limitation is the nonlinearity of the resonator which
arises for large amplitudes of the intracavity field, particularly
for superconducting microresonators. In other experimental
setups, a continuous variation of the amplitude and phase of
the control pulses is not possible and only switches between
a discrete set of pulse phases is permitted by the available
hardware [37,38]. QOCT has been applied with success in
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these different settings [36,39], showing the efficiency and the
flexibility of this approach.

The detection of individual spins is a challenging issue
in magnetic resonance [40]. Different experimental strategies
have been proposed to date to reach this single-spin limit [41–
45]. Among other propositions, a promising option is to
push to its physical limit the inductive detection method in
ESR [46–50]. Recent progress has shown that 260 spins per
echo can by now be detected with a signal-to-noise ratio of
1 [50]. This gain of several orders of magnitude in sensitivity
over the conventional approaches has been made possible by
different experimental advances extending from the cryogenic
temperature of the sample to the high quality factor of the
microresonators and by the use of Josephson parametric
amplifier devices. Hahn echo or Carre-Purcell-Meiboom-Gill
(CPMG) sequences [51] are usually implemented with stan-
dard rectangular pulses to measure the echo signal emitted
by the spins in the cavity [51–53]. However, the efficiency of
these control protocols is limited by the response function of
the resonator and by the inhomogeneities and imperfections
of the sample. In the running to the single-spin detection, it
is therefore crucial to identify control procedures enhancing
the echo signal for a given number of excited spins. This issue
is addressed numerically in this paper by using tools of OCT,
which offer the possibility to go beyond intuitive protocols. For
the sake of concreteness, the theoretical analysis of this work
is based on some recent experiments made in ESR [47–50]. A
schematic description of the physical concepts at the basis of
the control process in given in Fig. 1. The control of the spin
ensemble is a two-step procedure in which only the intracavity
field can be directly modified by the external control, the field
applied to the spins being distorted by the response function
of the resonator. In the case in which the cavity acts as a linear
bandpass filter, the cavity response can be deconvoluted and
the intracavity field can be designed (up to some extent) for
any given field the spins are subjected to. The back-action of
the spin ensemble to the cavity adds, in the high-cooperativity
regime, a degree of complexity to this control scenario.
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FIG. 1. Schematic description of the system (3). The control
pulses can only change the electromagnetic field of the cavity and
not directly the dynamics of the spins. Note the back-action of the
spins onto the cavity mode.

From a theoretical point of view, the quantum dynamics
are governed by a damped Jaynes-Cummings model. The
optimization procedure presented in this paper is an extension
of a standard iterative algorithm, namely GRAPE [8]. We
first optimize the field acting on the spin ensemble to realize
efficient Hahn and CPMG sequences even if the system pa-
rameters are known with a finite precision. The deconvolution
of the resonator response leads then to the intracavity field.
Specific constraints are accounted for in the optimization
process to design realistic fields. We show the efficiency of the
corresponding optimal fields for enhancing the signal-to-noise
ratio (SNR) of the detection process and its sensitivity, that is,
the minimum number of spins per echo that can be detected
with a signal-to-noise ratio of 1. Note that closely related works
have recently investigated the optimal control of such systems
for quantum-information applications (see, e.g., [54–60] to cite
a few).

The remainder of this paper is organized as follows. The
model system is introduced in Sec. II with special attention paid
to the different approximations. Optimal-control techniques
and robust control fields are described in Sec. III. Section IV
presents numerical results based on recent ESR experiments.
We conclude in Sec. V with an outlook and different perspec-
tives. Supplementary data are reported in the Appendix.

II. THEORETICAL DESCRIPTION

A. The model system

We consider an inhomogeneous ensemble of spin-1/2
particles with different resonance frequencies coupled to a
single-mode cavity. The parameter values are chosen to be
in accordance with recent experiments in ESR [47–50]. The
dynamics of the system can be described by the damped
Jaynes-Cummings model. In a frame rotating at ω, the fre-
quency of the microwave drive, the density matrix ρ satisfies
the following differential equation (in units of h̄):

ρ̇ = −i[H, ρ] + L(ρ), (1)

where

H = ω0a
†a +

N∑
j=1

[ωj

2
σ (j )

z + gj (a†σ (j )
− + aσ

(j )
+ )

]

+ i(βa† − β∗a)

and

L(ρ) = κ
(
aρa† − 1

2ρa†a − 1
2a†aρ

)
.

The parameters ω0 and ωj are respectively the detunings
of the cavity and of the spins with respect to the drive
frequency of the field. We denote by N the number of spins
in the ensemble. A specific example will be investigated in
Sec. IV. The coupling strength between each spin and the
cavity is given by the constant gj . The amplitude of the
microwave drive applied to the cavity mode is represented
by the time-dependent functions β(t ) and β∗(t ). The cavity
losses are described by the Lindbladian L with a rate κ .
We recall the standard commutation relations between the
different operators: [a, a†] = 1, [σx, σy] = 2iσz, [σ+, σ−] =
σz, [σz, σ±] = ±2σ±, σx = σ+ + σ−, and σy = −i(σ+ − σ−).
Using Eq. (1), it is straightforward to show that the time
evolution of the expectation values of the different operators,
denoted 〈·〉, is governed by

d

dt
〈X̂〉 = −ω0〈Ŷ 〉 − κ

2
〈X̂〉 + ωX −

∑
j

2gj

〈
Ŝ (j )

y

〉
,

d

dt
〈Ŷ 〉 = ω0〈X̂〉 − κ

2
〈Ŷ 〉 + ωY +

∑
j

2gj

〈
Ŝ (j )

x

〉
,

d

dt

〈
Ŝ (j )

x

〉 = −ωj

〈
Ŝ (j )

y

〉 + gj

〈
Ŷ Ŝ (j )

z

〉
, (2)

d

dt

〈
Ŝ (j )

y

〉 = ωj

〈
Ŝ (j )

x

〉 − gj

〈
X̂Ŝ (j )

z

〉
,

d

dt

〈
Ŝ (j )

z

〉 = gj

〈
X̂Ŝ (j )

y

〉 − gj

〈
Ŷ Ŝ (j )

x

〉
,

where we have introduced the operators Ŝ
(j )
x,y,z,± = σ

(j )
x,y,z,±/2,

X̂ = a + a†, and Ŷ = −i(a† − a) in order to get more sym-
metrical expressions. The control fields are given by the two
real functions ωX = β + β∗ and ωY = i(β − β∗).

From now on, we consider different degrees of approxi-
mation which lead to numerical optimizations computation-
ally less expensive. These approximations are widely used
in quantum optics [61]. A first approximation consists of
neglecting quantum correlations between the spins and the
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cavity mode. This approximation can be introduced in the
framework of cumulant expansion [62,63]. In this work, we
consider an expansion of order two in which 〈ÂB̂〉 � 〈Â〉〈B̂〉.
This approximation is justified in the bad-cavity limit and it
greatly simplifies the differential system which becomes of
dimension 3N + 2. In the frame rotating at frequency ω0, we
have

Ẋ = −κ

2
X + ωX −

∑
j

2gjS
(j )
y ,

Ẏ = −κ

2
Y + ωY +

∑
j

2gjS
(j )
x ,

Ṡ (j )
x = −�j S

(j )
y + gjYS (j )

z , (3)

Ṡ (j )
y = �j S

(j )
x − gjXS (j )

z ,

Ṡ (j )
z = gjXS (j )

y − gjYS (j )
x ,

where we use (for the sake of simplicity) the same notations
A = 〈Â〉 for the observable A in the initial and the rotating
frames. For each spin, we introduce the offset �j = ωj −
ω0. In Eq. (3), X, Y , ωX, ωY , and �S (j ) are expressed in
dimensionless units. A straightforward physical interpretation
of the dynamics can be given from Eq. (3). Equation (3)
describes an ensemble of spins coupled to a driven classical
oscillator, whose dynamics depend on the state of the spins.
In particular, we obtain that the spins move along the Bloch
sphere, �S (j )(t )2 = cst. This description is illustrated in Fig. 1.
This situation is similar to the one encountered in magnetic
resonance when the detection coil induces a back-action on the
spins. This well-known effect, called the radiation damping
effect, is modeled by nonlinear terms in the Bloch equation
governing the spin dynamics [64–67]. This modeling can be
recovered from Eq. (3) in the bad-cavity limit discussed in
Sec. II B where g � κ [68–73].

The spin ensemble is also subjected to standard T1 and
T2 relaxation processes. The interaction of the spins with
the cavity leads to another T1-relaxation process, called the
Purcell effect [48,61,74], which can be interpreted as a cavity-
enhanced spontaneous emission. The corresponding relaxation
time T

p

1 can be expressed as

1

T
p

1

= κg2
i

�2
j + κ2/4

. (4)

Note that spins detuned from the cavity have a longer relaxation
time and that T

p

1 � T1 in the experimental situation we
consider in this work.

Finally, we point out that some collective effects of the
spin ensemble, such as super-radiant relaxation, governed
by the Tavis-Cummings Hamiltonian [75] occur if the offset
inhomogeneities are not too strong [76–78]. The transition
between the individual and collective spin regimes is described
by the cooperativity parameter C. In the case of a spin ensemble
with a Lorentzian density of frequencies of full width at half
height �, the parameter C can be expressed as C = 2Ng2

κ�
[77].

B. The bad-cavity limit

We recall in this section the standard approximation of the
bad-cavity limit. We first integrate the two first equations of

(3) and we obtain

X(t ) =
∫ t

−∞
e− κ

2 (t−t ′ )CX(t ′)dt ′,

(5)

Y (t ) =
∫ t

−∞
e− κ

2 (t−t ′ )CY (t ′)dt ′,

with CX(t ′) = ωX(t ′) − 2
∑

j gjS
(j )
y (t ′) and Cy (t ′) =

ωY (t ′) + 2
∑

j gjS
(j )
X (t ′). We define the integral F of a

function f ,

F =
∫ t

−∞
e

κ
2 (t ′−t )f (t ′)dt ′,

the goal being to compute the limit of F when κ → +∞. For
that purpose, we define a sequence of functions μk ,

μk (t ) = κk

4
e−κk |t |/2,

which converges towards the Dirac distribution if κk → +∞
when k → +∞. From the relations of generalized function
theory which involve the product of a Dirac distribution with
a Heaviside function [79], we obtain that

F � 2

κ
f (t ),

when κ � 1 [κ is expressed here in the dimensionless units of
Eq. (3)]. This approximation leads to

X(t ) = 2

κ

⎛
⎝ωX − 2

∑
j

gjS
(j )
y

⎞
⎠,

(6)

Y (t ) = 2

κ

⎛
⎝ωY + 2

∑
j

gjS
(j )
x

⎞
⎠.

Plugging (6) into (3), we arrive at

Ṡ (j )
x = −�j S

(j )
y + 2g

κ
ωY S (j )

z + 4g2

κ
S̄xS

(j )
z ,

Ṡ (j )
y = �j S

(j )
x − 2g

κ
ωXS (j )

z + 4g2

κ
S̄yS

(j )
z , (7)

Ṡ (j )
z = 2g

κ

[
ωXS (j )

y − ωY Sx (j )
] − 4g2

κ

(
S̄xS

(j )
x + S̄yS

(j )
y

)
,

where gj = g is assumed to be the same for all the spins
and S̄x = ∑

k S (k)
x , S̄y = ∑

k S (k)
y . We recover the standard

equations describing the radiation damping effect with a rate
of 4g2

κ
S̄x,y . Note here the unusual sign convention of this term

since the thermal equilibrium point of the Bloch ball is the south
pole and not the north pole of the Bloch sphere. This analysis
also highlights a difference between the radiation damping
and the Purcell effect since this latter occurs at rate 4g2

κ
[see

Eq. (4) for �j = 0] even when S̄x,y = 0. Finally, note that the
bad-cavity limit leads to a standard optimal control problem in
magnetic resonance [1,80], which was solved, e.g., in [65].
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III. OPTIMAL CONTROL OF A SPIN ENSEMBLE

A. The general procedure

We propose in this section a general procedure to design
optimal-control fields in a dynamical system governed by
Eq. (3). The inspection of the system (3) clearly shows that
the control fields ωX and ωY only change the time evolution of
the quadratures X and Y and not directly the spin dynamics,
which can only be modified in a two-step process. The two
control fields can be expressed in terms of X and Y through
the response function of the cavity:

ωX = Ẋ + κ

2
X +

∑
j

2gjS
(j )
y ,

(8)
ωY = Ẏ + κ

2
Y −

∑
j

2gjS
(j )
x .

For fast changing cavity fields, we observe in Eq. (8) that the
time derivative of X(t ) and Y (t ) diverges and so do the control
amplitudes ωX and ωY .

The design process of the control fields can be decomposed
into three different steps. We first determine the time evolution
of X(t ) and Y (t ) to realize a given control task on the spin
system. Note that this control issue is a standard control
problem of a spin ensemble with offset (the parameters �j ) and
field (the parameters gj ) inhomogeneities (see Refs. [1,12–14]
for a series of results on the subject). We compute numerically,
in a second stage,

∑
j gjS

(j )
x and

∑
j gjS

(j )
y with the last three

equations of (3). This step can be neglected in the low-coupling
limit (gj � 0). The fields ωX and ωY are finally obtained with
Eq. (8). The only mathematical constraint of this procedure
relies on the fact that X(t ) and Y (t ) must be differentiable
functions. This assumption will be satisfied by expanding X

and Y on a specific function basis. Experimental limitations on
the control fields will be discussed in Sec. IV.

Another option for the optimization process is to consider
the dynamical system as a whole and to define a control
objective in terms of the spin and the cavity coordinates. This
approach was not used in this work for two main reasons. Due
to the nonlinear character of the dynamics, it is no longer pos-
sible to define straightforwardly universal rotation pulses [13],
i.e., rotations which do not depend on the initial state of the
spin. Such rotations are an essential building block of spin echo
or CPMG sequences [51,81]. In addition, we have observed
that the corresponding control landscape admits many local
extrema which prevent a fast convergence of the algorithm.

We show below on different benchmark examples how
to control the spin ensemble. For the sake of generality,
all the parameters are expressed in dimensionless units in
Sec. III. A dimensional analysis can be used to determine the
physical units of the different coefficients. If tf denotes the real
control time then t �→ t × tf , κ �→ κ/tf , ωX,Y �→ ωX,Y /tf ,
g �→ g/tf , and �j �→ �j /tf . Note that the X, Y and the �S
variables remain dimensionless.

B. Bump pulses

The first control sequence is aimed at reproducing the
effect of a Dirac pulse on a spin system [51,52]. Dirac pulses
are generally approximated by square pulses with an area
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FIG. 2. Top: Sequence of functions dk (t ) with a compact support
converging to the Dirac distribution for k = 1, 2, 3, and 4. Bottom:
Plot of the corresponding control field ωX with κ = 4 (the back-action
from the spin system is neglected). Dimensionless units are used.

corresponding to the rotation angle induced by the field. Here,
square pulses are not suited to the control process because their
derivatives are singular distributions. Instead we propose to
use the space of infinitely smooth bump functions of compact
support [82], as displayed in Fig. 2. They have the property to
be infinitely differentiable and to go to zero on the boundaries
of their support. We introduce the set of functions (dk )k∈N
defined by

dk (t ) = Ake1/(k2t2−1)I[−1/k,1/k](t ), (9)

where II is the indicator function on the interval I (this function
takes the value 1 for elements of I and 0 outside). The bump
functions satisfy

lim
k→∞

dk = δ.

The pulse duration tf is set by the parameter k, tf = 2/k.

The normalization factor A is chosen so that
∫ 1/k

−1/k
dk (t )dt =

1. It can be expressed in terms of Whittaker’s function: A =√
π/eW−1/2,1/2(1) = 0.44399 · · · .
An approximate Dirac pulse is applied to the spin system in

the x direction if X(t ) = θdk (t ), where θ is the rotation angle
induced by the pulse. A specific value of k is chosen. Using
Eq. (6), this leads to the following control field ωX:

ωX(t ) = θAk

(
κ − 2k2t

(k2t2 − 1)2

)
e1/(k2t2−1)

× I[−1/k,1/k](t ) +
∑

j

2gjS
(j )
y . (10)
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Figure 2 shows an example of different pulse sequences. This
family of pulses is called hereafter bump pulses.

C. Design of optimal-control fields

More general control protocols can be designed along the
same method. We consider the excitation and the inversion
of the spin ensemble with different offset and field inhomo-
geneities. These robust pulse sequences are nowadays standard
in magnetic resonance [1,12–14,80,81] either for point-to-
point transformations or universal rotations. We investigate
below this second class of pulses. The optimization procedure
requires the introduction of a figure of merit F to maximize
at time t = tf . For the stability of numerical optimization, we
come back to the Schrödinger picture and matrices of SU(2) are
used to describe the rotation of each spin [13]. In this setting,
F can be expressed as follows:

F = 1

2N

N∑
j=1

Re(Tr[U †
f Uj (tf )]), (11)

where Uf is the target evolution operator for each spin and
Uj (tf ) the propagator at time t = tf of the spin j . The
procedure is illustrated by two specific examples, namely π/2
and π rotations around the y axis, which correspond to the
following unitary matrices:

Uπ =
(

0 −1
1 0

)
, Uπ/2 = 1√

2

(
1 −1
1 1

)
. (12)

A peculiar analytical expression for the quadratures X and Y is
chosen to design experimentally relevant control fields. They
are parametrized as follows:

X = A(t ) cos[ϕ(t )],
(13)

Y = A(t ) sin[ϕ(t )],

with

A(t ) = A0 exp

(
1

(2t − 1)p − 1

)
I[0,1](t ),

(14)

ϕ(t ) = a0

2
+

NF∑
n=1

an cos(2πnt ) + bn sin(2πnt ),

where A0 is a normalization factor setting the pulse energy, p

is an arbitrary odd number, and {an, bn}n=0...NF +1 is the set of
2(NF + 1) parameters to optimize. Numerical computations
have been performed for two different situations. We first
consider a uniform offset distribution in the interval �j ∈
[−30, 30] and a constant coupling strength, g = g0 = 1. In
a second example, we assume that all the spins have the same
frequency and that the parameter g is given by g = g0(1 + α)
with α ∈ [−0.3, 0.3]. In the two cases, the control time is set
to 1. Different pulse shapes are plotted in Fig. 3. The values
of the pulse parameters are gathered in the Appendix. Note
the more than 10 times larger amplitudes obtained for the
pulses ωX and ωY with respect to the ones of bump pulses in
Fig. 2. A robust pulse against both offset and coupling-strength
inhomogeneities can also be designed along the same lines but
at the price of a longer control time or a larger pulse energy.

ω
ω

ππ

ππ

Δ Δ
-800

800

FIG. 3. Left: Optimized π (top) and π/2 pulses (bottom) robust
against offset or coupling-strength distribution. X, Y , and (X2 +
Y 2 )1/2 are displayed respectively in red (dark gray), blue (black), and
black solid lines. Right: Plot of the corresponding control fields ωX

and ωY . Dimensionless units are used. The parameter κ is set to 4.

IV. NUMERICAL RESULTS

A. Low-cooperativity regime

We investigate an example in the low-cooperativity regime
reproducing recent experiments in ESR [47–50]. The measured
signal in the cavity is an echo signal in X and Y produced by
a standard Hahn sequence [51,53] of the form (π/2)y − τ −
(π )y − τ , where τ is the echo time. This sequence is repeated
several times at a rate γr = 10 Hz. In these experiments, the
offset distribution (�MHz) is wider than the cavity bandwidth
(�kHz). The spin polarization due to the repetition of the
experiment reduces by several orders of magnitude the offset
bandwidth contributing to the signal. Simulations are thus
performed with an effective spin distribution which depends
on the polarization p = 1 − exp[−1/(γrT

p

1 )]. The relaxation
times are taken to be T1 = 3 s, T2 = 1.7 ms, and T

p

1 � 100 ms
for � = 0. Here, the Purcell rate provides the time required for
a spin to relax toward its ground state. The spin does not reach
the thermal equilibrium point between two repetitions. We
assume that the initial distribution is approximately uniform
on the interval ±1.9 MHz with a total number of spins
N = 13 500. We also set κ = 9.8 × 105 s−1 and g0/(2π ) =
424 Hz. With such parameters, the effective spin distribution
is approximately Lorentzian of full width at half maximum
(FWHM) �p = 159.15 kHz. The effective number of spins
Neff, i.e., the maximum number of spins which can be excited,
is defined by

Neff = N

∫ +∞

−∞
p(�)d� � 940. (15)

Neff can also be expressed in terms of the spin components as
Neff = S̄z(t = 0−) where t = 0 is the time at which the π/2
pulse of the echo sequence is applied. In this example, the

cooperativity parameter C = 2Neffg
2
0

κ�p
is on the order of 0.01.

Following Refs. [47–50], we finally define the number
of spins Nspins which are effectively excited by the control
sequence applied in the interval [0, tf ] and which therefore
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contribute to the echo signal:

Nspins = S̄z(t = 0−) − S̄z(tf ). (16)

For a perfectly selective π/2 pulse of bandwidth �c, Nspins can
also be estimated as

Nspins = N

∫ +�c/2

−�c/2
p(�)d�. (17)

In order to improve the sensitivity of the experiment, we
are interested in maximizing the signal-to-noise ratio (SNR)
associated with the echo signal in the cavity. The SNR for a
single echo can be defined as follows [47]:

SNR =
√∫

echo X2(t )dt

�X2
, (18)

where only the echo along the X direction is accounted for. At
a temperature close to 0 K, the noise �X is estimated to be
on the order of 1/2, which corresponds to the electromagnetic
quantum fluctuations in the cavity; all the other noise sources
are neglected [47–50]. The number of excited spins Nmin for a
SNR of 1 is given by Nmin = Nspins/SNR and will be used with
the SNR to estimate the efficiency of the excitation process and
the sensitivity of the detection.

We first investigate the robustness of the excitation process
against offset and coupling-strength inhomogeneities for the
bump, square, and g-robust pulses. The g-robust control
sequence is determined by computing X and Y from Eqs. (13)
and (14) with parameters in Table IV. The square pulses
correspond to very short square pulses in ωX and ωY . Note
that the square pulses are highly deformed by the response
function of the cavity. They were used experimentally, e.g.,
in [47], and they will be considered below as a reference of
the control process. The spins are initially assumed to be along
the z axis with a polarization given by the Purcell effect and
interacting with a cavity with zero photons. We neglect in the
different numerical simulations the relaxation times T1 and T2.
As could be expected, we observe in Fig. 4 that the efficiency of
bump fields is preserved for a wide range of offset frequencies,
while a very good fidelity against variation of the g parameter
is achieved on resonance for the g-robust pulse. Bump and
g-robust solutions lead to a more robust control protocol than
the standard square pulses.

As a second point of comparison, we study the performance
of g-robust, bump, and square pulses in the maximization of
the SNR. For each control sequence, we consider two cases,
one corresponding to a constant g = g0 distribution and the
second to inhomogeneities of the form g = g0(1 + α), with
α ∈ [−0.3, 0.3]. We also simulate ideal rotations on the spin
system in order to estimate the maximum echo signal that can
be reached with the spin distribution. The numerical results are
displayed in Fig. 5, which shows the echo signal observed with
the different pulses. For the sake of comparison, the duration of
the bump pulses is the same as the one of g-robust fields (better
results could be obtained with shorter bump pulses). An echo
with a higher amplitude and a shorter time is achieved with
the optimal solutions. We observe that the area of the different
echoes in Fig. 5 is roughly the same for the different excitations.
However, due to the shorter echo, the SNR is indeed increased
with the optimal pulses.

-2.5 2.5

FIG. 4. Robustness of a π/2 excitation process against coupling
strength g and offset � inhomogeneities of a bump pulse (top), a
square pulse (middle), and a g-robust pulse (bottom). The rectangle
in dashed lines indicates the spins used in the optimization. In order to
provide a fair comparison, we fix the maximum value of X during the
pulse. The pulse duration is set to satisfy this constraint: tsquare = 1 μs,
tbump = 2tk = 3.9 μs, and tg-robust = 19.5 μs.

The last point concerns the minimum number of spins Nmin

per echo with a SNR of 1 which can be excited by the different
control protocols. As can be seen in Fig. 6, this minimum
number is on the order of 260 spins with a square pulse of
duration 1 μs [47,50]. In the case of Fig. 6, we show that a
smaller number of spins for a SNR of 1 can be excited with
bump pulses. Nmin is on the order of 100 for a 15 μs long
control process. This result is not obvious since bump pulses
lead to a higher SNR but at the price of a larger number of
excited spins. In other words, the control time tk = 1/k has to
be adjusted to improve the selectivity of the excitation process
without reducing drastically the SNR. In this case, g-robust
π/2 pulses are not good candidates for the minimization of
Nmin due to their strong robustness.

As a second example, we consider a CPMG sequence in
which a series of π pulses is applied periodically [51,81] with
a period T after the excitation process. We assume a perfect
initial π/2 excitation of the spin ensemble and the different
relaxation effects are accounted for. The total SNR after Mr
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FIG. 5. Comparison of the echo signal in X for square pulses
(in blue or dark gray), for bump pulses (in green or light gray), and
for g-robust pulses (in red or gray). The physical limit with ideal
spin rotations is displayed in black. The solid and dashed lines depict
respectively the echo signal without and with g inhomogeneities. The
pulse duration is set to 1 μs. X is expressed in dimensionless units.

echo signals can be expressed as

SNRMr
=

√√√√ Mr∑
k

SNR(k)2, (19)

where SNR(k) is the SNR of the kth echo. The parameters of
the different CPMG sequences are given in Table I. The time T

has been fixed to its minimum value for each pulse sequence.
Table I gives the normalized SNR for one echo and for the
whole CPMG sequence.

We observe in Table I that the g-robust pulses give a better
SNR than the bump pulses. A noticeable enhancement of 25%
is also obtained with respect to the square pulses. The results
achieved with the two optimal solutions are in addition very
close to the physical limit of an ideal spin echo sequence. The

FIG. 6. Number of spins Nmin per echo for bump (blue or dark
gray) and square (orange or light gray) ωX pulses of duration tpulse.
The parameter κ is set to 9.8 × 105 s−1.

TABLE I. Parameters of the different CPMG sequences. The
physical limit corresponds to ideal π rotations for all the spins of
the ensemble. Mr indicates the maximum number of echoes which
can be observed. The number of spins Nmin for a SNR of 1 is computed
for the first 100 echoes of the sequence.

π pulse min(tf ) (s) Mr
SNR1

SNRmax
1

SNRMr

SNRmax
Mr

Nmin

Phys. limit 1.3 × 10−5 321 1 1 55
Bump 3.69 × 10−5 240 0.907 0.957 65
g robust 3.8 × 10−5 231 0.967 0.918 67
Square 6.1 × 10−5 160 0.754 0.406 94

improvement is even more striking for a CPMG sequence for
which the gain is on the order of 60%. Due to its short duration
which allows a larger number of repetitions, the bump pulse
gives in this case the best result.

B. The high-cooperativity regime

We investigate in this section the controlled dynamics of
a system in the high-cooperativity regime (C � 1) [83,84].
For that purpose, we consider a new set of parameters: N =
135 000, γr = 100 Hz, and g0/(2π ) = 4240 Hz. This leads
to Neff = 2916, �p = 310 kHz, and C = 27. The coupling
strength g is taken as a constant, g = g0, and we neglect the
relaxation times T1 and T2. Figure 7 illustrates the dynamics
induced by �-robust and square pulses. The duration of each
pulse is set to 1 μs. Robust pulses are computed with the
parameters presented in Tables II and III. Figure 7 clearly
shows that the back-action of the spin dynamics onto the
control field given by Eq. (8) cannot be neglected. The field
is different from zero during the whole control time and in
particular between the π/2 and π pulses.

An echo signal occurs in the cavity at t = 10−4 s. The
shape of the echo is preserved with the optimal pulse, while
a deformed echo with many small bumps is observed in the
standard case. Furthermore, the intensity of the echo and the
SNR are respectively increased by a factor 10 and 100. For a
SNR of 1, we obtain Nmin = 43 and Nmin = 53 for the optimal
and square pulses. The same observation can be made on the
spin dynamics in Fig. 7. In contrast to the variations produced

TABLE II. List of parameters for a �-robust (π/2)y universal
rotation.

p 10
tf 1
F 0.9993
n an bn

0 2.48502852519278 0
1 − 0.614602837937966 0.0222236529656774
2 − 0.146403432037310 − 0.326319502810118
3 0.249569148521250 0.212035090021068
4 − 0.380514318815982 − 0.294315446425150
5 − 0.850981648334035 0.292006472615227
6 0.00534202375558939 − 0.284521506361719
7 − 0.445742825754110 − 0.00924269034857846
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FIG. 7. Spin echo sequence for �-robust (left) and square pulses (right). The top panels display the control fields. Note the correction field

applied between the π/2 and π rotations in the first case. Time evolution of
√

X2 + Y 2 (middle) and of the transverse St =
√

S2
x + S2

y and

longitudinal Sz spin state. Unless specified, dimensionless units are used.

by the square pulses, a perfect excitation can be seen with the
optimal control, Sz � 0 for 0 < t < 10−4. A strong relaxation
due to the radiation damping occurs during the two echoes. This
signature of the high-cooperativity regime can be observed
when S̄x and S̄y are very large.

V. CONCLUSION

In this work, we have applied quantum-control techniques
to an inhomogeneous spin ensemble coupled to a cavity. We
have described a general optimization procedure allowing
us to implement standard Hahn and CPMG sequences in

TABLE III. List of parameters for a �-robust (π )y universal
rotation.

p 10
tf 1
F 0.9997
n an bn

0 3.6552961005 0
1 − 0.1862900729 0.3016414772
2 0.1569621446 0.9517460473
3 0.886144687 − 0.5237345127
4 − 0.3948819182 0.439535574
5 − 0.362518991 − 0.261853447
6 0.1747816746 0.2785205439
7 0.0332864557 0.0097613015

the presence of offset and coupling-strength inhomogeneities.
Relevant experimental values in ESR have been used for the
numerical simulations. Different control strategies extending
from bump pulses to g-robust fields have been derived. The rel-
ative advantages of the different solutions have been discussed
in the low and high cooperativity regimes. Their superiority in
terms of SNR and sensitivity over the standard square pulses
has been demonstrated. In the experimental setup under study,
the numerical results show that a good compromise is provided
by the bump pulses which combine simplicity, efficiency, and
robustness against offset inhomogeneities. Their short duration
is also a key factor for the enhancement of the SNR by CPMG
sequences.

TABLE IV. List of parameters for g-robust (π/2)y (left) and (π )y
(right) universal rotations. The bn parameters are fixed to 0.

p 2 p 2
tf 1 tf 1
F 0.999 F 0.999
n an n an

0 1.45730821080502 0 1.05923686097438
1 − 1.90458549438015 1 − 1.06434468127802
2 0.471852675517646 2 0.197782131275470
3 − 0.164591020002767 3 − 0.985850874873962
4 0.691022251640240 4 − 0.680625181005274

5 − 0.680625181005274
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These results confirm the key role that OCT could play in the
near future for the detection of a single spin in ESR. Finally, we
point out that more general pulse sequences could also be used
to improve the efficiency of the overall process. An example is
given by the cooperative pulses, a set of individual pulses which
are designed to compensate each other’s imperfections [85,86].
Recent works have shown their efficiency in a standard Hahn
echo sequence. As a further step, it would be interesting to
estimate the performance of such pulses in the maximization
of the SNR or the minimization of spins per echo.
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APPENDIX: PARAMETERS OF OPTIMAL PULSES

Tables II, III, and IV provide the different sets of parameters
for the optimal pulses used in this work.
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