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Coulomb effect in laser-induced recollision excitation
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Our investigation considers the amended strong-field approximation (SFA) ionization of rare-gas atoms in
a strong laser field accompanied by excitation of the atom due to laser-induced recollision. This process can
be viewed as inelastic above-threshold ionization and corresponds to the recollision-excitation step of the laser-
induced nonsequential double ionization via RESI (recollision excitation with subsequent ionization) mechanism.
Within the SFA framework, up to now, Born approximation has been used to calculate the recollision-excitation
process during RESI, which is not a good approximation at low-energy recollisions. In this work, we improve this
model by employing Coulomb-Born approximation, where the recolliding electron is described with a Coulomb
continuum wave function. We calculate the photoelectron momentum distributions (PMD) of the rescattered
electron for helium and argon atoms by considering different excitation states. The Coulomb effect is shown to
play a significant role for shaping the recollision-excitation probability, visible as in the fully differential PMD,
as well as in the PMD integrated over transverse momenta.
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I. INTRODUCTION

Electron correlations play an important role in the
dynamics of atoms and molecules subjected to a strong laser
field [1–4]. In particular, it has been employed for developing
ultrafast molecular imaging [5–11]. Today, there is a general
consensus that for linearly polarized laser field with infrared
frequencies and high intensities, within 1013–1015 W/cm2, the
strongly correlated electron motion in laser atom interaction
is effectuated by laser-induced rescattering [12–14]. The
rescattering is initiated by the tunneling of electron from
atom. It gains energy during excursion in the laser field,
is subsequently driven back by the laser field toward its
parent ion, recollides with it, and as a result brings about the
correlated dynamics of atomic electrons.

A particular consequence of the recollision in strong-field
ionization dynamics is the initiation of nonsequential double
ionization (NSDI), when the recolliding electron induces
the ionization of the second electron of the atom [15,16].
The existence NSDI was demonstrated for the first time in the
early 1980s, when the cross section of multiphoton ionization
of xenon atoms was investigated [17,18], to measure the rate
of ionization against the intensity of an external laser field.
Subsequently this phenomenon has been observed for other
noble gas atoms [19–28] and for molecules [29–31].

In the recollision process, the second electron may be
dislodged by direct impact ionization, a (e, 2e)-like double ion-
ization. Alternatively, it is first promoted to an excited bound
state, which is ionized by the laser field afterwards. The latter
mechanism consists of two steps: (1) recollision-induced exci-
tation (RE) and (2) subsequent ionization (SI), together termed
as recollision-induced excitation with subsequent ionization
(RESI). The key features of RESI mechanism are pronounced
at lower rescattering momenta. In this case the kinematically
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allowed region of the momentum components, parallel to the
laser polarization axis of asymptotic photoelectrons, is located
around p1‖ = 2

√
Up and p2‖ = 0, respectively, where Up is

the ponderomotive potential (average oscillatory energy) of the
electron in the laser field. The (e, 2e)-like double ionization is
a well studied mechanism and considerably easier to model
in the context of semianalytical approaches [32–35], while
RESI treatment is more elaborate. It is required to account
for several effects, such as different excitation channels,
multielectron effect of the bound state, depletion [36,37],
quantum interference between all the available channels [38],
and the possibility of creating a superposition of excited states
at the time of rescattering. Moreover, the focal averaging
and Coulomb focusing significantly modify photoelectron
momentum distribution (PMD) for RESI. In addition, for
multicycle laser pulses at near-infrared wavelength PMD of the
correlated electrons in (e, 2e) and RESI channels coexist and
overlap with each other, which limits the detailed experimental
investigation of the underlying processes.

There are several approaches for the RESI treatment. RESI
has been calculated classically via classical trajectory Monte
Carlo simulations [39–42], quasiclassically using S-matrix
formalism based on strong-field approximation (SFA) [15,16],
and by the so-called quantitative rescattering (QRS) method
[36,37,43,44]. In the classical method it is not possible to
include excitation in a rigorous way. This is accomplished by
considering an ad hoc time lag between the rescattering of
the first electron and ionization of the second electron. With
this assumption both electrons leave with opposite momenta,
yielding distributions mainly located in the second and fourth
quadrants of PMD, rather than in all quadrants [40–42,45–50].
How the time delay may arise during excitation is not addressed
in this treatment. As it was shown in [15], the electron-
impact ionization with a time delay also can populate the
low regions of electron momentum distributions. On the
other hand, the RESI description based on SFA [51–55]
and on QRS lead to electron momentum distributions in all

2469-9926/2018/98(2)/023410(10) 023410-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.023410&domain=pdf&date_stamp=2018-08-13
https://doi.org/10.1103/PhysRevA.98.023410


T. SHAARAN, K. Z. HATSAGORTSYAN, AND C. H. KEITEL PHYSICAL REVIEW A 98, 023410 (2018)

four quadrants, not just the second and the fourth quadrants
[36,37].

In the QRS method, the RESI is calculated in three separate
steps by employing a different theoretical method for each step
[36,37]. For the first step SFA is used for calculation of the wave
packet of the return electron. In the second step, the electron-
impact excitation of ion is calculated by employing a laser-
free differential cross section of the electron-impact excitation,
with the electron’s initial energy equal to that provided by the
laser field at the time of rescattering. In the third step, the
Perelomov-Popov-Terent’ev (PPT) ionization rate [56,57] is
used to calculate tunneling ionization of the second electron.
In this method, matching the return electron wave packet for
all values of momentum components with its corresponding
field free inelastic electron-impact excitation cross section as
well as finding its corresponding shifts due to the laser field is
very demanding. Up to now, the return electron wave packet
with maximum return energy is mainly considered.

In contrast to the two previous methods, SFA provides a
systematic description of RESI without additional heuristic
assumptions, rigorously relating the initial bound state of the
system to the final continuum state passing through inter-
mediate excited states [58]. This comes from the fact that
for a given NSDI process one can identify the most relevant
Feynman diagrams that contribute to the transition amplitude
and derive the relevant S matrix [59]. Furthermore, this method
provides a transparent picture for NSDI mechanisms because
the individual mechanism involved, such as electron-impact
ionization and RESI, can be defined clearly from the outset. In
addition, the classical trajectory of an electron in an external
laser field can be directly connected with this method without
loss of quantum-interference effects. These advantages make
the SFA a powerful semianalytic method for describing NSDI,
or strong-field phenomena in general. In fact, it gives good
physical insight into the space-time picture of the system. How-
ever, the method has two main drawbacks: (1) the influence of
the laser field is neglected when the electrons are bound to the
atoms or molecules; (2) the binding ionic potential is neglected
when the electrons are in the continuum. As a result, plane wave
is used for treating the field-dressed inelastic electron-impact
excitation cross section.

In this work we provide an improved description for the
strong-field ionization accompanied by excitation of the atom
due to laser-induced recollision, i.e., for inelastic above-
threshold ionization (IATI). We employ amended SFA, where
the recolliding electron in the field of the residual ion is
described by a Coulomb continuum wave function in the SFA
framework, rather than a plane wave that was the case in the
common SFA. Although the RE is the first step of RESI, it
has a separate physical interest connected with IATI, in which
the laser-induced rescattering process creates an excited ion
without subsequent ionization of the second electron. This pro-
cess has not yet been experimentally identified because of the
competing RESI channel. However, one may expect the RESI
channel to be suppressed when using extremely short laser
pulses. In this case the excited electron may not experience the
field maximum, and the excited atomic state will survive up
to the end of the laser pulse. It can be detected, for instance,
by characteristic fluorescence. There is also the possibility to
observe IATI at the tail of a long laser pulse, when the excited

electrons experience relatively lower intensity and the ioniza-
tion probability of the second electron is significantly low.

We calculate PMD of the laser-induced RE for different
excitation channels and investigate the Coulomb field effect
comparing our results with those of the common SFA (in the
latter case a plane wave is used for the recolliding electron).
We analyze the electron longitudinal momentum distribution
at different fixed transverse momenta, as well as integrate over
all transverse momenta. This provides good physical insight
into the Coulomb effect for the individual quantum paths
and its relation to the experimental measurements, since the
integration over transverse momenta gives direct comparison
with experimental outputs.

This work is organized as follows. In Sec. II A, we introduce
the general expression for the SFA amplitude for laser-induced
RE. The rescattering prefactor employing Coulomb-Born ap-
proximation is derived in Sec. II B. In Sec. III, the ion impact
excitation cross section for Born and Coulomb-Born approx-
imations are compared. Sections III A and III B present the
PMD results of IATI for helium and argon atoms, respectively.
Our conclusion is given in Sec. IV.

II. THEORY

A. Strong-field approximation: General formalism

The transition amplitude of laser-induced RE reads [52]

M (p) =
∫ ∞

−∞
dt

′′
∫ t ′′

−∞
dt ′

∫
d3k Vp,kVk

× exp[iS(p, k, t ′, t ′′)], (1)

with the electron classical action

S(p, k, t ′, t ′′) = −
∫ ∞

t ′′
dτ

[p + A(τ )]2

2
−

∫ t ′′

t ′
dτ

[k + A(τ )]2

2

+ (E2 − E3)t ′′ + E1t
′, (2)

where A(τ ) is the vector potential, E1 is the ionization potential
energy of the first electron, E2 is the ground-state energy of the
singly ionized atom, E3 is the ionization potential energy of
the state to which the second electron is excited, p is the final
momenta of the electron, k is the intermediate momentum of
the ionized electron, and Vk and Vp,k are the ionization and
recollision matrix elements, respectively, given below.

The amplitude of Eq. (1) describes a physical process in
which the first electron leaves the atom at a time t ′, propagates
in the continuum with momentum k from t ′ to t ′′, and, upon
returning, gives part of its kinetic energy to the core so that a
second electron is promoted from a state with energy E2 to an
excited state with energy E3. This electron then reaches the
detector with a momentum p.

The influence of the bounding potential and of the electron-
electron interaction is embedded in the Vp,k and Vk; they read

Vp,k = 〈χ [p + A(t ′′)], ϕ(n′l′ )
∣∣∣∣ 1

r12

∣∣∣∣χ [k + A(t ′′)], ϕ(nl)〉

= 1

(2π )3

∫∫
d3r2d

3r1χ [p + A(t ′′), r1][ϕ(n′l′ )(r2)]∗

× 1

r12
χ [k + A(t ′′), r1]ϕ(nl)(r2) (3)
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and

Vk = 〈χ [k + A(t ′)]|V |ϕ(gl)〉
= 1

(2π )3/2

∫
d3r ei[k+A(t ′ )·r]V (r )ϕ(gl)(r), (4)

where ϕ(gl) is the initial position-space wave function of the
first electron in the ground state, ϕ(nl) and ϕ(n′l′ ) are the wave
functions of the second electron excited from the ground state
(nl) of the target ion to the state (n′l′), respectively, and χ is
the continuum wave function of the first rescattering electron.

For calculating the multiple integrals in Eq. (1), we employ
saddle-point approximation. The saddle points of the integra-
tion variables t ′, t ′′, and k, for which the action in Eq. (2) is
stationary, are obtained from the saddle-point equations:

∂S(p, k, t ′′, t ′)/∂t ′ = 0,

∂S(p, k, t ′′, t ′)/∂t ′′ = 0, (5)

∂S(p, k, t ′′, t ′)/∂k = 0,

which yields

[k + A(t ′)]2 = −2E1, (6)

k = − 1

t ′′ − t ′

∫ t ′′

t ′
A(τ )dτ, (7)

[p + A(t ′′)]2 = [k + A(t ′′)]2 − 2(E2 − E3). (8)

The saddle-point Eq. (6) gives the conservation of energy at
the instant t ′, corresponding to the tunneling ionization of the
first electron; Eq. (7) constrains the intermediate momentum
k of the first electron to enable its return to the parent ion;
Eq. (8) expresses the energy conservation at the excitation
of the second electron when the first electron returns to its
parent ion at a time t ′′ and rescatters inelastically. One should
note that the saddle-point Eq. (6) has a complex solution, with
the imaginary part of the solution related to the ionization
probability for the electron.

Once these solutions are obtained then one can determine
the transition amplitudes

M (p) =
∑

s

(
2π

|det S ′′(ps , ks , t ′s , t ′′s )|
)5/2

Vp,kVk

× exp{iS(ps , ks , t
′
s , t

′′
s )}, (9)

where the index s runs over the relevant saddle points and
det S ′′ (ps , ks , t

′
s , t

′′
s ) gives the determinant of the 5×5 matrix

of the second derivative of the action with respect to t ′, t ′′,
and k.

B. Coulomb effects

Within the SFA framework, up to now, Born approximation,
i.e., plane wave, has been used for calculating the excitation
prefactor Vpe,kg . For detailed discussion, see Ref. [51]. Al-
though the plane wave could well explain the main feature
of RESI, it fails at the threshold energy, where energy of the
return electron is equal to the excitation energy of the target ion.
For accurate treatment of the individual excitation channels
one needs to go beyond this approximation. In this work, we
overcome this shortage by employing the Coulomb-Born (CB)

approximation [60,61]. In this approach the continuum state
of the recolliding electron is described by the Coulomb wave
function χ , which is the electron continuum eigenstate in the
Coulomb field with an asymptotic momentum K:

χ (K, r) = e
1
2 πα�(1 − iα)e−iK·rF1{iα; 1; i(Kr + K · r)},

(10)

where α = 1/K and 1F1 is the confluent hypergeometric func-
tion. For the states describing the electron before and after the
rescattering K = k + A(t ′′) and K = p + A(t ′′), respectively.

For calculating Eq. (3), we use the expansion

1

r12
=

∑
λ

ρλ(r̂1, r̂2)ηλ(r1, r2), (11)

with

ρλ(r̂1, r̂2) = 4π

2λ + 1

∑
μ

Y ∗
λμ(r̂2)Yλμ(r̂1) (12)

and

ηλ(r1, r2) =
⎧⎨
⎩

rλ
1

rλ+1
2

for r1 < r2,

rλ
2

rλ+1
1

for r1 > r2,
(13)

where Yλμ are spherical harmonics and the vectors with hat
are unit vectors along the corresponding vector. For the s-p
transition only the dipole term λ = 1 contributes, while for
the p-d transition both λ = 1 and 3 contribute but the dipole
term gives the dominant contribution. For the p-p transition
both λ = 0 and 2 contribute but the term with λ = 0 gives the
dominant contribution.

Furthermore, for the Coulomb wave function we also use a
partial wave expansion

χ (K, r) = K1/2r−1
∑
L

iL(2L + 1)eiσLχL(K, r )PL(r̂,K̂),

(14)
with

PL(r̂, K̂) =
∑
M

4π

2L + 1
Y ∗

LM (K̂)YLM (r̂) (15)

and

χL(K, r ) = �(L + 1 − i/K )

2
√

K (2L + 1)!
eπ/2K (2Kr )L+1eiKr

× 1F1(L + 1 − i/K; 2L + 2; −2iKr ), (16)

where σL = arg[�(L + 1 − iα)] and PL is the Legendre poly-
nomial. Using the expansions of Eqs. (11) and (14), we
decompose the matrix element Eq. (3) into the angular and
the radial integrals:

Vp,k =
∑

λ

∑
L,L′

Reλfλ, (17)

with

Reλ =
∫ ∞

0
χL[p1 + A(t ′′), r1]χL′[k + A(t ′′), r1]

×
∫ ∞

0
ηλ(r1, r2)ϕ(n′l′ )(r2)ϕ(nl)(r2)dr2dr1. (18)
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By following the theory of the spherical harmonics and the
Racah coefficients we will have

fλ = (−1)l+l′−LT

[(2L + 1)(2L′ + 1)(2l + 1)(2l′ + 1)]1/2

× (2λ − 1)−1CLL′λ
000 Cll′λ

000W [LlL′l′; LT λ], (19)

where CLL′λ
000 and Cll′λ

000 are Clebsch-Gorden coefficients and
W [LlL′l′; LT λ] is the Racah coefficient with LT = L + l. The
coefficients of fλ can be obtained from the tables provided by
Percival and Seaton in Ref, [39].

In the radial integral of Eq. (18), we use hydrogenlike wave
functions, with an effective charge z∗ =

√
2n2En, to describe

the radial wave function of the bound state ϕ(nl)(rn). Defining

ηλ(r1) =
∫ ∞

0
ηλ(r1, r2)ϕ(n′l′ )(r2)ϕ(nl)(r2)dr2, (20)

and using the expansion of Eq. (13), we have

ηλ(r1) = 1

rλ+1
1

∫ r1

0
ϕ(n′l′ )(r2)ϕ(nl)(r2)rλ

2 dr2

+ rλ
1

∫ ∞

r1

ϕ(n′l′ )(r2)ϕ(nl)(r2)
1

rλ+1
2

dr2. (21)

Furthermore, we can decompose the integral in Eq. (21) into
two terms, with steeply and slowly decreasing integrands:

ηλ(r1) = 1

rλ+1
1

∫ ∞

0
ϕ(n′l′ )(r2)ϕ(nl)(r2)rλ

2 dr2 + ξλ(r1), (22)

with

ξλ(r1) = rλ
1

∫ ∞

r1

ϕ(n′l′ )(r2)ϕ(nl)(r2)rλ
2

1

rλ+1
2

dr2

− 1

rλ+1
1

∫ ∞

r1

ϕ(n′l′ )(r2)ϕ(nl)(r2)rλ
2 dr2. (23)

The latter allows us to express the radial integral Reλ as a sum
of two integrals:

Reλ =
∫ ∞

0
ϕ(n′l′ )(r2)ϕ(nl)(r2)rλ

2 dr2

×
{∫ ∞

0
χL[p1 + A(t ′′), r1]χL′[k + A(t ′′), r1]

1

rλ+1
1

dr1

+
∫ ∞

0
χL[p1 + A(t ′′), r1]χL′[k + A(t ′′), r1]ξλ(r1)dr1

}
.

(24)

The first term of Eq. (24) can be evaluated analytically. The
second term is calculated numerically as it converges rapidly.
For more details we refer to Refs. [60,61].

III. RESULTS

In this section, we will compute the electron-impact exci-
tation cross section and the probability for laser-induced RE
based on CB approximation, which will be compared with the
SFA results with the Born approximation. We approximate the
external laser field by a monochromatic wave:

E(t ) = êxE0 sin ωt. (25)

We also consider the tunneling prefactor Vk to be constant,
since it does not change the shape of the electron momentum
distributions and it is the same for all the considered excitation
channels of given species. The electron-impact excitation cross
section is

σ =
∫ |p + A(t )|

|k + A(t )| |Vp,k|2d�, (26)

with the integration over the electron-scattering solid angle �.
The PMD of the laser-induced RE is given by F (p‖, p⊥) =

|M (p)|2. We calculate also PMD integrated over the transverse
momentum components

F (p‖) =
∫

|M (p)|2dp⊥. (27)

We consider helium and argon atoms because the first is
easier to calculate theoretically and the other one is easier to
measure experimentally. In here, we assume the helium atom
is exposed to the monochromatic laser field with wavelength
of 800 nm (0.057 a.u.) and intensity of I = 3.5×1014 W/cm2

and argon atoms are exposed to the same monochromatic laser
field but with the intensity of I = 1.5×1014 W/cm2. These are
typical intensities for the existed RESI experiments.

A. Helium

In this section we consider RE with helium atom. When
helium atom is exposed to the laser field, the electron which is
bound in 1s state with an ionization potential of E1 = 0.91 a.u.
tunnels through the barrier. After accelerating in the field it
returns to the core and excites the second electron, which is
bound to the core at 1s state with an ionization potential of
E2 = 2.0 a.u., to the either 2s or 2p states at E3 = 0.5 a.u.

The electron recollision energy depends on the recollision
time. The latter determines also the asymptotic longitudi-
nal momentum (momentum component parallel to the laser
polarization axis) of the photoelectron. To have an idea on
the allowed region of recollision energies and asymptotic
photoelectron longitudinal momenta, we show in panel (a) of
Fig. 1 the rescattering times for the electron as functions of its
longitudinal momentum p||. The vertical axis shows the real
rescattering time of the first electron in comparison to its tunnel

FIG. 1. Electron rescattering parameters vs electron asymptotic
longitudinal momenta p|| for the different fixed transverse momentum
p⊥ [indicated in (b)]: (a) real rescattering time; (b) recollision energy.
The helium atom is exposed to the laser field with wavelength
of 800 nm and intensity of I = 3.5×1014 W/cm2. The excitation
channels are 1s → 2s and 1s → 2p. Connected scattered points and
nonconnected scattered points in (a) correspond to the short and long
trajectories, respectively.
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FIG. 2. Electron-impact excitation cross section of helium ion as a
function of the incident energy of the rescattered electron: (a) 1s → 2s

excitation; (b) 1s → 2p excitation. “B” and “CB” indicate Born and
Coulomb-Born approximations, respectively.

ionization, which occurs at about a cycle earlier. In here, the
panel (b) depicts the energy of the electron on its return to the
core as a function of p||. Both panels demonstrate the boundary
of the classically allowed region for different fixed transverse
momentum components. For rescattering time these bound-
aries are defined when the long (nonconnected scattered points)
and the short trajectories (connected scattered points) merge
together in panel (a). Then, we can find the boundary region of
longitudinal momenta for each given transverse momentum.
For instance, for the transverse momentum of p⊥ = 0, the
classical allowed region for the longitudinal momentum is
p‖ ≈ (−3, 0.25) a.u. For the momentum beyond these two
boundary points there is no classical counterpart. As a result
the transition amplitude decays dramatically. Accordingly, one
can also find the allowed region of the rescattering energy
from panel (b). The maximum rescattering energy here is about
2.43 a.u. As we move towards larger transverse momenta, the
classical allowed region of energy decreases until it completely
disappears. In here at about p⊥ = 1.5 a.u. the classically
allowed region of energy vanishes.

To understand how efficient RE can be in the kinematically
allowed region, we calculate the cross section of the electron-
impact excitations for 1s → 2s and 1s → 2p transitions as a
function of incident energy according to Eq. (26) and show
it in Fig. 2. For both excitation channels, around threshold
energy �E = E2 − E1 ∼ 40 eV, the Born approximation (red
connected scattered points) underestimates the cross section. It
gives the maximum value for the cross section at about 50 eV
and it decreases as we move towards the threshold energy.
On the other hand, with Coulomb-Born approximation (black
line) the cross-section value increases when moving towards
threshold energy, which is the typical behavior for the cross
section in the Coulomb field.

We also calculate the amplitude of the excitation prefactor
|Vpe,kg|2 given by Eq. (3) as a function of rescattered
longitudinal momentum for different fixed transverse
momentum components; see Fig. 1. For Born approximation
at p⊥ = 0, the maxima (indicated by arrows) are around
p‖ = −0.1 a.u. for both 1s to 2s and 1s to 2p as shown in
panels (a) and (c) in Fig. 3. These are very close to the cutoff
momenta, which corresponds to the boundary of the classically
allowed region as demonstrated in Fig. 1. In contrast to that
the CB approximation predicts the maxima to be at about
p‖ = −1.5 a.u. in the p⊥ = 0 case for both 1s to 2s and 1s to

FIG. 3. Amplitude of the excitation prefactor |Vpe,kg|2 via Eq. (3)
for helium atom vs longitudinal momentum at fixed transverse
momentum. The upper panels correspond to the excitation from 1s

to 2s, while the lower panels give the excitation from 1s to 2p. The
red and black lines (left and right columns) represent calculations
based on Born and Coulomb-Born approximations, respectively. For
visibility, the amplitude for p⊥ = 0.5, p⊥ = 1, and 1.5 a.u. in panels
(b) and (d) are multiplied by 35 and 50, respectively. The amplitude
for p⊥ = 1 and 1.5 a.u. in panels (a) and (c) are multiplied by 3 and
50, respectively. The laser parameters are the same as in Fig. 1.

2p transitions, as demonstrated in panels (b) and (d) in Fig. 3,
i.e., compared to the Born approximation, the maxima shifted
by 1.4 a.u. towards the middle of the classically allowed
region. As we move towards larger transverse momenta the
maxima slowly shift towards larger negative longitudinal
momenta in both Born and CB approximations. For instance,
at p⊥ = 0.5, the maxima in Born approximation are at a bound
p‖ = −0.5 a.u. The yield decrease as functions of p⊥ with
gradual drop up to p⊥ = 1 a.u. and follow with very sharp
drop. The sharp drop exists in CB approximation, however, at
much lower transverse momenta (p⊥ = 0.5 a.u.). While in the
Born approximation at p⊥ > 1.0 a.u. the drop for excitation
from 1s to 2p is much larger, the CB shows not very different
drop for both 1s to 2p and 1s to 2s channels.

By employing Eq. (1), we calculate the RE probability
|M (p)|2 as a function of rescattered momentum components
parallel to the laser polarization for the different fixed trans-
verse momentum components. These calculations are demon-
strated in Fig. 4. To fully investigate the contributions of the
rescattering prefactor, we compute the transition amplitude
with constant rescattering prefactor (Vpe,kg = const) for ex-
citations from 1s to 2s [panel (a)] and to 2p [panel (b)]. For
given transverse momentum, the two maxima correspond to the
cutoff representing the boundaries of the classically allowed
region as discussed in Fig. 1. The yield steadily increases as a
function of the p⊥. The transition amplitude has a minimum
within the classically allowed region. In general, by including
the prefactor these minima disappear. The prefactor derived
from Born approximation strongly damps the maxima at lower
momenta and preserves the second maxima almost at the
same position as shown in panels (b) and (e). In addition, the
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FIG. 4. RE probability |M (p1)|2 for helium via Eq. (1) vs electron longitudinal momentum for fixed transverse momentum. The upper
panels correspond to the excitation from 1s to 2s, while the lower panels to the excitation from 1s to 2p. The red and black lines (middle and
right columns) represent calculations based on Born approximation and CB approximation, respectively, while blue line (left column) gives
the transition amplitude with constant rescattering prefactor (Vp1e,kg = const). For visibility, the amplitudes of the rescattering prefactor for
p⊥ = 0.5, 1, and 1.5 a.u. are multiplied by 25 for excitation to 2s [panel (c)] and 50 for excitation to 2p [panel (f)]. The laser parameters are
the same as in Fig. 1.

FIG. 5. PMD of RE for helium: left column gives the excitation from 1s to 2s state; right column gives the excitation from 1s to 2p state.
The top panels show PMD with constant excitation prefactor (Vpe,kg = const), the middle panels with Born approximation, and the bottom
panels with CB approximation. The laser parameters are the same as in Fig. 1.
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prefactor affects the yield of the transition amplitude in that it
decreases as a function of the transverse momenta. This can
be understood if we look at the amplitude of the excitation
prefactor calculated in the previous Fig. 3.

On the other hand, the prefactor derived from CB ap-
proximation reshapes the transition amplitude by shifting the
position of the maxima towards the center of the classically
allowed region (p‖ = −1.5) a.u. It happens because at this
longitudinal momentum the energy of the return electron is
close to the excitation threshold. As we demonstrate in Fig. 2
for Born approximation cross section is large at higher incident
energy which relates to the momenta being closer to zero as
shown in panel (b) of Fig. 1. Like Born approximation the
yield of the transition amplitude decreases as a function of p⊥
and it drops faster at larger transverse momenta. Moreover, for
p⊥ = 0, which is the dominant channel, the overall yield for
CB approximation is two orders of magnitude larger than Born
approximation.

The full PMD for RE in the case of helium is shown in Fig. 5.
The panels in the first column correspond to the excitation
from 1s to 2s, while the panels in the second column give the
excitation from 1s to 2p. For the photoelectron momentum dis-
tributions with constant excitation prefactor (Vpe,kg = const)
(top panels) the main signal creates a ring with the strong
signals located at its circumference at about p‖ = −1 a.u. and
p⊥ = ±1.5 a.u. For the Born approximation (middle panels),
these signals are mainly concentrated at the center where
p‖ = p⊥ ∼ 0 a.u. Meanwhile, for CB approximation (bottom
panels) the maximum signals are at about p‖ = −1.5 a.u. and
p⊥ = 0. From the results in Figs. 4 and 5, we can see that the
main signals come from the p⊥ = 0 case.

We also calculate the RE probability integrated over trans-
verse momenta via Eq. (27); see Fig. 6. The integration over
transverse momenta is very useful from an experimental point
of view and it provides better insight to what experimentally
is measured in RESI. For the case with constant excitation
prefactor, the integration over the transverse momenta wash
out the minima observed for fixed transverse momenta shown
in panels (a) and (d) of Fig. 4. It leads to the formation of
the maximum at larger longitudinal momenta. Indeed for both
1s to 2s [panel (a)] and 1s to 2p [panel (d)] the peaks are

FIG. 6. RE probability for helium atom integrated over transverse
momenta: upper panels correspond to the 1s to 2s excitation and lower
panels to the 1s to 2p excitation. The red and black lines (middle and
right columns) represent calculations based on Born approximation
and CB approximation, respectively, and the blue line (left column)
the calculation with constant excitation prefactor (Vpe,kg = const).

FIG. 7. Electron-impact excitation cross section of argon ion
as a function of the incident energy of the rescattered electron:
(a) excitation of 3p to 4s, (b) excitation of 3p to 4p, and (c) excitation
of 3p to 3d . For visibility in panels (a) and (b) the Born approximation
cross-section results are multiplied by 20.

located at about p‖ = −1.0 a.u. For the Born approximation
for both 1s to 2s [panel (b)] and 1s to 2p [panel (e)] the peaks at
low momenta, p‖ = 0, survive. This corresponds to p⊥ = 0, as
shown in panels (b) and (e) of Fig. 4. For CB approximation the
peaks are formed at p‖ = −1.5 a.u. for both 1s to 2s [panel (c)]
and 1s to 2p [panel (f)]. These are related to the peaks observed
for the fixed transverse momentum of p⊥ = 0 as demonstrated
in panels (c) and (f) in Fig. 4. Our calculations show that there is
about 1.5 a.u. difference between the location of the peaks for
Born and CB approximation. On the other hand, comparing
CB transition amplitude with constant prefactor calculations
(simple man model) shows a difference of only 0.5 a.u. It means
the Born approximation is not appropriate for calculating RE
and it leads to larger discrepancy than the simple man model.

B. Argon

Now we discuss the case of RE in argon. In argon the first
electron on its return to the core excites the second electron

FIG. 8. Amplitude of the excitation prefactor |Vpe,kg|2 via Eq. (3)
as a function of electron longitudinal momentum for fixed transverse
momentum components: first column, excitation of 3p to 4s; second
column, excitation of 3p to 4p; third column, excitation of 3p to 3d .
The red and black lines (middle and left column) represent cal-
culations based on Born approximation and CB approximation,
respectively, while blue lines (right column) show the calculations
with constant excitation prefactor (Vpe,kg = const). The argon atom is
exposed to the monochromatic laser field with wavelength of 800 nm
and intensity of I = 1.5×1014 W/cm2. For visibility, in panel (a)
the amplitudes of the excitation prefactor for p⊥ = 0.5 and 1 a.u. are
multiplied by 5 and 5000, respectively. In panels (b) and (c) p⊥ = 0.5
and 1.0 a.u. are multiplied by 10 and 10 000, respectively. In panel
(d) the amplitudes of the excitation prefactor for p⊥ = 0.5 and 1.0
a.u. are multiplied by 2 and 5, respectively, while in panels (e) and (f)
they are respectively multiplied by 10 and 50.
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FIG. 9. PMD of RE for argon atom for the same parameters as in the previous figures. The panels in the top, middle, and bottom rows cor-
respond to the excitation from 3p to 4s, 4p, and 3d , respectively. The first column gives PMD with constant excitation prefactor (Vpe,kg = const),
while the second and third columns are based on Born and CB approximation, respectively. The laser parameters are the same as in Fig. 8.

from 3p state with energy E1 = 1.02 a.u. to the excited state
4s with E1 = 0.35 a.u., or to the 4p state with E1 = 0.30 a.u.,
or to the 3d state with E1 = 0.34 a.u.

We show the excitation cross sections in Fig. 7. For all
excitation channels, around threshold energy, �E = E2 − E1,
the Born approximation (red connected scattered points) un-
derestimate the cross section. They give the maximum value
for the cross section at larger incident energy than the threshold
energy. In comparison to helium (Fig. 2) the results are more
deviating from CB approximation at the threshold energy. In
addition, the atomic structure of argon leads to another small
peak at a bit larger incident energy. In this approximation de-
scribing the bound state of the argon by the hydrogenlike wave
function leads to creation of these artificial peaks. On the other
hand, with CB approximation (black line) the cross section de-
creases monotonously with increasing energy from the thresh-
old value. Thus for argon atom Born approximation is not an
appropriate one and one needs to consider the Coulomb effect.

The amplitude of the excitation prefactor |Vp1e,kg|2 for argon
atom as a function of the electron longitudinal momentum for
different fixed transverse momentum components is shown in
Fig. 8. Let us indicate the difference of the Born approximation
results with respect to CB approximation. Overall, for Born

approximation atp⊥ = 0 the maxima are at aboutp‖ = 0.2 a.u.
As we move towards larger transverse momenta the maxima
slowly shift towards larger negative longitudinal momenta. For
p⊥ = 0.5, these maxima for 3p to 4s and 3p to 3d are at
around p‖ = −1.2 a.u., while for 3p to 4p this is at about
p‖ = −1.5 a.u. Like the helium case, the yield decreases as a
function of p⊥ but the sharp drop starts at very small transverse
momentum (p⊥ = 0.5 a.u.). The fall of the transition amplitude
yields for 3p to 4p and 3p to 3d is larger than that for 3p to 4s.
In distinction to that, in CB approximation for all cases at p⊥ =
0, the maxima are at about p‖ = −1 a.u. as shown in panels (d),
(e), and (f). Like with Born approximation as we move towards
larger transverse momenta the maxima slowly shift towards
larger negative longitudinal momenta. The yield decreases as
a function of p⊥ with a sharp drop at low transverse momenta.

PMD for RE in the case of argon is represented in Fig. 9.
The panels in the top, middle, and bottom rows correspond
to the excitation from 3p to 4s, 4p, and 3d, respectively.
For the photoelectron momentum distribution with constant
rescattering prefactor (Vpe,kg = const) (first column) the main
signals create a ring with the largest signals located at its
circumference at about p‖ = 1.2 a.u. and p⊥ = ±1.3 a.u. For
the Born approximation (middle column), these signals are
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FIG. 10. RE probability for argon atom integrated over pho-
toelectron transverse momenta: (a) PMD with constant prefactor
(Vp1e,kg = const), (b) Born approximation, and (c) CB approximation.
Black line shows the transition from 3p to 4s, blue the transition
from 3p to 3d , and red lines the transitions from 3p to 4p. The laser
parameters are the same as in Fig. 8.

mainly concentrated at the center with p‖ = p⊥ ∼ 0. For the
CB approximation (third column) for all excitation channels
there are strong signals at about p‖ = −1 a.u. and p⊥ = 0,
surrounded by a ring. For 3p to 4s and 3d there are robust
signals along the circumference of the ring, but for 3p to 4p

these signals are very weak.
The PMD integrated over transverse momenta are depicted

in Fig. 10. For the case with constant prefactor the peaks for
all three excited states are at about p‖ = −0.6 a.u. [panel (a)].
For Born and CB approximation these peaks are around p‖ =
0.2 a.u. and p‖ = −1 a.u., respectively. There is 1.25 a.u. shift
between results of Born and CB approximations, while the
difference between constant prefactor and CB is smaller, about
0.5 a.u. This means the simple man model gives a better result
than Born approximation. For the constant prefactor, the yield
for all three excitation channels is the same. This comes from
the fact that the excitation energies of these cases are very
close and they take place at the same laser phase from the
simple man model point of view. For Born approximation, 3p

to 3d has larger yield and the two other excitation channels
have lower yield. Meanwhile, in the CB approximation the 3p

to 4s transition is associated with a larger yield followed by
3p to 3d, and 3p to 4p.

IV. CONCLUSIONS

We have investigated the role of the Coulomb field of the
residual ion for the photoelectron momentum distribution in the
process of an ionization of helium and argon atoms in a strong
laser field accompanied by excitation of the atomic ion due to
laser-induced recollision. The calculations are carried out in
the framework of SFA with an amended recollision amplitude.
The effect of the Coulomb field is accounted for by replacing
the incoming plane wave for the recolliding electron, as it was
the case in the common SFA, with the Coulomb continuum
wave function in computing of the electron-impact excitation
amplitude.

We estimate the excitation cross section for helium and
argon atoms and show that the Born approximation fails at the
threshold energies. The failure in the case of an argon atom is
more noticeable. The derived recollision-excitation probability
using the Coulomb-Born approximation provides physically
relevant behavior with respect to the recollision energy. The
latter changes significantly the asymptotic photoelectron mo-
mentum distribution with respect to the common SFA result.
The Coulomb field effect reshapes photoelectron momentum
distribution and shifts the position of the maxima towards the
center of the classically allowed region, while in the Born
approximation the PMD peaks are mainly formed at the cutoff
of the classically allowed region which is closer to zero.

We employed also a simple man model for the process,
approximating the excitation amplitude with a constant factor.
What is surprising is that the rough simple man model provides
photoelectron momentum distribution closer to the result of the
accurate Coulomb-Born approximation than the common SFA
with Born approximation for the recollision amplitude. In the
simple man model the photoelectron momentum distributions
of the recollision-excitation process form a ring where the
signals are mainly located at its circumference. Close to the
momenta with zero longitudinal and transverse momenta there
is a large cloud of signals. This is where the long and short
trajectories merge. By including a prefactor based on Born
approximation the entire signals along the ring converge at the
center of this cloud. On the other hand, the prefactor derived
from Coulomb-Born approximation, which correctly accounts
for the Coulomb effects, drives the signal cloud to the center of
the ring. In momentum space this is the center of the classically
allowed region. For some cases the signal at the circumference
of the ring becomes weak, while for some other excitation
states they are strongly preserved.

For both helium and argon, there are about 1.25 a.u. shifts
between the positions of the peaks in the Born and Coulomb-
Born approximation. This shift could be explained intuitively
by comparing the maxima of the electron-impact excitation
cross section for these approximations at the effective poten-
tial, ionization potential energy, plus the electron momentum
traverse energy. The positions of the peaks are related to the
threshold energies of the excitations, but shifted differently
in CB because of the different relation of the Coulomb en-
hancement to the structural factors for different atoms and for
different states. The shift is about 0.5 a.u. between the transition
amplitude for Coulomb-Born approximation and the simple
man model. The recollision-excitation process is the first step
in the RESI mechanism of NSDI, and our results should be
taken into account when calculating RESI within SFA. We
underline that the Born approximation is not appropriate for the
first step of RESI, which can be improved using Coulomb-Born
approximation for treating the electron-impact excitation of the
atomic ion during recollision.
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