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Role of intermediate continuum states in exterior complex scaling calculations
of two-photon ionization cross sections
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The calculation of partial two-photon ionization cross sections in the above-threshold energy region is discussed
in the framework of exterior complex scaling. It is shown that with a minor modification of the usual procedure,
which is based on the calculation of the outgoing partial waves of the second-order scattering wave function,
reliable partial ionization amplitudes can be obtained. The modified procedure relies on a few-term least-squares
fit of radial functions pertaining to different partial waves. To test the procedure, partial and total two-photon
ionization cross sections of the helium atom have been calculated for a broad range of incident photon energies.
The calculated cross sections may be seen to agree well with the results found in the literature. Furthermore,
it is shown that, using a similar approach, partial photoionization cross sections of an atom in an autoionizing
(resonance) state may be calculated in a relatively straightforward way. Such photoionization cross sections may
find their use in enhanced few-parameter models describing the atom-light interaction in cases where a direct
solution of the time-dependent Schrödinger equation becomes too resource intensive.
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I. INTRODUCTION

Continuum-continuum transitions often play an important
role in photoionization of atoms when using short-wavelength
radiation from intense coherent light sources operating in
the extreme ultraviolet or x-ray spectral regions, such as
free-electron lasers (FELs) or high-order harmonic generation
(HHG) sources; when the incident flux is high enough, so
that the probability for multiphoton ionization becomes non-
negligible, continuum states may be encountered as both inter-
mediate and final states of the multiphoton transition process.
While the presence of resonance (autoionizing) intermediate
and final states poses a computational challenge, techniques
based on the method of exterior complex scaling (ECS) [1–4]
seem to tackle the description of both nonstructured and res-
onant atomic continuum in a particularly efficient and elegant
way.

ECS-based methods have been used in the calculations
of ionization amplitudes and cross sections, e.g., for one-
and two-photon single and double ionization of He [5–8],
as well as in time-dependent calculations, in which effective
partial ionization cross sections have been extracted from the
wave packet [9–11]. One of the implementations of the ECS
method, the infinite-range complex scaling (irECS) [12], com-
bined with the time-dependent surface flux approach (tSurff)
[13], has been used to solve the time-dependent Schrödinger
equation on minimal simulation volumes. Recently, irECS
has been combined with the time-dependent complete-active-
space self-consistent method [14] and applied to strong-field
ionization and high-harmonic generation in He, Be, and Ne
atoms [15].

The ECS method and its implementation in terms of B-
splines [16], which are also used in the present work, is
described in detail in Ref. [4]. It is based on a transfor-
mation of radial coordinates outside a sphere with a fixed

radius (R0):

R(r ) =
{
r, r � R0,

R0 + (r − R0)eiθ , r > R0,
(1)

where θ > 0 denotes the scaling angle. By applying the ECS
transformation, the Hamiltonian operator describing an atom
or a molecule becomes non-Hermitian. Requiring the wave
function to vanish on the ECS contour for r → ∞, outgoing
scattering boundary conditions are imposed [4]. Furthermore,
the spectral representation of retarded Green’s operator using
the eigenpairs of the transformed Hamiltonian operator is seen
to be particularly simple and convenient to implement. These
properties make the ECS method suitable for a description of
the atomic and molecular continuum and for calculations of
transition (collision) amplitudes.

In this work, a procedure for the calculation of partial two-
photon ionization amplitudes and cross sections is presented.
The procedure relies on an extraction of the ionization ampli-
tudes from the outgoing waves in the nonscaled region of space
via a least-squares fit, and is applied to the case of two-photon
ionization of He atoms. Furthermore, it is shown that a similar
procedure may be used to calculate photoionization amplitudes
of an atom in a resonance state calculated in the framework of
the ECS method.

In the calculations presented in this work, 256 B-spline
basis functions [4,16] have been used to represent the radial
parts of the single-electron wave functions. Single-electron
angular momenta up to �max = 6 have been used. Two-electron
wave functions have been written using the close-coupling
approach [17,18], with the expansion augmented by either B-
spline functions or other correlation basis functions. Final-state
channels with principal quantum numbers up to nmax = 10
have been used. Most of the calculations have been performed
using R0 = 80 a.u. and Rmax = 300 a.u. A quadratic-linear-
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quadratic knot sequence has been used to achieve (i) an
accurate description of wave functions close to the origin,
(ii) a good representation of the continuum in the nonscaled
region of space, and (iii) an adequate description of eigenwave
functions of the scaled Hamiltonian operator which are used to
represent the atomic continuum for low photoelectron kinetic
energies. Throughout this work, Hartree atomic units are used
unless stated otherwise.

II. DESCRIPTION OF THE METHOD

A. Partial ionization amplitudes and cross sections

Using ECS, one can calculate partial two-photon ionization
amplitudes which correspond to accessible ionization channels
[4,5]. These amplitudes are calculated from the solutions of the
following set of driven Schrödinger equations:

(E0 + ω − H )|�̂1〉 = D|�0〉, (2)

(E0 + 2ω − H )|�̂2〉 = D|�̂1〉, (3)

where H denotes the complex-scaled Hamiltonian operator of
the free helium atom, |�0〉 and E0 the (bound) initial atomic
state and its energy, ω the photon energy, and D the dipole
operator. States |�̂1〉 and |�̂2〉 describe the outgoing waves of
the first- and second-order scattering states usually denoted by
|�+

1 〉 and |�+
2 〉. A transition amplitude describing a specific

final-state channel for the case of two-photon ionization is then
calculated by analyzing the corresponding second-order wave
function, �̂2(rrr1, rrr2).

Solutions |�̂1〉 and |�̂2〉 are obtained by inverting Eqs. (2)
and (3):

|�̂1〉 =
∑

j

|�j 〉〈�j |D|�0〉
E0 + ω − Ej

, (4)

|�̂2〉 =
∑

j

|�j 〉〈�j |D|�̂1〉
E0 + 2ω − Ej

, (5)

where |�j 〉 and 〈�j | are the j th right and left eigenvector of
H , respectively, and Ej is the (generally complex) eigenenergy
which corresponds to |�j 〉. It is to be understood that dipole
matrix elements 〈�j |D|�0〉 and 〈�j |D|�̂1〉 are evaluated on
the ECS contour.

For above-threshold ionization (ATI), i.e., when E0 + ω

lies in the continuum, first-order wave function �̂1(rrr1, rrr2) de-
scribes a state in which at least one of the electrons is not bound.
The radial function associated with the continuum electron thus
extends beyond the nonscaled region of space. This makes the
driving term of Eq. (3) R0 dependent. Especially in the context
of two-photon double ionization treated in the framework of
the ECS method [6–8,19], but sometimes also for two-photon
single ionization, this may be addressed by adding a small,
imaginary term iη (η > 0) in the denominator of Eq. (4):

∣∣�̂η

1

〉 =
∑

j

|�j 〉〈�j |D|�0〉
E0 + ω − Ej + iη

, (6)

∣∣�̂η

2

〉 =
∑

j

|�j 〉〈�j |D
∣∣�̂η

1

〉
E0 + 2ω − Ej

. (7)

The inclusion of the imaginary term results in an additional
exponential damping (∼e−ηr ) of the radial functions of the
first-order solution. By choosing a suitable value of η, the
amplitudes of the radial functions associated with continuum
channels can be made negligibly small near the boundary of
the nonscaled region of space. The partial-wave amplitudes
extracted from second-order wave function �̂

η

2 (rrr1, rrr2) (near
r = R0) may be seen to vary smoothly with η over a relatively
wide interval. This allows one to extrapolate (η → 0+) their
values to obtain the amplitudes of the unmodified problem.
By damping the first-order wave function, however, the peaks
which appear in the generalized two-photon ionization cross
section for E0 + ω close to intermediate resonance states
(resonance-enhanced ionization) are artificially broadened.
Furthermore, the same applies for the contributions from the
so-called core-excited resonances [20]. In these cases, the
broadening cannot be “undone” using the limiting procedure.
An alternative way to determine the partial ionization ampli-
tudes is discussed below.

Henceforth, the focus will be on the dipole operator written
in the velocity form,

D = êee · (ppp1 + ppp2), (8)

where ppp1 and ppp2 are the electron momentum operators and êee

is the unit polarization vector. Below we show how, given this
particular form of the dipole operator, one can extract partial
ionization amplitudes from second-order state |�̂2〉. To do this,
we project |�̂2〉 onto a subspace spanned by the states with a
fixed total orbital angular momentum and spin, a fixed ion
core, α ≡ (n1, �1), and a chosen angular momentum of the
remaining electron (�2), but make no attempt to single out
the partial wave with the chosen wave number. In particular,
we are not, at this stage, concerned with a projection of
�̂2(rrr1, rrr2) onto the channel wave functions associated with
specific kinetic energies of the continuum electron, which is
how partial ionization amplitudes may generally be calculated.
This point will be discussed further below. The projection,
which shall be denoted by |�̂α�2

2 〉, can be written as

∣∣�̂α�2
2

〉 =
∑′

β
xαβ |{φαχβ}〉, (9)

where |{φαχβ}〉 is the antisymmetric coupled two-electron
basis state with a Z = 2 hydrogenlike core (φα), the primed
summation runs over one-electron basis states (χβ) with �β =
�2, and xαβ denotes the corresponding expansion coefficient.
Let us consider the case where the helium atom is initially in
the ground state and the photon energy is low enough, so that
E0 + ω and E0 + 2ω fall between the first (N = 1) and the
second (N = 2) ionization threshold. Two-photon ionization
then proceeds through the 1sε′p intermediate continuum
states, where the kinetic energy of the continuum electron has
been denoted by ε′. The 1sε�2 (�2 = s, d) continuum channels
are thus accessible in the second step, where, similarly, ε is the
kinetic energy of the photoelectron in the final state. We write
the radial function associated with the continuum electron as

Pα�2 (r ) =
∑′

β
xαβPχβ

(r ), (10)
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FIG. 1. Real (top) and imaginary (bottom) part of the radial
function for the 1sεs ionization channel calculated for photon energy
ω = 0.95 a.u. (solid blue lines). Parameter R0 has been set to 80 a.u.
(marked with dotted vertical lines). The result of a least-squares
fit using Eq. (11) is plotted with dashed orange lines and has been
extended beyond r = R0.

where Pχβ
(r )/r is the radial part of one-electron wave func-

tion χβ (rrr ). In the asymptotic region, Pα�2 (r ) approximately
approaches a sum of outgoing radial Coulomb functions with
two characteristic wave numbers k and k′:

Pα�2 (r ) ∼ B
{
F�2 (Zc, k; r ) + iG�2 (Zc, k; r )

}
+B′{F�2 (Zc, k

′; r ) + iG�2 (Zc, k
′; r )

}
. (11)

In Eq. (11), F�2 and G�2 are the regular and irregular energy-
normalized radial Coulomb functions and B and B′ are the
amplitudes associated with the two partial waves. In the case of
helium, Zc = Z − 1, where Z = 2 is the nuclear charge. To see
the asymptotic form is indeed approximately given by Eq. (11),
one proceeds as follows. First, the value of k is fixed by the
energy-conservation condition, which is a direct consequence
of Fermi’s golden rule:

E0 + 2ω = I1s + ε = I1s + k2/2. (12)

Here, I1s is the energy of the ion core (1s). Secondly, the value
of k′ may be calculated if one takes into account that the on-
shell approximation [21,22] is valid. Since this is the case, the
transition matrix elements between nonresonant (structureless)
continuum states may be seen to be approximately diagonal in
the energy [22],

〈1sε′p|D|1sε�2〉 ∼ δ(ε′ − ε), (13)

which leads to the following condition for the remaining wave
number in Eq. (11):

ε ≈ ε′ = E0 + ω − I1s = k′2/2. (14)

Amplitudes B and B′ can then be extracted from Pα�2 (r )
by a least-squares fit, and the partial two-photon ionization
cross section of interest is seen to be proportional to |B|2. In
Fig. 1, this is illustrated for the case of the 1sεs ionization
channel for photon energy ω = 0.95 a.u. (25.85 eV). As can
be seen, the real and imaginary parts of Pα�2 (r ) ≡ P1s,s (r ) are

26 27 28 29 30 31 32
h̄ω (eV)

10−1

100

101

102

103

σ
(2

)
(1

0−
52

cm
4 s

)

FIG. 2. Two-photon ionization cross section (solid black line)
in the region of the 1Se and 1De resonance states below the N = 2
ionization threshold. The contributions of the 1sεs (1Se) and 1sεd

(1De) channels are plotted with a dashed blue and a dotted orange
line, respectively.

characterized by wave beats. For r � R0, but at sufficiently
large radii (so that the short-range correlation potential be-
comes negligibly small), these beats are accurately described
by Eq. (11). It has been checked that, although the shape
of the driving term (D�̂1) depends on R0, Pα�2 (r ) remains
independent of its value for r � R0. Figure 2 shows the
two-photon ionization cross section for E0 + 2ω chosen in the
region of the 1Se and 1De autoionizing states below the N = 2
ionization threshold. Good agreement between the two-photon
cross section calculated using the present method and the data
available in the literature has been obtained (e.g., see Ref. [23]).
The partial cross sections for each of the ionization channels
have been calculated using

σ
(2)
α�2,L

(ω) = 16πc−2ω−2
∑
M

∣∣BLM
α�2

∣∣2
, (15)

where BLM
α�2

(k) ≡ B is the ionization amplitude of the chan-
nel specified by α�2, total orbital angular momentum L

and its projection M , and wave number k. It has been as-
sumed that, asymptotically, F�2 (Zc, k; r ) ∼ √

2/(πk) sin θ�2

and G�2 (Zc, k; r ) ∼ −√
2/(πk) cos θ�2 , where θ�2 = kr +

(Zc/k) ln(2kr ) − �2π/2 + σ�2 is the total phase and σ�2 =
arg �(�2 + 1 − iZc/k) is the Coulomb phase shift.

The extracted ionization amplitudes also allow one to
calculate photoelectron angular distributions (PADs). Given
amplitude BLM

α�2
(k), the (spin-averaged) angle-dependent ion-

ization amplitude is given by [18,24,25]

BLM
α�2

(k)
∑
m2

(�1,M − m2; �2,m2|L,M )Y�2m2 (k̂kk). (16)

The spherical harmonic describing the angular dependence
of the electron ejection has been denoted by Y�2m2 (k̂kk), and
(�1,M − m2; �2,m2|L,M ) is the Clebsch-Gordan coefficient
for the coupling between the angular momentum of the ion
core and the angular momentum of the continuum electron.
The calculation of the PADs and the corresponding asymmetry
parameters for one- and two-photon ionization is described in
detail in Refs. [18,24,25].
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As the photon energy is further increased, but is low
enough so that E0 + ω still lies between the N = 1 and N = 2
thresholds, additional final-state continuum channels become
accessible, e.g., 2sεs, 2pεp (1Se and 1De), etc. Let us look at
the calculation of the 2pεp partial ionization amplitudes. The
equality for k now reads

E0 + 2ω − I2p = k2/2. (17)

In this case, however, the relation between ε and ε′ analogous to
Eq. (13) is seen to be a consequence of the property of the dipole
matrix element for the 1sε′p → 2pεp continuum-continuum
transition, in which the continuum electron acts as a spectator:

〈1sε′p|D|2pεp〉 ∝ 〈ε′p|εp〉 ∝ δ(ε′ − ε). (18)

This leads to the condition

ε = ε′ = k′2/2. (19)

As before, the relevant amplitude (B) is determined by a least-
squares fit.

Finally, when the photon energy is even further increased,
several (say, K), channels are open at energy E0 + ω (the first
step), and Pα�2 (r ) is written as a sum of at most K + 1 terms
of the form given in Eq. (11). The number of terms depends
on the number of allowed continuum-continuum transitions
(n′

1�
′
1ε

′�′
2 → n1�1ε�2). The fitting procedure has been found

to be stable, as long as K has remained reasonably small.
For photon energies above the second ionization threshold, the
degeneracy in the intermediate step (e.g., for the 2sε′p, 2pε′s,
and 2pε′d ionization channels) has been handled by solving
the normal equations using a pseudoinverse.

It is interesting to analyze the behavior of Pα�2 (r ) when
k coincides with one or several other wave numbers in the
sum. This situation may occur, for example, for two-photon
ground-state ionization through the 1sε′p states in the case
of the 2pεp channels discussed above. The resulting wave
numbers are equal when

ε = E0 + ω − I1s = E0 + 2ω − I2p = ε′, (20)

which holds for ω = I2p − I1s . When the photon energy lies
close to I2p − I1s , the normal equations of the least-squares
problem become ill conditioned. (We discuss this further be-
low.) This results in a resonant enhancement in the two-photon
partial cross section, which is a signature of the core-excited
resonance [20]. A similar behavior is also present at higher
photon energies, specifically, when the photon energy equals
In1p − I1s . It is important to note at this point that the core-
excited resonances are accessible via continuum-continuum
transitions in a neutral atom (i.e., not an ion). In the present
case, the relevant transitions are of the form

1sε′p → n1pεp, (21)

for which the continuum electron does not actively participate,
as has already been mentioned. Furthermore, as has been
argued by Shakeshaft [20], the present formalism for the de-
scription of two-photon ionization, in which the field-dressing
(broadening) effects have not been taken into account, is not
adequate for photon energies which lie very close to the
positions of the core-excited resonances. A similar behavior
is encountered below the ionization thresholds, when E0 + ω
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FIG. 3. Two-photon ionization cross section in the region of the
core-excited resonances. The result obtained using a least-squares
fit with R0 = 80 a.u. (solid black) and the result of Shakeshaft [20]
(dashed blue) are shown.

coincides with the energies of the bound 1snp states, unless
their decay widths are taken into account. Figure 3 shows the
total two-photon ionization cross section for photon energies
above the N = 2 threshold. Apart from the contributions of
the final resonance states converging to higher ionization
thresholds (for h̄ω around 35 eV), a series of spikes due to the
core-excited resonances is visible (centered at approximately
40.8 eV, 48.4 eV, 51.0 eV, etc.). The present result is seen to
agree well with the result of Ref. [20].

The present approach allows one to accurately treat cor-
relation in the initial, intermediate, and final states. In par-
ticular, electron correlation in the first- and second-order
solutions, |�̂1〉 and |�̂2〉, is taken into account through cor-
related eigenstates 〈�j | and |�j 〉 in Eqs. (4) and (5). In
the present case, electron correlation has been taken into
account by including correlation basis states in the close-
coupling expansion. In the current implementation, given
an expansion which contains correlation wave functions and
n1�1ε�2 continuum channel wave functions with energies of
the ion core In1�1 up to Ec, partial ionization amplitudes for
photon energies ω � (Ec − E0)/2 can be calculated. Con-
versely, when the final-state energy lies above the threshold
for double electron ejection, all the single-ionization channels
are open. A pure close-coupling expansion has been used in this
case.

Another comment is in place here concerning the structure
of Eq. (3). When the photon energy lies above the ionization
threshold, the radial part associated with the driving term in
Eq. (3) has a “harmoniclike” form (the form of an outgoing
Coulomb wave). The radial part of the Schrödinger equation
thus, loosely speaking, resembles the equation of motion of
a forced harmonic oscillator, with the independent variable
replaced with radius r . For ω = I2p − I1s and without any
additional damping, wave number k′ (the “driving frequency”)
matches k (the “frequency of the oscillator”). This case
corresponds to a resonantly driven (nondamped) harmonic
oscillator. An analogous behavior for the radial function
pertaining to the 2pεp 1Se channel can be seen in Fig. 4: the
amplitude of the radial function increases monotonically for
r � R0.
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FIG. 4. Radial function P2p,p (r ) for the case of ω = I2p − I1s =
0.5 a.u. The real and imaginary part are plotted with a solid blue and
dashed orange line, respectively.

As has been mentioned, the two-photon ionization cross
section is enhanced when E0 + ω lies close to the energies
of the intermediate resonance states, which is usually referred
to as resonance-enhanced ionization. The resonantly enhanced
two-photon ionization cross section is depicted in Fig. 5 for the
case of the lowest (N = 2) 1P o intermediate autoionizing states
[26,27]. Since these states lie between the first and the second
ionization threshold, only the 1sεp continuum is open at E0 +
ω. As before, the wave numbers associated with the final-state
ionization channels n1�1ε�2 are determined from k2/2 = E0 +
2ω − In1�1 , whereas for the intermediate step, k′2/2 = E0 +
ω − I1s is used. Similar results have also been obtained for
higher-lying resonance states, including those with the energies
converging to the N = 3 ionization threshold. In the inset of
Fig. 5, the total cross section in the region of the sp+

2 (2+) 1P o

state [26] is compared to the cross section calculated using the
projection to the channel wave functions (see Sec. II B). The
minor differences between the results calculated with the two
approaches are due to the change in the background caused
by the tails of the broadened nearby peaks of the core-excited
resonances.

59 60 61 62 63 64
h̄ω (eV)

10−1

101

103

105

107

109

σ
(2

)
(1

0−
52

cm
4 s

)

59 60 61
10−1

100

101

102

FIG. 5. Resonance-enhanced two-photon ionization cross section
in the energy region of the lowest 1P o autoionizing states. The dashed
blue and dotted orange lines show the contributions of the 1Se and
1De final-state ionization channels. The total cross section is plotted
with a solid black line. In the inset, the total cross section in the
region of the sp+

2
1P o doubly excited state is compared to the result

obtained using the projection onto the final-state channel functions
(green dash-dotted line), as described in Sec. II B.

The least-squares procedure is also applicable in the case
of two-color driving. In order to calculate the corresponding
two-color ionization amplitudes, ω and 2ω in Eqs. (4), (5), (12),
(14), (17), and (20) should be replaced with photon energies
of the two sources, ω1 and ω2. Depending on these photon
energies, the resulting two-photon ionization amplitudes may
be seen to correspond to the different cases studied in Ref. [22]:
(i) the case of resonance-enhanced photoionization, where
the final-state continuum is nonresonant, (ii) the case of
two-photon ionization which proceeds through a nonresonant
continuum and where the energy of the final state lies in the
region of a resonance state, and (iii) the general case of doubly
resonant ionization.

B. Projection onto the final-state channel functions

It has been mentioned that the partial ionization amplitudes
can be calculated by projecting second-order wave function
�̂2(rrr1, rrr2) onto the channel functions which describe the
continuum electron with specific kinetic energy ε. When the
ECS method is used, the projection integral is limited to the
nonscaled region of space (r � R0). Equivalently, the integral
can be transformed to a surface integral if the form of the
channel (“testing”) functions is chosen appropriately (e.g.,
see Refs. [5,7,9]). Also, in this case, the nonscaled spatial
region is involved. While the peaks due to the intermediate
bound or resonance states which appear in the two-photon
cross section are not affected by the integration over the finite
volume, the latter results in a broadening of the peaks due to the
core-excited resonances. This broadening may be determined
from the smallest difference between k and k′ which can still be
resolved using the projection integral. Since 0 � r � R0, this
difference is given by �k = |k − k′| ∼ 2π/R0. For �k small
compared to k and k′, the broadening may be assessed from

�ε ≈
√

2ε �k ∼
√

2ε
2π

R0
. (22)

Conversely, when the partial amplitudes are extracted using
a fit, no additional broadening occurs. The advantage of the
least-squares fit procedure is thus that it allows one to extract
the partial ionization amplitudes even when R0 is relatively
low, as long as the shape of the radial function close to
r = R0 is adequately described by Eq. (11) or its multiterm
generalization.

The partial two-photon ionization cross sections have been
calculated by means of a projection for comparison. The
ionization amplitude of the α�2 channel has been calculated
using the following approach:

Bα�2 = I
[
Pα�2 (r )

]
I
[
H�2 (Zc, k; r )

] , (23)

I[f (r )] =
∫ R0

Rmin

{
H�2 (Zc, k; r )

}∗
f (r ) w(r )dr, (24)

where H�2 (Zc, k; r ) = F�2 (Zc, k; r ) + iG�2 (Zc, k; r ), and a
window function, denoted by w(r ) in Eq. (24), has been
added under the integral to reduce the oscillatory artifacts.
These appear due to the finite-interval (Fourier-like) sidelobes
which accompany the peaks when the integrand is nonzero
at the upper integral bound. The total two-photon ionization
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FIG. 6. Two-photon ionization cross section for different scaling
radii R0 calculated with the projection approach. The cross section
calculated with the least-squares fit has been plotted with a solid black
line.

cross section in the energy region of the lowest core-excited
resonance (I2p − I1s = 0.5 a.u. ≈ 40.8 eV) calculated with
the least-squares fit (for R0 = 80 a.u.) and the projection (for
R0 = 80 a.u., 160 a.u., 300 a.u., and 600 a.u.) is shown in
Fig. 6. These results have been obtained for Rmin = 5 a.u. and
by setting w(r ) = exp{−(κr )n}, with n = 4. For each of the
values of R0, parameter κ has been calculated by requiring
that w(R0) = 0.001. It should be noted here that the effect
of the window function is fundamentally different from the
effect of the damping term (iη) in Eq. (6). While in the
former case, the widths of the peaks due to the intermediate
bound and resonance states remain unchanged, the peaks are
artificially broadened using the latter approach. As expected,
the agreement between the cross section calculated with the
least-squares fit and the cross sections calculated with the
projection approach is better for higher values of the R0

parameter. It has been found that in some cases, like for the 2sεs

channel, the partial wave amplitude approaches the asymptotic
value slowly with increasing r if the photon energy lies close to
the energy of the core-excited resonance. In these cases, larger
R0 values have to be considered even when the amplitude is
extracted using the fit.

Equations (23) and (24) result in two-photon ionization
cross sections which are almost indistinguishable from those
calculated with the least-squares fit for photon energies chosen
in the energy regions of intermediate bound and resonance
states (as shown in the inset of Fig. 5).

A similar procedure based on a projection onto a set of
channel functions is also used to extract partial single- and
double-ionization amplitudes from a solution of the time-
dependent Schrödinger equation (TDSE). The extraction of
the ionization amplitudes from a time-dependent wave packet
using the ECS method has been treated extensively by Palacios
et al. [9–11]. Let |�(t )〉 denote the solution of the TDSE,

{H + V (t )}|�(t )〉 = i
∂

∂t
|�(t )〉, (25)

where V (t ) describes the interaction of the atom with an
electromagnetic pulse of duration τ . At the end of the pulse,
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FIG. 7. Partial two-photon ionization cross sections as given by
Eq. (27). The 1s, 2s, 2p, 3s, and 3p partial cross sections are shown.
The results of the time-dependent calculation (TDSE) for 2-fs-long
pulses (from Ref. [11]) are plotted with black circles.

the outgoing part of the wave function may be calculated from

(E − H )|�̂〉 = |�(τ )〉, (26)

which has the form of Eqs. (2) and (3). Partial ioniza-
tion amplitudes can then be extracted from wave function
�̂(rrr1, rrr2), which allows one to calculate the corresponding
partial ionization cross sections. As can be seen in Fig. 7,
there is good overall agreement between the partial two-photon
ionization cross sections calculated with the present method
and the cross sections from Ref. [11], which have been obtained
by solving the TDSE for 2-fs-long pulses. Each of the cross
sections in Fig. 7 describes an ionization process which leads
to the helium ion in a specific state. These cross sections
have been calculated by summing up the partial cross sections
pertaining to ionization channels with a fixed ion core (α), but
with different angular momenta of the continuum electron (�2)
and different values of the total angular momentum (L = 0 or
L = 2 for linearly polarized light in the present case):

σ (2)
α (ω) =

∑
�2,L

σ
(2)
α�2,L

(ω). (27)

The sharp peaks due to the core-excited resonances are broader
in the TDSE case. As has already been mentioned, the field-
broadening effects have not been taken into account in the
present calculations. Furthermore, in the time-dependent treat-
ment, additional broadening occurs due to the finite excitation
bandwidth (i.e., due to the finite pulse duration). Specifically,
the widths of the peaks in the TDSE case may be seen to be
inversely proportional to the radial extent of the resulting wave
packet (i.e., not to R0, as in the present case). Note, however,
that in Ref. [11], the value of R0 has been chosen high enough
so that the outgoing wave packet can be assumed not to have
reached the boundaries of the nonscaled spatial region for time
t � τ . Since this is the case, Eq. (22) may still be used to give
the lower bound for the spectral broadening.

Let us conclude by noting that the extraction of partial
ionization amplitudes from the solution of the TDSE, i.e., from
�(rrr1, rrr2; τ ), is generally not possible using the least-squares
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fit procedure described in this work. The reason for this is that
radial function Pα�2 (r ) cannot generally be written in the form
of Eq. (11) or its generalization, i.e., with a sum over a discrete
set of wave numbers (k, k′, . . .). Instead, the general form for
Pα�2 (r ) in the asymptotic region may be seen to be∫

dkBα�2 (k)
{
F�2 (Zc, k; r ) + iG�2 (Zc, k; r )

}
. (28)

The projection approach described above may in this case be
used to extract Bα�2 (k). The same limitations of course apply
for the calculation of the PADs and energy spectra of the ejected
electrons in the time-dependent framework. To this end, the
following is to be noted. Energy-resolved partial two-photon
ionization cross sections may be trivially calculated in the
framework of the time-independent perturbation theory, and
are seen to be proportional to the modulus square of the relevant
partial amplitudes obtained with the least-squares fit:

dσ
(2)
α�2,L

dE
∝

∑
M

∣∣BLM
α�2

∣∣2
δ(E0 + 2ω − E). (29)

In Eq. (29), E = Iα + ε is the energy of the final state. This
is in contrast to the time-dependent treatment, for which
the partial amplitude cannot generally be extracted from the
wave packet using a fit, and photoelectron energy spectra
may only be calculated by projecting �(rrr1, rrr2; τ ) onto the
channel functions describing the continuum electron with a
fixed kinetic energy (ε).

C. Gauge invariance

Perhaps surprisingly, good agreement has been obtained
between the cross sections calculated using the velocity form
and those employing the length form of the dipole operator,
D = êee · (rrr1 + rrr2), where rrr1 and rrr2 denote the position opera-
tors of the two electrons. The dipole matrix elements between
the eigenstates of H have been transformed to the velocity
form using the well-known relation

〈�a|ppp1 + ppp2|�b〉 = i(Ea − Eb )〈�a|rrr1 + rrr2|�b〉 (30)

prior to calculating the first- and second-order solutions
[Eqs. (4) and (5)]. In Eq. (30), eigenenergies Ea and Eb

correspond to eigenstates |�a〉 and |�b〉, respectively. Note
that Eq. (30) holds for exact eigenstates, so a discrepancy
between the two forms serves as a measure of accuracy of
their numerical representations. Arguably, the above relation
only holds for the off-the-energy-shell matrix elements [21].
Note, however, that the eigenstates with different total angular
momentum and parity which are used to represent the atomic
continuum are nondegenerate in the present calculations. The
nondegeneracy is connected to the finite radial interval used to
represent the radial functions; the eigenvalues pertaining to the
“box-normalized” states differ. The two-photon cross sections
calculated using the length and velocity form of the dipole
operator are shown in Fig. 8.

An analogous transformation of the transition matrix el-
ements from the acceleration to the velocity form results in
spurious oscillations in the two-photon cross section even
for photon energies below the first ionization threshold. The
oscillations are most probably due to modifications of the
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FIG. 8. 1Se (L = 0) and 1De (L = 2) two-photon ionization cross
section below the N = 1 (top), N = 2 (middle), and N = 3 (bottom)
ionization thresholds. The results for the length- and velocity-form
dipole operator are plotted with solid and dotted lines, respectively.

commutation relations [21,28] connecting the acceleration and
velocity forms of the dipole operator, which would need to be
taken into account when dealing with box-normalized states,
but have not been included in the present tests.

III. PHOTOIONIZATION OF AN ATOM IN
A RESONANCE STATE

Theoretical treatment of photoexcitation and photoioniza-
tion with short-wavelength radiation by a direct solution of
the time-dependent Schrödinger equation presently becomes
prohibitively lengthy as soon as the pulse duration exceeds
a couple of tens of femtoseconds. When this is the case,
the time-dependent description of atom-photon interaction is
usually limited to a restricted subset of basis states by means of
which the main features of the system can be described. This in-
cludes finding the solution of the time-dependent Schrödinger
equation in terms of the time-dependent amplitudes of the basis
states from the restricted space [29–31], studying the dynamics
in terms of the density matrix (e.g., see Refs. [32,33]), or
solving a set of kinetic equations which describe the population
of various atomic and ionic species during the interaction with
the incident pulse [34,35]. The parameters which enter the
model, such as autoionization widths, asymmetry parameters,
photoionization cross sections, and Rabi frequencies, can
be conveniently calculated using the ECS method. In this
section, we show how to meaningfully define and calculate the
photoionization cross section of an atom in a resonance state.

In the framework of the ECS method, resonance (au-
toionizing) states are associated with the discrete part of the
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eigenspectrum of complex-scaled (ECS) Hamiltonian operator
H , i.e., with the complex poles of the resolvent, G(z) = (z −
H )−1. Let |�0〉 denote an eigenstate of H , which represents a
resonance state. Its energy can be shown to be θ independent
and may be written as E0 = Er

0 − i�0/2, where Er
0 and �0

denote the energy position of the resonance and its decay
(autoionization) width, respectively. When the resonance is
narrow, i.e., when its autoionization width is small, so that E0

lies close to the real axis, the resonance state may be treated
as a nondecaying state. In this case, we may replace E0 in the
denominator of Eq. (4) with Er

0:

|�̂1〉 =
∑

j

|�j 〉〈�j |D|�0〉
Er

0 + ω − Ej

. (31)

As before, states 〈�j | and |�j 〉 denote the left and right eigen-
vectors of H , Ej is the eigenenergy corresponding to |�j 〉, and
matrix element 〈�j |D|�0〉 is evaluated on the ECS contour.

Let us start by assuming that |�0〉 describes the sp+
2

1P o

autoionizing state, which lies below the N = 2 ionization
threshold. In a similar way as before, wave number k is
determined from

Er
0 + ω = In1�1 + ε = In1�1 + k2/2, (32)

where, again, α = (n1, �1) are the quantum numbers of the
ion core for a chosen final-state channel (described by α�2).
Contrary to the bound initial state, the sp+

2 resonance state lies
above the N = 1 threshold, and thus the 1sε′p continuum is
open at energy Er

0. Since the resonance state also contains a
small admixture of the continuum [27], the relation analogous
to Eq. (14) now reads

ε ≈ ε′ = Er
0 − I1s = k′2/2. (33)

Exactly as before, radial function Pα�2 (r ) may be calculated
from first-order state |�̂α�2

1 〉, which, in turn, is obtained by
projecting the solution of Eq. (31) to the relevant subspace. In
the asymptotic region, the behavior of Pα�2 (r ) is approximately
described by Eq. (11). In this way, the partial ionization ampli-
tude for theα�2 channel can be extracted. This procedure can be
generalized to higher-lying resonance states. To demonstrate
its applicability, we have calculated the partial photoionization
cross sections for an atom initially in the sp+

2
1P o autoionizing

state. The results are shown in Fig. 9 for three energy regions:
below the second ionization threshold, between the second
and third threshold, and close to the lowest-lying core-excited
resonances. As can be seen, the cross section in the latter
region is enhanced in a similar way as in the case of two-
photon ionization due to the continuum-continuum transitions.
This enhancement occurs due to the admixture of the 1sε′p
continuum, i.e., due to the 1sε′p → npεp transitions. As has
been the case for the two-photon ionization cross section, the
field-dressing effects have not been taken into account.

IV. CONCLUSION

A slightly modified procedure for the calculation of partial
two-photon ionization amplitudes and cross sections based on
the method of exterior complex scaling (ECS) has been pre-
sented. The procedure relies on an extraction of the amplitudes
from radial functions of outgoing scattered waves obtained by
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FIG. 9. Photoionization cross section of the He atom in the
sp+

2
1P o autoionizing state for the incident photon energy below the

N = 2 ionization threshold (top), between the N = 2 and N = 3
thresholds (middle), and in the region of the core-excited resonances
(bottom).

fixing the state of the ion core and the angular momentum of
the continuum electron. The amplitudes are not calculated by
projecting out the partial waves associated with a fixed value
of the kinetic energy of the electron; instead, the extraction is
implemented by means of a few-term linear least-squares fit. As
has become customary in the framework of the ECS method,
the scattered wave is calculated by solving a set of driven
Schrödinger equations. While for photon energies above the
ionization threshold, the first-order driving term depends on the
scaling radius, the second-order scattered wave has been seen
to be independent of the scaling parameters in the nonscaled
region of space. In a sense, this region contains a “complete”
information on the photoionization process, and because of
this, the least-squares fit allows for a relatively straightforward
extraction of the photoionization amplitudes in the case of the
single-electron ejection. Finally, basing on similar theoretical
grounds, a method for the calculation of partial photoionization
amplitudes for an atom in an autoionizing state has been
proposed, which may be useful when a direct solution of the
Schrödinger equation is unfeasible, and one resorts to modeling
using a restricted set of states.

ACKNOWLEDGMENTS

The author acknowledges the financial support from the
Slovenian Research Agency (research program No. P1–0112).
This work was supported by the European COST Action XLIC
CM1204.

023409-8



ROLE OF INTERMEDIATE CONTINUUM STATES IN … PHYSICAL REVIEW A 98, 023409 (2018)

[1] B. Simon, Phys. Lett. A 71, 211 (1979).
[2] T. N. Rescigno, M. Baertschy, D. Byrum, and C. W. McCurdy,

Phys. Rev. A 55, 4253 (1997).
[3] P. B. Kurasov, A. Scrinzi, and N. Elander, Phys. Rev. A 49, 5095

(1994).
[4] C. W. McCurdy and F. Martín, J. Phys. B 37, 917 (2004).
[5] C. W. McCurdy, M. Baertschy, and T. N. Rescigno, J. Phys. B

37, R137 (2004).
[6] D. A. Horner, F. Morales, T. N. Rescigno, F. Martín, and C. W.

McCurdy, Phys. Rev. A 76, 030701 (2007).
[7] D. A. Horner, C. W. McCurdy, and T. N. Rescigno, Phys. Rev.

A 78, 043416 (2008).
[8] D. A. Horner, T. N. Rescigno, and C. W. McCurdy, Phys. Rev.

A 77, 030703 (2008).
[9] A. Palacios, C. W. McCurdy, and T. N. Rescigno, Phys. Rev. A

76, 043420 (2007).
[10] A. Palacios, T. N. Rescigno, and C. W. McCurdy, Phys. Rev. A

77, 032716 (2008).
[11] A. Palacios, T. N. Rescigno, and C. W. McCurdy, Phys. Rev. A

79, 033402 (2009).
[12] A. Scrinzi, Phys. Rev. A 81, 053845 (2010).
[13] L. Tao and A. Scrinzi, New J. Phys. 14, 013021 (2012).
[14] T. Sato, K. L. Ishikawa, I. Březinová, F. Lackner, S. Nagele, and
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