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We investigate theoretically the above-threshold ionization (ATI) of localized atomic targets by intense few-
cycle Bessel pulses that carry orbital angular momentum (OAM), known also as twisted light. More specifically,
we use the strong-field approximation (SFA) to compute the photoelectron energy spectra. While for plane-wave
laser pulses the outgoing photoelectron is typically described by Volkov states within the SFA, no equivalent
is known for an electron in a twisted laser field. Here, we therefore introduce a local dipole approximation for
the (continuum) state of the photoelectron that is justified for few-cycle pulses. Based on this approximation,
we demonstrate that the photoelectrons can also be emitted into the propagation direction of the pulse. When
measured in propagation direction, moreover, we show that the magnitude of the ATI peaks depend on the opening
angle and the (projection of) total angular momentum of the Bessel pulse.
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I. INTRODUCTION

Strong laser fields have been found to be a valuable tool
to study electron dynamics in atoms and molecules. Various
characteristic nonperturbative phenomena can be observed
in the spectra of emitted photoelectrons and photons. In the
above-threshold ionization (ATI), in particular, the photoelec-
tron can absorb more photons than required in order to over-
come the ionization threshold. The observed energy spectrum
then consists of several peaks spaced by the photon energy
[1,2]. In the past decades, the ATI of atoms by plane-wave
femtosecond laser pulses has been extensively studied, both
experimentally and theoretically. For instance, it was found that
the duration and carrier envelope phase of the ionizing pulse
sensitively influence the shape and symmetry of the resulting
photoelectron momentum distributions [3,4]. More recently, in
addition, complex pulse shapes, such as bicircular pulses, have
been studied as well [5,6].

Several methods exist today to analyze theoretically the
ATI. Perhaps the most exact approach is the direct numerical
solution of the time-dependent Schrödinger equation, which
often reproduces all experimental features of ATI. However,
this approach is time consuming and quickly becomes un-
feasible if atoms with more than a few (active) electrons
are considered. Quite in contrast with numerically solving
the Schrödinger equation, an analytical approach has been
developed, which is known as the strong-field approximation
(SFA) [7–9]. In its most rigorous form, the SFA neglects
the interaction of the photoelectron with the parent ion as
well as the laser-field dressing of the bound state. Based
on these approximations, most features of ATI spectra can
be reproduced qualitatively [2]. However, typical SFA-based
studies also neglect nondipole contributions in the laser-atom
interaction. This is justified especially for plane-wave laser
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fields, where relativistic and magnetic effects do not play a
role.

Most nonlinear atomic processes can also be driven by laser
beams with a more complex phase structure. In particular,
twisted Bessel beams exhibit helical phase fronts that can
experimentally be created using axicons [10], phase plates
[11], or computer-generated holograms [12]. In contrast with
plane waves, such twisted beams carry an often well-defined
(projection of) orbital angular momentum (OAM) in addition
to their spin angular momentum. In the past, for example,
it was investigated how the OAM of the beam modifies the
photoionization and excitation of atoms with twisted laser
beams of low intensity [13–15]. These studies showed that
OAM can be transferred to the electron, which modifies the
selection rules when compared with the plane-wave case [16].

In the nonperturbative regime, twisted laser pulses of finite
duration have been of interest in high-harmonic generation
[17,18] as well as in two-color ionization processes [19,20].
In the former, it was shown that OAM is transferred from the
fundamental to the high-harmonic modes, which enables one
to create twisted pulses of attosecond duration. Less attention
has been paid, in contrast, to the strong-field ionization of
atoms using twisted laser pulses of high intensity. Only
recently we applied a semiclassical approach to study the
symmetries of photoelectron momentum distributions [21].
In a fully quantum-mechanical description of this strong-field
ionization, it can be expected that the transfer of OAM to the
photoelectron leads to significantly altered ATI peak structures
and their study might provide new insights into the underlying
laser-atom interaction. However, to make use of the SFA
formalism, it needs to be extended beyond the dipole approx-
imation in order to incorporate the helical phase structure of
the ionizing pulse. More precisely, a proper description of the
continuum states available to the photoelectron in a strong
twisted pulse is needed.

In this work, we take a first step towards the quantum-
mechanical description of ATI by strong few-cycle Bessel
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pulses. To this end, we introduce a local dipole approximation
within the SFA in order to describe the continuum dressed
by the twisted laser pulse. In this approximation, the wave
function of the outgoing photoelectron is still based on the
well-known nonrelativistic Volkov states and we use them to
compute energy- and angle-differential photoelectron spectra.
In these spectra, we clearly find photoelectrons emitted also
along the propagation direction of the pulse, i.e., away from
the usual emission within the x-y plane. Below, we analyze in
detail how these energy spectra of the photoelectrons arise if the
opening angle of the Bessel pulse is increased. Furthermore,
we show that the ATI peaks observed in these spectra depend
on the opening angle as well as the total angular momentum
(TAM) of the Bessel pulse.

This paper is structured as follows: In Sec. II, the theoretical
methods are discussed. We first introduce Bessel beams and
finite Bessel pulses in Sec. II A and shortly review the SFA
approach to ATI in Sec. II B. In Sec. II C, we then introduce
the local dipole approximation and calculate the continuum
states of the photoelectron in a strong Bessel pulse. With the
resulting SFA transition amplitude, detailed calculations of the
photoelectron energy spectra are performed in Sec. III. After
reviewing the plane-wave limit, emphasis is placed especially
on the dependence of the photoelectron spectra on the TAM
and the opening angle of the Bessel pulse. Finally, a summary
and outlook are given in Sec. IV.

Note that atomic units (me = e = h̄ = 4πε0 = 1) are used
throughout the paper unless stated otherwise.

II. THEORETICAL METHODS

Figure 1 shows the geometry of the strong-field ionization as
considered in this work. A few-cycle Bessel pulse of duration T

and wavelength λ propagates along the z axis and interacts with
a single atomic target that is displaced by an impact parameter
b = (b, ϕb, zb = 0) with regard to the beam axis, taken as the
quantization axis. The photoelectrons emitted from the target
are measured at the detector with asymptotic momentum p =
(p, ϑp, ϕp ), parametrized in spherical coordinates. Below, we
describe the bound state of the single active electron with
binding energy EB = 14 eV, as found, e.g., for krypton.
To realize a strong-field regime as appropriate for the SFA,

FIG. 1. Strong-field ionization of an atom by a few-cycle Bessel
pulse (orange). The atomic target is localized at the impact parameter
b relative to the beam z axis. The photoelectrons are observed with
asymptotic momentum p at the detector.

we assume a (central) wavelength λ = 800 nm and a pulse
intensity I = 1014 W/cm2 (cf. Sec. II A for the definition of
the intensity).

A. Bessel pulses

Bessel pulses of finite duration can be formed from contin-
uous Bessel beams, which are described by the vector potential
Am�ϑk

(r, t ) in the Coulomb gauge. These continuous Bessel
beams are characterized by their frequency ω, helicity �, the
(cone) opening angle ϑk , and the projection m of TAM onto
their beam axis. Their vector potential is a solution to the wave
equation (

� − α2 ∂2

∂t2

)
Am�ϑk

(r, t ) = 0 (1)

and also satisfies the eigenvalue equation

Ĵz Am�ϑk
(r, t ) = mAm�ϑk

(r, t ). (2)

Here, Ĵz = L̂z + Ŝz is the operator of TAM projection with the
operators L̂z of OAM projection and Ŝz of spin projection.

We can conveniently write down the solutions of Eqs. (1)
and (2) if we introduce the eigenvectors ηms

(ms = 0,±1) of
the spin projection operator Ŝz:

Ŝzηms
= msηms

, η0 =
⎛
⎝0

0
1

⎞
⎠, η±1 = ∓1√

2

⎛
⎝ 1

±i

0

⎞
⎠.

In this basis for the spin of the incident photons, the vector
potential of a Bessel beam has the form

Am�ϑk
(r, t ) = e−iωt

∑
ms=0,±1

ηms
Atw

ms
(r ), (3)

with the expansion coefficients

A(tw)
ms

(r ) =
√




2π
(−i)ms cms

Jm−ms
(
r )ei(m−ms )ϕr eikzz.

Here r = (r, ϕr , z) is the position vector in cylindrical coor-
dinates, Jm−ms

(
r ) is a Bessel function of the first kind, and

c±1 = 1

2
(1 ± � cos ϑk ), c0 = �√

2
sin ϑk. (4)

Note that the above solutions do not possess a definite OAM,
although they have a well-defined TAM due to Eq. (2). In the
following, we will therefore use the TAM projection m to
characterize the angular-momentum properties of the Bessel
beams.

To generate Bessel pulses AP (r, t ) of finite duration, we
need to multiply the vector potential (3) by the envelope

f (t ) =
{
A0 sin2

(
ωt

2np

)
, 0 � t � T

0 otherwise,

where T = np2π/ω denotes the duration of the pulse and np

is the number of optical cycles. Note that one could also create
a pulse as a weighted superposition of Bessel beams (3) in
frequency space, which yields an X wave vector potential [22].
To obtain a simple model for a Bessel pulse, however, we
only multiply by a temporal envelope. Our procedure gives
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rise to a complex-valued expression for the vector potential
of the Bessel pulse. However, since our goal is to describe
nonlinear interactions with these pulses, we construct a real-
valued vector potential by taking the imaginary part of Eq. (3).
In line with previous works [21,23], we obtain the Cartesian
components of the vector potential:

A(P)
x (r, t )

= f (t )

√



4π
{c−1Jm+1(
r ) cos[(m + 1)ϕr + kzz − ωt]

+ c+1Jm−1(
r ) cos[(m − 1)ϕr + kzz − ωt]}, (5a)

A(P)
y (r, t )

= f (t )

√



4π
{c−1Jm+1(
r ) sin[(m + 1)ϕr + kzz − ωt]

− c+1Jm−1(
r ) sin[(m − 1)ϕr + kzz − ωt]}, (5b)

A(P)
z (r, t )

= f (t )

√



2π
c0Jm(
r ) sin (mϕr + kzz − ωt ), (5c)

which we shall use to analyze the strong-field ionization with
Bessel pulses below. Since the vector potential (5) is given in
the Coulomb gauge, the corresponding electric and magnetic
fields are also real valued.

Perhaps most important for the strong-field regime is
the intensity of the laser field. This intensity needs to be
defined unambiguously, especially if we want to compare
the ionization probabilities for laser fields of different (spa-
tial) structure. In general, the intensity of a laser field is
defined as the cycle-averaged Poynting vector. For an ellip-
tically polarized plane-wave laser field of the form A(t ) =
A0(1 + ε2)−1/2[cos(ωt )ex + ε sin(ωt )ey] with the ellipticity
0 � ε � 1, the Poynting vector only has a z component. The
intensity of such a beam is therefore a direct measure of the
energy flow in the propagation direction of the beam and is
given by I = A2

0ω
2/8πα = E2

0/8πα. For a Bessel pulse, in
contrast, the Poynting vector has another component in the
azimuthal direction and depends, in addition, on the transverse
radial coordinate r . Following Ref. [24], we here define the
intensity via the longitudinal component of the Poynting vector
in the limit of long pulse duration, given by

I⊥(r ) = A2
0ω

2


4π

∣∣c2
+1J

2
m−1(
r ) − c2

−1J
2
m+1(
r )

∣∣. (6)

Figure 2 displays a characteristic intensity profile of a Bessel
beam that exhibits a ring-like structure in the transverse plane
owing to the Bessel functions in Eq. (6). Of course, the intensity
of a finite pulse will be also time dependent but with the
intensity I of such a pulse, we shall always refer to the
maximum value in expression (6).

We end this section by reviewing the parameters that define
a Bessel pulse. Its temporal shape is determined by the central
frequency ω = 2πc/λ and the pulse duration in terms of the
number of optical cycles np. Its spatial properties are controlled
by the helicity �, the TAM projection m, and the cone opening
angle ϑk . Furthermore, we use the amplitude A0 to specify the
intensity according to Eq. (6).

FIG. 2. Intensity profile I⊥(r ) (in W/cm2) of a Bessel pulse in
the plane perpendicular to the propagation direction. The profile is
shown for a pulse with λ = 800 nm, ϑk = 20◦, � = +1, m = 3, and
I = I

(max)
⊥ = 1014 W/cm2. We also indicate the impact parameter b

of the atomic target.

Due to the fixed opening angle, Bessel pulses possess defi-
nite longitudinal (
) and transverse (kz) components of linear
momentum, respectively. Since the direction of the vector
potential (5) strongly depends on the longitudinal component

, we expect that the opening angle has a significant influence
on the ATI spectra.

B. Strong-field-approximation transition amplitude

Our aim is to analyze the angle-differential photoionization
probability P( p) as a function of the asymptotic momentum
p of the photoelectron (detector) for an atom that is ionized
by a strong Bessel pulse of the form (5). Following Ref. [4],
the probability for the emission of a photoelectron with energy
p2/2 into the solid angle element d� p can be expressed in
terms of a transition amplitude T ( p) via

Pb( p) = p|Tb( p)|2, (7)

with p = | p| and the energy E = p2/2 of the photoelectron.
Below, we refer to the energy dependence P = P(E) of
the angle-differential photoionization probability as the ATI
spectrum, which parametrically depends also on the polar and
azimuthal angles ϑp and ϕp as well as the impact parameter b.

To derive an expression for the transition amplitude Tb( p)
within the framework of the SFA, a further approximation is
necessary to describe the emitted photoelectron in the Bessel
pulse. We apply here a local dipole approximation, which is
described in the next section. In general, the interaction of an
atom with a laser field is described in velocity gauge by the
Hamiltonian

Ĥ = Ĥ0 + V̂ (r ) + V̂L(r, t ), (8)

where Ĥ0 = p2/2, V̂ (r ) = −Z/r = −√
2EB/r is the

Coulomb potential, and V̂L(r, t ) = p̂A(r, t ) + A2(r, t )
describes the laser-electron interaction. Here, A(r, t ) is the
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vector potential of the laser field, which generally depends on
position r . This spatial dependence is particularly important
for the present analysis, since the TAM of a Bessel pulse leads
to a spatially dependent intensity profile (see Sec. II A).

Making use of the Hamiltonian (8), the transition amplitude
of the strong-field ionization can be written as

Tb( p) = −i

∫ ∞

−∞
dt

〈
ψ (C)

p (t )
∣∣V̂L(r, t )

∣∣ψ0(t )
〉
. (9)

Here |ψ (C)
p (t )〉 are the continuum states available to the pho-

toelectron and |ψ0(t )〉 = eiEBt |�0〉 is the initial bound state
with binding energy EB > 0. An integration by parts in Eq. (9)
yields

Tb( p) = −〈
ψ (C)

p (t )
∣∣ψ0(t )

〉∣∣T
0 − i

∫ T

0
dt

〈
ψ (C)

p (t )
∣∣V (r )|ψ0(t )〉,

(10)

where we have used that the vector potential is nonzero
only for 0 � t � T . Within the SFA, two assumptions are
typically made to further evaluate this amplitude: we assume
that the laser field does not disturb the initial bound state
and, hence, |�0〉 is an eigenstate of the atomic Hamiltonian
ĤA = Ĥ0 + V̂C (r ); second, we neglect the influence of the
Coulomb potential on the motion of the photoelectron in
the continuum. Therefore, the continuum states |ψ (C)

p (t )〉 are
solutions of the Schrödinger equation for a free electron in a
laser field,

i
∂

∂t

∣∣ψ (C)
p (t )

〉 = (Ĥ0 + V̂L(r, t ))
∣∣ψ (C)

p (t )
〉
. (11)

If the dipole approximation A(r, t ) ≈ A(t ) for a plane-wave
laser pulse is applied, the solutions to Eq. (11) in velocity gauge
are the well-known Volkov states∣∣ψ (C)

p

〉 = ∣∣ψ (V )
p

〉 = e−iSV (t ) | p〉 ,

with the Volkov phase

SV (t ) = 1

2

∫ t

dt ′[ p + A(t ′)]2.

We already mentioned above that we choose to work in
velocity gauge. As was shown by Becker et al. in Ref. [25],
this choice in general yields wrong ATI spectra and the length
gauge is preferable. However, this discrepancy is not present
for a 1s initial state considered in this paper. Furthermore,
the length gauge does not exist in the general case when the
vector potential is r dependent. Future work on a SFA-based
description of the ATI with Bessel beams without making use
of the local dipole approximation cannot be conducted in the
length gauge. Therefore, in our case, the use of the velocity
gauge is justified and more convenient in order to compare
with future work.

C. Local dipole approximation and evaluation
of transition amplitude

To evaluate the transition amplitude (10) for an ionizing
Bessel pulse, we need to obtain a representation of the contin-
uum states |ψ (C)

p (t )〉 for the photoelectron. Until the present,
however, no such solution has been known, if the electron

moves in an r-dependent laser field A(r, t ). Below, we argue
instead that, for a sufficiently short (few-cycle) Bessel pulse,
the spatial dependence of the field is locally negligible for the
time evolution of the photoelectrons. This is readily seen if
we consider a classical electron in a plane-wave laser pulse,
which has an electric field E(t ) = E0 sin2( ωt

2np
) cos(ωt )ex for

0 � t � 2πnp/ω and E(t ) = 0 otherwise. For our reasoning,
it is sufficient to assume a linear polarization. From the classical
equations of motion, d2x/dt2 = −E(t ), we then find that the
electron propagates during the pulse duration over a distance
of about

�x ≈ npλ

(
3×10−14

√
I [W/cm2]λ[nm] + v0

c

)
,

where λ is the laser wavelength and v0 is the initial velocity of
the electron. For typical values of I = 1014 W/cm2, λ = 800
nm and a rather high initial velocity of v0 = 1 a.u., we find
�x ≈ np × 6 nm. From Fig. 2, in contrast, we see that charac-
teristic intensity variations of the Bessel beam occur on length
scales of hundreds of nanometers. To a good approximation,
we can therefore neglect the spatial structure of the Bessel
pulse for modeling the dynamics of the photoelectron as long
as the pulse is sufficiently short.

With these arguments in mind, we take the vector potential at
the location of the atom, i.e., the impact parameter b, A(r, t ) ≈
AP (b, t ), and refer to this as the local dipole approximation.
In this approximation, we can describe the continuum by the
usual Volkov states∣∣ψ (C)

p

〉 ≈ ∣∣ψ (V )
p,b

〉 = e−iSV,b(t ) | p〉 , (12)

where the Volkov phase is now given in terms of the local
vector potential,

SV,b(t ) = 1

2

∫ t

dt ′[ p + A(b, t ′)]2. (13)

Using the explicit form (5) of the vector potential of the Bessel
pulse, the Volkov phase can be written as a Fourier series,

SV,b(t ) = βt +
9∑

j=1

γj cos
(
ϕ

(c)
j − ω

(c)
j t

)

+
13∑
l=1

σl sin
(
ϕ

(s)
l − ω

(s)
l t

)
. (14)

In this expression, all the coefficients β, γj , σl , the frequencies
ω

(c)
j , ω

(s)
l , as well as the phases ϕ

(c)
j , ϕ

(s)
l depend on the

laser parameters A0, np, ω, �, m, ϑk , the impact parameter
b, and the photoelectron momentum p. Explicit expressions
of these quantities are given in Appendix A. Physically, ω

(c)
j

and ω
(s)
l describe the frequencies of the quiver motion of the

photoelectron in the field of the Bessel pulse.
We are now prepared to make use of the continuum states

(12) to further evaluate the transition amplitude (10) and to
recast it into a useful form,

Tb( p) ≈ − 〈 p|�0〉 ei[SV,b(t )+EBt]|T0 − i 〈 p|V (r )|�0〉

×
∫ T

0
dtei[SV,b(t )+EBt]. (15)
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For all further computations, we here assume a hydrogen-like
1s initial state with binding energy EB ,

�0(r ) = (2EB )3/4

√
π

e−√
2EBr ,

for which the Fourier transform and matrix element of V (r )
can readily be evaluated analytically,

〈 p|�0〉 = (2EB )5/4

π
√

2

1(
p2

2 + EB

)2 ,

〈 p|V (r )|�0〉 = −23/4E
5/4
B

π

1
p2

2 + EB

.

In fact, the main task in computing the transition amplitude
(15) for given laser parameters and photoelectron momentum
p now is the evaluation of eiSV,b(t ) and its integral. These
computations have been performed numerically based on
expression (14).

III. RESULTS AND DISCUSSION

We now make use of our result (15) for the SFA transi-
tion amplitude in order to compute the angle- and energy-
differential ionization probability (7) for the strong-field ion-
ization of a single atom in a strong Bessel pulse and to analyze
the resulting ATI spectra for different laser parameters. In
particular, we here aim to understand how the TAM m and
the opening angle ϑk affect the emission of the photoelectrons.
In this section, we therefore fix the wavelength λ = 800 nm,
the number of cycles np = 2, the maximum intensity I =
1014 W/cm2 and the helicity � = +1. Moreover, we assume a
single target atom with binding energy EB = 14 eV (for exam-
ple, Kr). For each set of parameters m and ϑk , the target atom
is placed at the impact parameter b = (bmax, ϕb = 0, z = 0),
where bmax is the respective radial coordinate of maximum
intensity I of the pulse (cf. Fig. 2).

A. Plane-wave limit

We first consider the ATI spectra computed for the ioniza-
tion by a Bessel pulse in the plane-wave limit. As discussed
in detail in Ref. [13], the vector potential (3) coincides with a
circularly polarized (in the x-y plane) plane wave of helicity

� in the limit ϑk � 1 and m = �. In this limit, the spin
coefficients (4) are cj → δj� and the vector potential (5) of
the Bessel pulse becomes

A(P)
x (r, t ) = Ã0 sin2

(
ωt

2np

)
cos (ωt − kzz), (16a)

A(P)
y (r, t ) = �Ã0 sin2

(
ωt

2np

)
sin (ωt − kzz), (16b)

A(P)
z (r, t ) = 0, (16c)

where we defined Ã0 = A0
√



4π

. Figure 3(c) shows this vector
potential in the polarization plane as a function of time.

To compute the ATI spectra in the plane-wave limit, we
use our general result for the transition amplitude (15) and the
Volkov phase (14). We place the detector in the polarization
plane (ϑp = π/2) and vary the azimuthal angleϕp . In Figs. 3(a)
and 3(b) we show the resulting ATI spectra for detectors
placed in opposite directions ϕp = 0, π and ϕp = π/2, 3π/2,
respectively. The characteristic ATI peaks can be observed
for ϕp = 0. Furthermore, the dependence of the ATI spectra
on the azimuthal angle may be directly compared with the
SFA computations of Milošević et al. [4], who discussed
asymmetries depending on the carrier envelope phase in the
ATI spectra from few-cycle pulses. In our case, we can read
off a carrier envelope phase of zero from the limiting vector
potential (16). This leads to significantly different ATI spectra
measured in the ±x direction [Fig. 3(a)] and identical ATI
spectra in the ±y direction [Fig. 3(b)]. In addition, note that
some ATI peaks are suppressed in Fig. 3. This results from
the short duration of the ionizing pulse and the peaks would
develop with increasing pulse length due to interferences from
many optical cycles. These findings are identical to the results
shown in Fig. 10 of Ref. [4].

In summary, our formalism yields correct differential ion-
ization probabilities in the plane-wave limit and we can now
turn to the general case of the ATI with a Bessel pulse.

B. Bessel pulse

The most characteristic property of the Bessel pulse vector
potential (5) is its nonzero z component for nonvanishing
opening angle ϑk and TAM m. This property has consequences
for the ionization dynamics in strong fields: the classical
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FIG. 3. ATI with an intense two-cycle Bessel pulse in the plane-wave limit with opening angle ϑk = 1◦ and TAM m = � = +1. Calculated
ATI spectra are shown for photoelectrons emitted in the polarization plane (ϑp = π/2) in the (a) ±x directions (ϕp = 0, π ) and (b) ±y

directions (ϕp = π/2, 3π/2). The vector potential as a function of time is shown in panel (c). An intense Bessel pulse with λ = 800 nm and
I = 1014 W/cm2 was applied for a target atom with binding energy of EB = 14 eV.
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FIG. 4. ATI spectra computed for different polar emission angles
ϑp and an azimuthal angle ϕp = 0. Results are shown for a Bessel
pulse with TAM m = 2 and opening angle ϑk = 20◦. In each case, the
target atom was placed at impact parameter b= (bmax, ϕb =0, zb =0),
where bmax is the radial coordinate of maximum longitudinal intensity
of the pulse. All other parameters are the same as in Fig. 3.

conservation of canonical momentum of the photoelectron
reads

p(t0) − A(P)(b, t0) = p(t → ∞) − A(P)(b, t → ∞), (17)

where t0 is the time at which the electron is released from the
atom into the continuum and A(P)(t → ∞) = 0. Hence, we
expect that the photoelectron gains a momentum component pz

parallel to the propagation direction of the ionizing laser pulse
if A(P)

z (t0) �= 0. Thereby, the magnitude of pz is proportional to
the A(P)

z component. We therefore expect that photoelectrons
can be detected away from the x-y plane in the ATI, which
would not be present in the plane-wave case. Motivated by this
classical reasoning, we now analyze the ATI spectra of these
photoelectrons using the SFA formalism.

In Fig. 4, we show the differential ionization probabilities
for photoelectrons emitted at different polar angles ϑp, while

the azimuthal angle ϕp = 0 was held constant. The results were
obtained for a Bessel pulse with opening angle ϑk = 20◦ and
TAM m = 2, which gives rise to a significant magnitude of
the A(P)

z component. The black, solid curve corresponds to the
same detector placement as the black, solid curve in Fig. 3
and serves here as a reference for photoelectrons emitted at
different polar angles. All curves in Fig. 4 show ATI peaks
similar to those in the plane-wave limit above [cf. black curve
in Fig. 3(a)], since the position of the ATI peaks is a result
of the interference of all frequencies occurring in the Volkov
phase (14). These frequencies are completely determined by
the central frequency ω and the number of cycles np of the
pulse and have no dependence on the spatial parameters of the
Bessel pulse.

Most notably, Fig. 4 demonstrates that the nonvanishing
opening angle of the Bessel pulse leads indeed to a measurable
ionization probability in the forward direction. We can make
this statement more precise by comparing the probability
of emission in the x-y plane (ϑp = π/2, green, dot-dashed
in Fig. 4) with that of emission away from this plane. For
ϑp = π/3, we would measure about half the number of
photoelectrons. About 10 percent can still be observed under
an angle of ϑp = π/4 and this fraction decreases further when
the detector is placed more and more towards the propagation
axis. This confirms our classical reasoning from above and
also extends our previous semiclassical work [21], where no
detailed analysis of ATI peaks was possible.

In the following, we analyze the dependence of the forward
ATI spectra on the opening angle ϑk and the TAM m of the
Bessel pulse. In Fig. 5, we show the probability of emission
at a polar angle ϑp = π/8. Note that, for better visibility,
we use here a linear scale for the ionization probability in
contrast with the logarithmic scale in the ATI spectra discussed
above. In Fig. 5(a), the ATI spectra are shown as a function
of the opening angle ϑk for fixed TAM m = 2. As discussed
above, the probabilities of emission parallel to the z axis
should increase with the magnitude of the A(P)

z component
of the Bessel vector potential (5). Since A(P)

z ∼ c0 ∼ sin ϑk ,
we expect the magnitudes of ATI peaks measured away from
the x-y plane to increase with the opening angle ϑk . This
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FIG. 5. ATI spectra for (a) different opening angles ϑk (left) with m = 2 and (b) different TAM m with ϑk = 20◦ (right). Results are shown
for photoelectrons emitted in ϑp = π/8 and ϕp = 0. In each case, the target atom was placed at impact parameter b = (bmax, ϕb = 0, zb = 0),
where bmax is the radial coordinate of maximum longitudinal intensity of the pulse. All other parameters are the same as in Fig. 3.
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FIG. 6. Ponderomotive energy Up = β − p2/2 as a function of
the opening angle ϑk for four values of the TAM m of the Bessel
pulse. The pulse wavelength λ = 800 nm, longitudinal intensity
I = 1014 W/cm2 and helicity � = +1 are fixed.

behavior can indeed be observed in Fig. 5(a): increasing the
opening angle from ϑk = 5◦ (black solid curve) to ϑk = 40◦
(blue dotted curve) leads to an increase of about 10 percent in
ionization probability in the dominant part of the spectrum.
A similar behavior is found if the TAM m of the Bessel
pulse is varied: Fig. 5(b) shows the dependence of the ATI
spectra for ϑp = π/8 computed for four different values of the
TAM. The number of photoelectrons emitted in this direction
is small compared with those observed perpendicular to the
propagation direction of the pulse if m = 2. However, the
magnitude of the ATI peaks can be considerably increased if
the Bessel pulse carries a larger TAM.

Moreover, both Figs. 5(a) and 5(b) show a second effect:
an increase of the opening angle or the TAM of the ionizing
pulse imposes a constant shift of the spectrum towards lower
energies. From a formal point of view, we can understand
these shifts of the ATI spectra by looking at the Volkov phase
(14). The relative positions and strengths of the ATI peaks
are controlled by the frequencies ω

(c)
j and ω

(s)
j as well as

the corresponding Fourier coefficients γj and σj . However,
a constant shift of the spectrum is a result of a change in the
coefficient β. To give this parameter a physical meaning, we
write it in the form β = p2

2 + Up, where

Up = 3
32A2

0

(
2α2

−1 + 2α2
1 + α2

0

)
(18)

is the ponderomotive energy of the photoelectron in the Bessel
pulse. In this expression, the coefficients αj depend on the
opening angle ϑk , the TAM m and the impact parameter b and
are given in the appendix.

In Fig. 6, the ponderomotive energy is shown as function
of ϑk for four values of the TAM. We see that Up increases
with the opening angle for all values of m. Also, higher values
of m yield a higher ponderomotive energy for all ϑk and this
difference is larger for larger opening angle. We therefore see
that for the same longitudinal intensity, the opening angle and
the TAM of the Bessel pulse determine Up and accordingly
yield a shift in the observed ATI spectra.

The results presented in this section demonstrate that the
ATI with short Bessel pulses leads to significant ionization

probabilities in forward direction, which depend on both the
opening angle and the TAM of the Bessel pulse. In our discus-
sion, we always set � = 1. However, all the effects presented
above are also present for � = −1. Moreover, changes in the
intensity, binding energy, or wavelength of the ionizing pulse
do not significantly alter the ionization process as long as the
SFA is valid. In particular, the dependencies on the opening
angle of the ionizing pulse and on the polar angle investigated
above do not change with intensity, since only the relative
amplitudes of Az to Ax are important for the emission angle of
the photoelectron. However, the ponderomotive energy (18)
changes proportional to the intensity, which would induce
a shift in the ATI peaks. Similarly, the effect of a different
binding energy or wavelength, respectively, is a shift of all
ATI peaks due to energy conservation. However, we stress that
the duration of the Bessel pulse has to be small in order to
justify the local dipole approximation (cf. Sec. II C) and that
the ATI spectra might look very different for long pulses.

IV. CONCLUSIONS

In this work, we investigated theoretically the strong-field
ionization of single atoms with few-cycle Bessel pulses that
carry nonzero OAM. Based on the SFA and a local dipole
approximation, we showed that this property of the ionizing
pulse leads to the emission of photoelectrons parallel to the
propagation direction of the pulse (pz �= 0). Therefore, the
strong-field ionization with Bessel pulses generates ATI peaks
in forward direction. Moreover, we analyzed the dependence of
the ATI spectra on the characterizing parameters of the ionizing
pulse. We showed that the magnitude of the ATI peaks observed
in forward direction are modified if the opening angle or the
TAM of the pulse are changed.

In the future, this work can be extended to analyze atomic
targets of finite size. It is an important question if dependencies
on the TAM or the opening angle remain in the ATI when
targets of finite size are considered. Furthermore, an investi-
gation of the transfer of angular momentum from the strong
Bessel pulse to the photoelectron promises interesting physical
insight into the underlying processes. However, the local dipole
approximation used in this work neglects any spatial effects
in the photoelectron continuum and is therefore inappropriate
in this regard. Future work should therefore also focus on a
Volkov-like description of the continuum including nondipole
effects.
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APPENDIX: VOLKOV PHASE

The Volkov phase (13) with A(b, t ) = AP (b, t ), where
AP (b, t ) is the vector potential (5) of the Bessel pulse,
can be evaluated by performing a Fourier decomposition
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of the integrand and then integrating the resulting sum of harmonic terms. The result is

SV,b(t ) = βt +
9∑

j=1

γj cos
(
ϕ

(c)
j − ω

(c)
j t

) +
13∑
l=1

σl sin
(
ϕ

(s)
l − ω

(s)
l t

)
. (A1)

with the frequencies and phases given by

ω(c) = ω

(
1, 1, 1,

np − 1

np

,
np − 1

np

,
np − 1

np

,
np + 1

np

,
np + 1

np

,
np + 1

np

)
, (A2)

ω(s) = ω

(
− 1

np

,− 2

np

, 1, 2, 1,
2np − 1

np

,
np − 1

np

, 2
np − 1

np

,
np − 1

np

, 2
np + 1

np

,
np + 1

np

,
np + 1

np

,
2np + 1

np

)
, (A3)

ϕ(c) = ϕb(m − 1,m,m + 1,m − 1,m,m + 1,m − 1,m,m + 1), (A4)

ϕ(s) = ϕb(0, 0,m − 1, 2m,m + 1, 2m,m − 1, 2m,m + 1, 2m,m − 1,m + 1, 2m), (A5)

and with the Fourier coefficients

β = p2

2
+ 3

32
A2

0

(
2α2

−1 + 2α2
1 + α2

0

)
, (A6)

γ = A0

2ω

(
−pyα1, pzα0, pyα−1,

nppyα1

2(np − 1)
,− nppzα0

2(np − 1)
,− nppyα−1

2(np − 1)
,

nppyα1

2(np + 1)
,− nppzα0

2(np + 1)
,− nppyα−1

2(np + 1)

)
, (A7)

σ = A0

2ω

(
−A0np

4

(
2α2

1 + 2α2
−1 + α2

0

)
,
A0np

32

(
2α2

1 + 2α2
−1 + α2

0

)
,−pxα1,

3A0

32

(
α2

0 − 4α−1α1
)
,

−pxα−1,
A0np

8(2np − 1)

(
4α−1α1 − α2

0

)
,

nppxα1

2(np − 1)
,

A0np

64(np − 1)

(
α2

0 − 4α−1α1
)
,

nppxα−1

2(np − 1)
,

A0np

64(np + 1)

(
α2

0 − 4α−1α1
)
,

nppxα1

2(np + 1)
,

nppxα−1

2(np + 1)
,

A0np

8(2np + 1)

(
4α−1α1 − α2

0

))
. (A8)

The factors αj (j = 0,±1) encode the spatial structure of the Bessel pulse and are defined as

α−1 = 1√
2

√



2π
c−1Jm+1(
b), (A9a)

α0 =
√




2π
c0Jm(
b), (A9b)

α1 = 1√
2

√



2π
c1Jm−1(
b). (A9c)

[1] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman,
Phys. Rev. Lett. 42, 1127 (1979).

[2] W. Becker, F. Grasbon, R. Kopold, D. Milošević, G. Paulus,
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