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Multielectron polarization effects in strong-field ionization: Narrowing of momentum distributions
and imprints in interference structures
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We extend the semiclassical two-step model [Phys. Rev. A 94, 013415 (2016)] to include a multielectron
polarization-induced dipole potential. Using this model we investigate the imprints of multielectron effects in the
momentum distributions of photoelectrons ionized by a linearly polarized laser pulse. We predict narrowing of
the longitudinal momentum distributions due to electron focusing by the induced dipole potential. We show that
the polarization of the core also modifies interference structures in the photoelectron momentum distributions.
Specifically, the number of fanlike interference structures in the low-energy part of the electron momentum
distribution may be altered. We analyze the mechanisms underlying this interference effect. The account of the
multielectron dipole potential seems to improve the agreement between theory and experiment.
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I. INTRODUCTION

Advances in laser technologies, especially the advent of
table-top intense femtosecond optical laser systems have led to
the remarkable progress in strong-field physics that studies the
interaction of strong laser radiation with atoms and molecules.
This interaction results in such phenomena as above-threshold
ionization (ATI), high-order harmonic generation (HHG),
nonsequential double ionization (NSDI), etc. (see Refs. [1–4]
for reviews). In atomic ATI an electron absorbs more photons
than necessary for ionization. The kinetic-energy spectrum
generated by the ATI process consists of two distinct parts: a
rapidly decaying low-energy part of the spectrum that ends at
an energy around 2Up , where Up = F 2/4ω2 is the ponderomo-
tive energy (atomic units are used throughout the paper unless
indicated otherwise); this part is followed by the high-energy
plateau extending up to ∼10Up, which is often several orders
of magnitude less intense than the maximum of the low-energy
part. The part of the spectrum below 2Up is mainly formed by
electrons that do not undergo hard recollisions with their parent
ions. These electrons are usually referred to as direct electrons.
The spectrum of the direct electrons can be described by the
two-step model for ionization [5–7]. In the first step of this
model an electron is promoted to the continuum by tunneling
ionization [8–10], and in the second step it moves along a
classical trajectory in the laser field. In contrast to this, the
high-energy plateau arises due to rescattered electrons that are
driven back by the laser field to their parent ions and scatter
by large angles. The qualitative description of the rescattering
processes is provided by the three-step model [11,12], which
includes the interaction of the returning electron with the parent
ion as the third step. The concept of rescattering also provides
the basis of the mechanisms responsible for HHG and NSDI.
Indeed, the returning electron can recombine with the residual
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ion, resulting in emission of high-frequency radiation, or as
an alternative, if the energy of the rescattered electron is high
enough, it can liberate another electron from the parent ion.

The main theoretical approaches to strong-field phenomena
include the direct numerical solution of the time-dependent
Schrödinger equation (TDSE) (see, e.g., Refs. [13–21]), the
strong-field approximation (SFA) [22–25], and semiclassical
models employing classical equations of motion to describe
the electron motion in the continuum (see, e.g., Refs. [26–
35]). The two- and the three-step models are the most well-
known examples of the semiclassical approaches. All these
theoretical methods are usually based on the single-active-
electron approximation (SAE). Within the SAE, the ionization
is considered as a one-electron process, i.e., an atom (or
molecule) in the laser field is replaced by a single electron that
interacts with the laser field and an effective potential. The
latter is optimized to reproduce the ground state and singly
excited states. Although SAE allows an understanding of the
major features of ATI and HHG (see, e.g., Refs. [1,36]), the role
of multielectron (ME) effects in these processes has recently
been attracting considerable attention (see recent Refs. [37,38]
and references therein).

Among the theoretical approaches capable to account
for ME effects in strong-field processes are the time-
dependent density-functional theory [39] (see Ref. [40] for
a textbook treatment), multiconfiguration time-dependent
Hartree-Fock theory [41,42], time-dependent restricted-
active-space self-consistent-field theory [43], time-dependent
complete-active-space self-consistent-field theory [44], time-
dependent R-matrix theory [45,46], R-matrix method with
time dependence [47,48], time-dependent configuration-
interaction-singles [49,50], time-dependent restricted-active
space configuration-interaction methods [51,52], time-
dependent analytical R-matrix theory [53], and various semi-
classical models (see, e.g., Refs. [31–35,37]). The advantages
of the semiclassical approaches, such as their relative nu-
merical simplicity and the ability to provide an illustrative
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physical picture of the phenomena under study, are particularly
important in investigations of complex ME dynamics.

Laser-induced polarization of the ionic core is one of the
well-known examples of ME effects. During the last years,
significant progress has been achieved in studies of the polar-
ization effects in ATI (see Refs. [54], [31–35], and [37]). The
effective potential for the outer electron that takes into account
the laser field, the Coulomb potential as well as the polarization
effects of the inner core [see Eq. (2) in Sec. II] was found in
Refs. [55,56] and [54] within the adiabatic approximation. It
was shown that the Schrödinger equation with this effective
potential and accounting for the Stark shift of the ionization
potential can be approximately separated in the parabolic
coordinates [31]. This separation procedure results in a certain
tunneling geometry. The corresponding physical picture was
named tunnel ionization in parabolic coordinates with induced
dipole and Stark shift (TIPIS). The semiclassical model based
on the TIPIS approach was validated by comparison with
ab initio results [31,32] and experiments [26–31,33–35]. It
was shown that for different atoms and molecules (Ar, Mg,
naphthalene, etc.) the photoelectron momentum distributions
are highly sensitive to ME effects as captured by the induced
dipole of the atomic core [31–35].

Most of the studies mentioned here deal with circularly or
close to circularly polarized laser fields. The reason is that
the potential of Refs. [54,55] that is used in semiclassical
simulations is valid at large and intermediate distances and
not at short distances. It is well known that the rescattering
processes are suppressed in close to circularly polarized laser
fields [57], and, therefore, the vast majority of the electron
trajectories do not return to the vicinity of the ionic core.
However, this is certainly not the case for linearly polarized
field. This raises the question regarding the applicability of
the TIPIS model for linear polarization of the laser field.
As a result, there is a lack of theoretical studies of the ME
polarization effects in ATI with linearly polarized field.

To the best of our knowledge, Ref. [37] is the only
application of the potential of Refs. [54,55] to semiclassical
simulations of ATI processes in linearly polarized fields. That
study focuses on the modification of the low-energy structures
[58,59] and the very low-energy structures [59,60] due to
polarization effects. It was shown that the relative yields
of LES and VLES are enhanced due to the effect of the
polarized ionic core on the recolliding electrons [37]. To the
best of our knowledge, the impact of the polarization of the
ionic core on the whole direct part of the spectrum has not
been investigated so far. Furthermore, the applicability of the
semiclassical model with the potential of Refs. [54,55] was
not discussed in Ref. [37]. Finally, quantum interference was
disregarded in all the trajectory-based studies of Refs. [31–
35,37]. Since the ME potential affects both the tunnel exit point
and the electron dynamics in the continuum [32], an imprint
of the polarization effects in the interference patterns of the
momentum distributions can be expected.

In this paper we apply the TIPIS model to ATI and
momentum distributions in linearly polarized laser fields and
analyze the applicability of this model. In order to study
the interference effects due to the polarization of the ionic
core, we combine the TIPIS approach with the semiclassical
two-step model (SCTS) [61]. The SCTS model describes

quantum interference and accounts for the ionic potential
beyond semiclassical perturbation theory. Recently this model
was applied to the study of the intra-half-cycle interference
of low energy photoelectrons [62], to the analysis of the
interference patterns emerging in strong-field photoelectron
holography (see Refs. [63,64]), and to the investigation of the
subcycle interference upon ionization by counter-rotating two-
color fields [65]. Using the semiclassical approach we calculate
the photoelectron momentum distributions and energy spectra
of the ATI in linearly polarized laser field with the account
for the ME polarization potential and interference. We then
analyze both the dynamic and interference effects induced by
the polarization of the ionic core.

The paper is organized as follows. In Sec. II we briefly
review the TIPIS model, discuss its application to the case
of linear polarization, and formulate our combined model. In
Sec. III we calculate photoelectron momentum distributions
and energy spectra, identify the imprints of the ME polar-
ization effect, and reveal by trajectory analysis the physical
mechanisms underlying the formation of these imprints. The
conclusions are given in Sec. IV.

II. MODEL

A detailed derivation of the TIPIS model as well as its
applications to simulations of the photoelectron momentum
distributions in elliptically polarized fields are presented in
Ref. [32]. Here we repeat the main points to make the
presentation self-contained. We next combine the TIPIS ap-
proach with the SCTS model. By doing so we develop a
two-step semiclassical model for strong-field ionization with
the inclusion of the Stark shift, the Coulomb potential, and the
polarization induced dipole potential, capable of describing
quantum interference.

A. TIPIS model and its application to linearly
polarized laser fields

In semiclassical simulations the trajectory of an electron
�r (t ) is calculated using Newton’s equation of motion:

d2�r
dt2

= − �F (t ) − �∇V (�r, t ), (1)

where �F (t ) is the electric field of the laser pulse, and the ionic
potential V (�r, t ) is given by

V (�r, t ) = −Z

r
− αI

�F (t ) · �r
r3

. (2)

Here Z is the ion charge. In Eq. (2) the ME effect is taken into
account through the induced dipole potential [ αI

�F ·�r
r3 ], where αI

is the static polarizability of the ion. As in Ref. [32], we refer
to the second term of Eq. (2) as the ME term. It is important
to stress that the potential of Eq. (2) is valid only at large and
intermediate distances (see Refs. [54–56]).

In order to integrate Eq. (1), we need the starting point
of the trajectory and the initial velocity of the electron. To
obtain the former, i.e., the tunnel exit point, the approximate
separation of variables in the static tunneling problem in
parabolic coordinates is used in the TIPIS model. If the
static field acts along the z axis, we define the parabolic
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coordinates as ξ = r + z, η = r − z, and φ = arctan (y/x).
Then the approximate separation is valid in the limit ξ/η << 1
[31]. The tunnel exit point ze is then found as ze ≈ −ηe/2,
where ηe is the solution of the following equation:

−β2(F )

2η
+ m2 − 1

8η2
− Fη

8
+ αIF

η2
= −Ip(F )

4
, (3)

where Ip(F ) is the ionization potential, m is the magnetic
quantum number of the initial state, and

β2(F ) = Z − (1 + |m|)
√

2Ip(F )

2
(4)

is the separation constant [32]. The TIPIS model accounts for
the Stark shift of the ionization potential:

Ip(F ) = Ip(0) + ( �μN − �μI ) · �F + 1

2
(αN − αI )F 2, (5)

where Ip(0) is the field-free ionization potential, �μN and �μI

are the dipole moments of an atom (molecule) and of its ion,
respectively, and αN is the static polarizability of an atom
(molecule). For atoms the term linear in �F is absent in Eq. (5).
The static field F in Eqs. (3), (4), and (5) should be interpreted
as the instantaneous value of the laser field F (t0) at the time
of ionization denoted by t0.

We assume that the electron starts with zero initial velocity
along the direction of the laser field: v0,z = 0. It can, however,
have a nonzero initial velocity �v0,⊥ in the perpendicular
direction. The ionization time t0 and the initial transverse
velocity �v0,⊥ completely determine the electron trajectory. We
distribute t0 and �v0,⊥ according to the static ionization rate [66]:

w(t0, v0,⊥) ∼ exp

[
− 2κ3

3F (t0)

]
exp

[
−κv2

0,⊥
F (t0)

]
(6)

with κ = √
2Ip(F ). We omit the preexponential factor in

Eq. (6), since for atoms it only slightly affects the shape of the
photoelectron momentum distributions that we are interested
in.

As the ME term of the potential Eq. (2) vanishes at t � tf ,
where tf is the time at which the laser pulse terminates, after
the end of the pulse an electron moves in the Coulomb field
only. The asymptotic momentum of the electron �k can be found
from its momentum �p(tf ) and position �r (tf ) at the end of the
laser pulse (see Refs. [32,67]):

�k = k
k( �L × �a) − �a

1 + k2L2
. (7)

Here �L = �r (tf ) × �p(tf ) and �a = �p(tf ) × �L − Z�r (tf )/r (tf )
are the angular momentum and Runge-Lenz vector, respec-
tively. The magnitude of the asymptotic momentum can be
found from energy conservation

k2

2
= p2(tf )

2
− Z

r (tf )
(8)

at the end of the laser pulse. Equipped with the ensemble
of (t0, v0,⊥), and the corresponding values of the asymptotic
momenta, we are now ready to combine the TIPIS approach
with the SCTS model.

B. Combination of the TIPIS approach with the SCTS model

In order to study the ME polarization-induced interference
effects, we combine the TIPIS approach with the SCTS model.
In the SCTS model every classical trajectory is associated
with a phase. The latter is calculated using the semiclassical
expression for the matrix element of the quantum mechanical
propagator [68–70]. For an arbitrary effective potential V (�r, t )
this phase is given (see Ref. [61]):

�(t0, �v0) = −�v0 · �r (t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t )

2
+ V [�r (t )] − �r (t ) · �∇V [�r (t )]

}
.

(9)

If V (�r, t ) is set to the potential of Eq. (2), the expression for
the phase �(t0, �v0) reads as

�(t0, �v0) = −�v0 · �r (t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t )

2
− 2Z

r
− 3αI

�F (t ) · �r
r3

}
.

(10)

For our simulations we use an importance sampling imple-
mentation of the SCTS model. In this approach we distribute
ionization times t

j

0 and initial velocities v
j

0 (j = 1, . . . , np )
according to the square root of the tunneling probability
[Eq. (6)]. We solve the equations of motion (1) and find the final
(asymptotic) momenta of all np trajectories in the ensemble.
Then we bin the trajectories in cells in momentum space
according to their final momenta. The amplitudes associated
with the trajectories reaching the same bin that is centered
at a given final momentum �k are added coherently, and the
ionization probability is given by (see Ref. [61]):

dR

d3k
=

∣∣∣∣∣∣
np∑

j=1

exp
[
i�

(
t
j

0 , �vj

0

)]∣∣∣∣∣∣
2

. (11)

We note that convergence both with respect to the size of
the momentum bin and the number of the trajectories must
be achieved. The bin size and the number of trajectories in
the ensemble needed for convergence strongly depend on the
laser-atom parameters. All results provided below have been
checked for convergence and the computational parameters are
explicitly given in the illustrative examples.

III. RESULTS AND DISCUSSION

In our simulations we use a few-cycle laser pulse linearly
polarized along the z axis and defined in terms of a vector
potential:

�A(t ) = (−1)n+1 F0

ω
sin2

(
ωt

2n

)
sin (ωt )�ez, (12)

where �ez is a unit vector, F0 is the field strength, ω is the
angular frequency, and n is the number of cycles within the
pulse present between t = 0 and t = tf , where tf = 2πn/ω.

The electric field is obtained from Eq. (12) by �F (t ) = − d �A
dt

. We
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FIG. 1. (a) The two-dimensional photoelectron momentum dis-
tribution [Eq. (11)] for the Mg atom ionized by a laser pulse with an
intensity of 3.0 × 1013 W/cm2, wavelength of 1600 nm, and duration
of n = 8 cycles. The white curve shows the boundary of the domain
that can be reliably calculated using the TIPIS model. The laser field
is linearly polarized along the z axis. The distribution is normalized to
the total ionization yield. A logarithmic color scale in arbitrary units is
used. (b) Electron energy spectra calculated without any restriction on
the electron trajectories [thick (green)] curve and with the exclusion of
the trajectories that approach to the parent ion to the distances less than
5.0 a.u. [thin (blue) curve]. The slope of the spectra is qualitatively
shown by the thin black line.

solve the equations of motion (1) using a fourth-order Runge-
Kutta method with adaptive stepsize control [71].

Here we restrict ourselves to the case of atoms. Apart
from the fact that the potential of Eq. (2) is inapplicable
at small distances, the range of applicability of the TIPIS
model is restricted by two conditions (see Ref. [32]). First, the
field-induced term of Eq. (5) should not exceed 10–20% of the
first term, and this introduces an upper bound for the magnitude
of the laser intensity. At the same time, the intensity must not
be too low: since in the TIPIS model the ionization probability
is described by the tunneling formula [Eq. (6)], the Keldysh
parameter γ = ωκ/F [22] should be less or of the order of
one. We also note that the using of static polarizabilities is
justified for large wavelengths λ. The choice of the atomic
species and the laser parameters for which (i) the ME effects
are more pronounced and (ii) the TIPIS model is applicable, is
thoroughly discussed in Ref. [32].

We perform our simulations for Mg and Ca. For the Mg
atom, Ip = 0.28 a.u., αN = 71.33 a.u., and αI = 35.00 a.u.,
whereas for Ca Ip = 0.22 a.u., αN = 169.0 a.u., and αI =
74.11 a.u. (see Ref. [72] for the values of polarizabilities).
Note that these atoms have similar ionization potentials, but
for Ca the static ionic polarizability that enters the ME term
is approximately two times larger than the one for Mg. We do
the simulations for the intensities of 3.0 × 1013 W/cm2 (Mg)
and 1.0 × 1013 W/cm2 (Ca) and use the wavelength 1600 nm
for both atoms. The corresponding Keldysh parameters for Mg
and Ca are equal to γ = 0.73 and γ = 1.13, respectively.

First, we analyze the applicability of the TIPIS model to the
case of linear polarization. In Ref. [37] a cutoff was introduced
at a radial distance where the core polarization cancels the laser
field. At the distances smaller than the cutoff radius the electron
does not experience polarization effects. This approach follows
the reasoning of Ref. [56], which was based on considerations
of a behavior similar to that of a large metallic-like system.

Here we also introduce a cutoff radius rC . However, in
contrast to Ref. [37], we disregard all the trajectories entering

the sphere r � rC . By doing so we prevent the electron
trajectories from reaching the vicinity of the residual ion. The
elimination of the returning trajectories leads to the depletion
of some parts of the photoelectron momentum distributions. It
is clear that these depleted parts cannot be reliably calculated
within the TIPIS model. However, these domains usually
correspond to the upper boundary of the direct ionization
spectrum and do not involve its main part containing most of the
yield. This point is illustrated by Figs. 1(a) and 1(b). In Fig. 1(a)
we show the photoelecton momentum distribution calculated
taking into account all the trajectories of the ensemble. The
white curve in Fig. 1(a) shows the boundary of the part of the
momentum distribution that is reliably reproduced when the
trajectories entering the area r � rC are excluded. The electron
energy spectra calculated with and without the elimination
of the returning trajectories are compared in Fig. 1(b). If the
photoelectron momentum distribution [Eq. (11)] is available,
the energy spectrum can be calculated as

dR

dE
= 2π

√
(2E)

∫ π

0
dθ sin θ

dR

d3k
[�k(θ )]. (13)

For the parameters of Fig. 1 we need the bin size equal to
6.25 × 10−4 a.u. and an ensemble of 3.2 billion trajectories to
achieve convergence. The latter was controlled by comparison
of the energy spectra within the energy range in which signal
decreases to 10−5 of its maximum. In our simulations we have
chosen the cutoff radius equal to rC = 5.0 a.u., but for the
parameters considered here the results only weakly depend
on the particular value of rC in the range from 3.0 to 7.0
a.u. Figure 1(b) clearly shows that almost the whole direct
part of the electron spectrum is unaffected by the exclusion of
the returning trajectories. Taking into account these findings,
in what follows we do not impose the condition r < rC .
We note, however, that at different laser-atom parameters
the applicability of the TIPIS model to the case of linear
polarization may be not as favorable as in Figs. 1(a) and 1(b).
An analysis similar to the one presented here is, therefore,
needed for any set of laser parameters before application of
the TIPIS model to linearly polarized fields.

In Figs. 2(a) and 2(b) we present the two-dimensional
photoelectron momentum distributions in the (kz, k⊥) plane
calculated within the semiclassical model accounting for laser
and Coulomb field only [panels (a) and (c)] and with account of
the ME potential [panels (b) and (d)]. The first and the second
row of Fig. 2, i.e., panels [(a), (b)] and [(c), (d)] show the results
for Mg and Ca, respectively. The size of the bin and the number
of trajectories are the same as for Fig. 1. We note that the lack
of the inversion symmetry of the two-dimensional momentum
distributions that can be seen in Figs. 1(a) and 2 (as well as
in Figs. 6 and 7) results from the finite duration of the laser
pulse. Careful analysis of the results shown in Fig. 2 reveals
that the presence of the ME term leads to two different effects:
a narrowing of the longitudinal momentum distributions and a
modification of the interference patterns. As we shall describe
in detail later, the ME-induced dipole potential can alter the
fanlike interference structures in the momentum distributions
at low energy [Fig. 7(c) and 7(d)].

We first consider the narrowing effect. In order to illus-
trate this effect, we calculate the longitudinal momentum
distributions dR/dkz with and without the ME term [see
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FIG. 2. The two-dimensional photoelecton momentum distribu-
tions for Mg [(a), (b)] and Ca [(c), (d)] ionized by a laser pulse with a
duration of n = 8 cycles at a wavelength of 1600 nm. Panels (a, b) and
(c, d) correspond to the intensities 3.0 × 1013 W/cm2 and 1.0 × 1013

W/cm2, respectively, implying the Keldysh parameters 0.71 and 1.13.
The left column [panels (a) and (c)] show the distributions calculated
ignoring the ME terms in Eqs. (2), (3), and (10). The right column
[panels (b) and (d)] displays the distributions obtained with account
of the ME terms in all equations. The distributions are normalized to
the total ionization yield. A logarithmic color scale in arbitrary units
is used. The laser field is linearly polarized along the z axis.

Figs. 3(a) and 3(c)]. The widths of the longitudinal momentum
distributions are insensitive to the interference terms, which
are, therefore, not included in Figs. 3(a) and 3(c). Furthermore,
the narrowing of the two-dimensional distributions leads to the
change of the slope of the electron energy spectra [Fig. 1(b)].
The spectra calculated with account of the ME term fall off
more rapidly with electron energy than the ones calculated
neglecting the polarization effects [see Figs. 3(b) and 3(d)]. It
is also seen from Figs. 3(a) and 3(c) that the account of the
ME term leads to partial filling of the dip at zero longitudinal
momentum.

In order to understand the mechanism responsible for the
narrowing of the longitudinal momentum distributions, we
analyze electron trajectories ending up in a bin centered at
some final momentum �k = (kz, k⊥). We consider ionization
of Mg [see Figs. 2(a) and 2(b)], and we choose �k to be equal
to �k0 = (0.86, 0.31) a.u. In the importance sampling approach,
where the weight of every trajectory is accounted for already at
the sampling stage and the photoelectron distribution is given
by Eq. (11), the presence of the ME term reduces the number
of trajectories reaching this bin by a factor of five. Therefore,
the ionization probability at �k = �k0 is substantially decreased
due to the polarization of the residual ion. First we consider
the trajectories leading to this bin neglecting the ME effect,
i.e., when the electrons move in the laser and Coulomb fields.
The analysis of these trajectories shows that there are three
main groups of them starting from three different domains of
the (t0, v0,⊥) space. We refer to these trajectories as no. 1, no.
2, and no. 3, respectively. In Fig. 4 we plot one characteristic
trajectory from each group when the ME term is disregarded
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FIG. 3. Longitudinal momentum distributions [panels (a) and (c)]
and energy spectra [panels (b) and (d)] of the photoelectrons for
ionization of Mg [panels (a) and (b)] and Ca [panels (c) and (d)].
Red (thin) and blue (thick) curves correspond to the semiclassical
simulations with and without ME term, respectively. The panels [(a)
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pulse durations are as in Figs. 1 and 2. The energy spectra and the
longitudinal distributions are normalized to the peak value.

in Eq. (1) (dashed curves). In the same plot we show the
trajectories resulting when the ME term is taken into account
while the initial conditions are unchanged (solid curves).
Table I presents detailed quantitative information about these
trajectories: Their times of start t (j )
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FIG. 4. Three characteristic electron trajectories leading in the
absence of the ME potential to the same final momentum �k0 =
(0.86, 0.31) a.u. The parameters correspond to the ionization of
Mg by a laser pulse with a duration of n = 8 cycles, intensity of
3.0 × 1013 W/cm2, and wavelength of 1600 nm. The dashed curves
show the trajectories calculated ignoring the ME potential, i.e., when
accounting for only the laser and Coulomb fields. The solid curves
depict the trajectories moving in the laser field and the full potential
of Eq. (2) including the ME term. The inset shows a zoom-in of the
initial part of the electron trajectories.
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TABLE I. The kinematic characteristics of the trajectories shown in Fig. 4. The table presents the times of start ωt
j

0 , initial transverse
velocities v

(j )
0,⊥, starting points z

(j )
0 , and the final asymptotic momenta �k(j )

L , �k(j )
CL, and �k(j ) that correspond to the motion in the laser field only, in

the laser and Coulomb fields, and in the laser field and the full potential of Eq. (2), respectively.

j ωt
(j )
0 (rad) v

(j )
0,⊥ (a.u.) z

(j )
0 (a.u.) �k(j )

L (a.u.) �k(j )
CL (a.u.) �k(j ) (a.u.)

1 19.49 − 0.10 − 10.78 (0.54, −0.10) (0.84, 0.31) (0.81, 0.26)
2 25.50 − 0.14 − 7.78 (0.37, −0.14) (0.86, 0.31) (0.70, 0.09)
3 25.86 0.46 − 10.49 (0.67, 0.46) (0.86, 0.31) (0.84, 0.32)

v
(j )
0,⊥, the tunnel exit points z

(j )
0 , as well as the corresponding

asymptotic momenta of the electron moving in the laser field
only �k(j )

L , in both laser and Coulomb fields �k(j )
CL, and, the

asymptotic momentum �k(j ) that corresponds to the case when
the entire potential of Eq. (2) is included into the equations
of motion (1) [here j = 1, 2 and 3]. It is seen from Table I
and Fig. 1 that, in contrast to the trajectories no. 1 and no.
3, trajectory no. 2 is strongly affected by the ME potential.
The reason is that this trajectory has the smallest exit point
(see Table I and inset in Fig. 1) and, simultaneously, its initial
transverse velocity v0,⊥ = −0.14 a.u. is not large (comparable
to the value v0,⊥ = −0.10 a.u. for the trajectory no. 1). Indeed,
the force acting on the electron due to the ME polarization
effect decays as 1/r2 with increasing r [see Eq. (2)]. For
brevity, we call this force the ME force. It is clear that the ME
force can affect the electron motion only at the initial parts of
the electron trajectory close to its starting point (i.e., close to
the tunnel exit). The smaller the distance to the tunnel exit, the
stronger the effect of the ME force on the trajectory.

It is seen that for trajectory no. 2 both longitudinal and
transverse components of the asymptotic momentum �k are
reduced due to the ME force when compared to the correspond-
ing components of the momenta �k(1) and �k(3). As the result,
trajectory no. 2 will not end up in any bin of the momentum
space close to �k0. Instead, it will lead to another bin with smaller
kz. It is worth noting that for close to circularly polarized
fields the ME effect manifests itself in the rotation of the
two-dimensional momentum distribution towards the minor
axis of the polarization ellipse [31].

If the Coulomb and the ME forces are small compared
to the laser field, these forces can be considered as small
perturbations. Based on this idea analytical estimates of the
effects of the Coulomb and ME forces were obtained in
Ref. [32] for the asymptotic electron momenta by integrating
both Coulomb and ME forces along the trajectory generated
by a constant field �F (t0) at the time of ionization. In linearly
polarized fields these estimates may be inapplicable even
for the trajectories that are not substantially affected by the
ME force (e.g., trajectory no. 1). This becomes clear already
from the fact that the Coulomb potential changes the sign
of the transverse momentum component (cf. �kC and �k for
the trajectory no. 1). We note, however, that the sign of the
ME contribution to the final electron momentum is predicted
correctly by the estimates of Ref. [32].

As the narrowing of the momentum distributions due to
the polarization of the ionic core is a pronounced effect,
we may expect that the inclusion of the ME term will be
important to explain experimental data. In Figs. 5(a) and 5(b)
we show the results of our semiclassical simulations for Ar

(Ip = 0.58 a.u., αI = 7.2 a.u.) by the eight-cycle laser pulse
with intensity 5.0 × 1014 W/cm2 and wavelength 800 nm.
These parameters are close to those used in the experiment of
Ref. [73]. Convergence was achieved at 1.6 billion trajectories
and the bin size equal to 1.3 × 10−3 a.u. Since the interference
oscillations are strong and the narrowing effect is weaker for
Ar than for Mg or Ca, we again neglect quantum interference
when calculating the longitudinal momentum distributions [see
Fig. 5(a)]. The narrowing of the longitudinal distribution and
the change of the slope of the energy spectra are clearly
seen from Figs. 5(a) and 5(b). The experimental photoelectron
momentum distributions of Ref. [73] are narrower than the
corresponding theoretical results based on the solution of
the TDSE within the SAE (see Refs. [74,75]). This suggests
that polarization effects may be important in resolving the
remaining subtle discrepancy between the experiment [73] and
theory.

Let us finally discuss the interference effects caused by the
laser-induced polarization of the atomic residual. It is seen from
Figs. 2(a) and 2(b) that the changes of the interference patterns
due to the ME terms in the equations of motion [Eq. (1)]
and phase [Eq. (10)] are not very strong. These changes are
only visible in the first and partially the second ATI peaks, as
well as in the vicinity of the kz axis. In order to understand
the mechanism of the ME polarization-induced interference
effect, we compare the photoelectron momentum distributions
calculated without considering the ME effects [Fig. 6(a)], with
the account of the ME term only in the equations of motion
[Fig. 6(b)], and with the full account of the ME effects, i.e.,
by including the ME terms in the equations of motion and in
the phase of Eq. (10) [Fig. 6(c)]. It is seen that the interference
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FIG. 5. Longitudinal momentum distributions (a) and electron
energy spectra (b) calculated for ionization of Ar by a Ti:sapphire
laser pulse (800 nm) with a duration of eight cycles and intensity
5.0 × 1014 W/cm2. Red (thin) and blue (thick) curves correspond to
the semiclassical simulations with and without ME term, respectively.
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FIG. 6. The two-dimensional photoelectron momentum distribu-
tions for ionization of Mg calculated (a) ignoring ME polarization
potential, (b) accounting for the ME force in the equations of motion
[Eq. (1)], but disregarding the ME potential in the phase [Eq. (10)],
and (c) with the full account of the ME term. The laser parameters are
as in Figs. 1(a) and 1(b). The distributions are normalized to the total
ionization yield. A logarithmic color scale in arbitrary units is used.

structures change mainly due to the presence of the ME term
in the Newton’s equations (1), i.e., due to the change of the
electron trajectories caused by the polarization of the core.

At first glance, the facts that for Mg and Ca the polarization-
induced changes of the interference patterns (i) are relatively
weak and (ii) originate due to the dynamic effect may appear
counterintuitive. Indeed, due to the relatively high values
of αI for Mg and Ca, the ME term in the integrand of
Eq. (10) seems to have a sufficiently large value to produce
substantial contribution to the phases of trajectories shown in
Fig. 1. Therefore, we could expect substantial modification of
the interference patterns for the parameters of Fig. 2 when
including the ME potential. The detailed analysis of the
trajectories interfering in different bins shows, however, while
the ME phases are large, they have very similar magnitudes
and, hence, they do not change the interference. The reason for
this is the following. In order for two trajectories to interfere
maximally, they must have comparable weights. Since the
tunneling probability [Eq. (6)] is a sharp function of the electric
field F (t0) at the time of start, the interfering trajectories start
at the time instants that correspond to similar values of the
instantaneous field. Furthermore, the contribution of the ME
term to the phase (10) is mostly created on the initial part
of the electron trajectory close to the tunnel exit. The latter
depends only on the parameters of the atomic (molecular)
species and the laser field at the time of ionization [see Eq. (3)].
As a result, the interfering trajectories have similar values of
the ME contributions to the phase, − ∫ ∞

t0
αI

�F · �r/r3 dt , and
the difference of these contributions, which is the quantity
relevant for the interference, is small. Nevertheless, for atoms
and molecules with larger values of the ionic polarizability
αI this difference can reach significant values, and, therefore,
produce considerable changes of the interference patterns.
To illustrate this point, in Figs. 7(a) and 7(b) we show the
two-dimensional photoelectron momentum distributions for
ionization of Ba (αI = 124.15 a.u., see Ref. [72]) calculated
without considering the ME term in the phase and with
[Eq. (10)] account of this term, respectively. The bin size and
the number of trajectories in the ensemble are the same as for
Fig. 1. In order to enhance intracycle interference, we consider
here a shorter pulse with a duration of n = 4 cycles (cf. to n = 8
in Figs. 1–6). It is seen from Figs. 7(a) and 7(b) that the presence
of the ME term in the phase of Eq. (10) leads to changes in the
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FIG. 7. Two-dimensional electron momentum distributions for
the Ba atom ionized by a laser pulse with a duration of n = 4
cycles, wavelength of 1600 nm, and an intensity of 3.0 × 1013 W/cm2

calculated [(a) and (c)] disregarding the ME term in the phase
[Eq. (10)], and [(b) and (d)] with the account of this term. Panels
(c) and (d) show the magnification for kz � 0.3 a.u and k⊥ � 0.25
a.u. of the distributions shown in (a) and (b), respectively. For both
distributions the ME force is included in the equations of motion. The
distributions are normalized to the total ionization yield. A logarithmic
color scale in arbitrary units is used.

interference pattern. For example, the number of radial nodal
lines in the fanlike interference structure for |k| � 0.25 a.u. is
different in the distributions calculated without and with the
ME term in the phase [cf. Figs. 7(c) and 7(d)]. In Fig. 7(c), we
see six fanlike structures for k⊥ > 0, while the presence of the
ME contribution reduces the number of such structures to five
in Fig. 7(d).

IV. CONCLUSIONS AND OUTLOOK

We have investigated ME effects as described by a laser-
induced dipole polarization potential on photoelectron mo-
mentum distributions from strong-field ionization in a linearly
polarized laser field. To this end, we have applied semiclassical
simulations based on the TIPIS model [31]. We have analyzed
the applicability of the TIPIS approach to the case of linear
polarization. We have proposed a simple procedure that allows
to find the domain in the photoelectron momentum distribu-
tions that can be reliably calculated by the TIPIS model. For
the atomic species and laser parameters considered here this
domain includes the whole direct part of the ATI spectrum. In
order to study the polarization-induced interference efffects,
we have combined the TIPIS approach with the SCTS model
[61].

We predict a pronounced narrowing of the photoelectron
momentum distributions in the longitudinal direction parallel
with the laser polarization. By analyzing the characteristic elec-
tron trajectories we have studied the mechanism underlying the
narrowing effect. We have shown that the narrowing is caused
by the polarization-induced dipole force on electrons that start
relatively close to the origin.
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We have also revealed the polarization-induced modifica-
tion of interference effects in the photoelectron momentum
distributions. This effect is found to be pronounced for atoms
with relatively high static polarizabilities, and it was found to
change the number of fanlike interference structures at low en-
ergy in the two dimensional electron momentum distribution.
Due to the rapid progress in experimental techniques, it is now
possible to study photoelectron momentum distributions with
high resolution (see, e.g., Ref. [76]), and, therefore, ME effects
will have to be taken into account for accurate description of

experimental data, in particular for larger molecules with large
polarizabilities.
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