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Effective-potential theory for time-dependent many-electron wave functions
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We derive a variation equation for a time-dependent effective potential that is local both in time and in space
and show that this potential generates and propagates spin orbitals with which a many-particle, time-dependent,
multiconfigurational wave function �(t ) is constructed. Within this approach, the wave function and the
effective potential are determined simultaneously in a self-consistent manner both in time-independent and in
time-dependent cases. We also derive an equation that determines a real-valued effective potential and show
that the equation establishes a relation among the first-order and second-order reduced density matrices and the
electron repulsion integrals in the spin-orbital representation. By introducing the first-order density equation,
we show that the variation equation for the effective potential can be simplified for an exact wave function. We
also show that we can derive an effective potential with which a ground-state wave function that fulfills the
Brillouin-Brueckner condition is constructed and that we can derive the effective potential proposed by Slater,
with which a ground-state wave function represented by the multiconfiguration expansion is calculated, when an
additional constraint is imposed on the varitation equation.
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I. INTRODUCTION

The multiconfiguration, time-dependent Hartree-Fock
(MCTDHF) method [1,2] was developed for treating time-
dependent electronic dynamics of atoms and molecules from
first principles, and its basic formulations and proof-of-
principle applications have been established by recent theoreti-
cal and computational efforts [1,3–5]. We are now entering the
research phase in which we explore its practical applicability to
many-electron atoms and molecules and implement program
codes for practical calculations. For example, the elucidation
of time-dependent many-electron dynamics induced by an
ultrashort intense laser pulse is one of the most interesting
themes currently [6–10].

In MCTDHF studies, the time-dependent Schrödinger
equation (TDSE) is solved by time propagation of spin orbitals
and configuration-interaction (CI) coefficients, with which a
time-dependent, multiconfigurational wave function is con-
structed [1–4,11–14]. The time propagation of spin orbitals
is carried out by the integration of the nonlinear equations
of motion (EOMs) in time and the time propagation of the
CI coefficients is carried out by the integration of a linear
EOM [3]. These EOMs are formulated using the Dirac-Frenkel
time-dependent variational principle [15,16].

Alternatively, time-dependent dynamics of many electrons
can be represented by a single-particle TDSE with a time-
dependent single-particle potential, which is derived from a
time-dependent many-electron wave function. This type of
single-particle-potential approach could give us a straightfor-
ward picture of ultrafast and correlated motion of electrons in a
many-electron system. Schild and Gross [17] derived an exact
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single-particle TDSE with a time-dependent single-particle
potential by adopting the wave-function factorization scheme
proposed by Hunter [18], in which a stationary-state many-
electron wave function is factorized as the product of a marginal
amplitude and a conditional amplitude. Indeed, we can calcu-
late the exact electron density of a many-electron system by
taking the squared modulus of the marginal amplitude, which
depends only on a single-electron coordinate. Recently, Ando
[19] investigated higher-order harmonics generation by LiH
using time-dependent single-particle potentials representing
Li(2s) and H(1s) electrons.

In the present study, we propose a formulation for the time
propagation of the spin orbitals governed by a single-particle
TDSE with a time-dependent local effective potential veff (�r, t ).
In the present approach, we derive the multiconfigurational
wave function and the effective potential simultaneously in
a self-consistent manner, and therefore, we can correlate the
motion of the spin orbitals with the temporal variation of the
time-dependent effective potential. We find an equation that
determines a real-valued effective potential, which establishes
a relation among the first-order and second-order reduced
density matrices (RDMs) and the electron repulsion integrals
in the spin-orbital representation.

In Sec. II, we formulate an effective-potential theory for
a time-dependent multiconfigurational wave function and de-
rive a variation equation by which the effective potential is
determined. In Sec. III, we relate the present formulation to
the density equation theory (DET) developed by Cho [20],
Nakatsuji [21,22], and Cohen and Frishberg [23] and we derive
the first member of the Born, Bogoliubov, Green, Kirkwood,
and Yvon (BBGKY) hierarchy of equations [24] in terms of
the effective potential. In Sec. IV, we clarify the properties of
existing effective-potential theories [25,26] for many-electron
wave functions through a comparison with the present theory.
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Finally, in Sec. V, we summarize the present study. Detailed
derivations of the equations that are referred to in the text are
summarized in Appendixes A–J.

II. FORMULATION OF AN EFFECTIVE-POTENTIAL
THEORY

A. Multiconfiguration expansion approximation
of a wave function

The exact time-dependent wave function �exact (t ) of an
N -electron system follows the TDSE,

ih̄
∂

∂t
�exact (x1, x2, . . . , xN , t )

= Ĥ (t )�exact (x1, x2, . . . , xN , t ), (1)

where the symbol xj represents the spatial coordinate �rj

and the spin coordinates μj of the j th electron, i.e., xj =
(�rj , μj ). For simplicity, we consider a spin-singlet state with
an even-N electron system. Within the Born-Oppenheimer
approximation, the time-dependent total Hamiltonian Ĥ (t ) is
written as

Ĥ (t ) = T̂ + V̂ext (t ) + Ŵee, (2)

where the kinetic energy operator, the time-dependent external
potential, and the electron-electron Coulombic potential are
expressed, respectively, by

T̂ =
N∑

j=1

t̂ (�rj ) =
N∑

j=1

(
− h̄2

2me

)
∂2

∂�r2
j

, (3)

V̂ext (t ) =
N∑

j=1

vext (�rj , t ) =
N∑

j=1

ven(�rj ) +
N∑

j=1

vptb(�rj , t ), (4)

and

Ŵee = e2

4πε0

N∑
i<j

1

rij

, (5)

where me denotes the mass of the electron, e the elemen-
tary charge, and ε0 the permittivity of vacuum. In Eq. (4),
the external potential vext is expressed as the sum of the
electron-nuclear attraction potential ven and a time-dependent
perturbation vptb(t ). It should be noted that the electron-nuclear
attraction potential ven(�rj ) can be written as a single-particle
potential for the j th electron in describing atoms as well
as molecules. Throughout this paper, the operator vptb(t ) is
assumed to be a multiplicative real-valued function in the
coordinate representation. For example, if we describe the
interaction of an electron with an external laser electric field
�E (t ) in the length gauge, vptb(t ) is explicitly represented by

vptb(t ) = e�r · �E (t ). (6)

We introduce the normalized approximate wave function
�approx(t ) represented by the multiconfiguration expansion of
a finite length of L as

�approx(x1, x2, . . . , xN , t )

=
L∑

K=1

CK (t )�K (x1, x2, . . . , xN , t ), (7)

where the Slater determinant �K (t ) is constructed by time-
dependent spin orbitals {φk (x, t )} (k = 1, 2, 3, . . . , N, . . . ) as

�K (x1, x2, . . . , xN , t )

= 1√
N !

det{φk1 (x1, t )φk2 (x2, t ) . . . φkN
(xN, t )}. (8)

The spin orbitals are assumed to form an orthonormal set as

〈φi (t )|φj (t )〉 =
∫

dx φ∗
i (x, t )φj (x, t ) = δij , (9)

and thus the orthonormalized relation among Slater determi-
nants is automatically satisfied as

〈�K (t )|�L(t )〉 = δKL. (10)

When the expansion length is increased as L → ∞ so
that the set of spin orbitals becomes complete, the expansion
theorem [27] states that we are able to construct an exact wave
function �exact in the form of Eq. (7).

B. Variational formulation to optimize the effective potential

The derivation of the variation equation for the effective po-
tential is based on McLachlan’s norm-minimization principle
[28]. By substituting �approx(t ) from Eq. (7) on the left-hand
side of Eq. (1), we obtain

∂

∂t
�approx(x1, x2, . . . , xN , t )

=
L∑

K=1

dCK (t )

dt
�K (x1, x2, . . . , xN , t )

+
L∑

K=1

CK (t )
∂

∂t
�K (x1, x2, . . . , xN , t ). (11)

We assume that the time evolution of the spin orbitals {φk (x, t )}
is governed by a single-particle TDSE specified by the time-
and spatially local effective potential veff (�r, t ) as[

ih̄
∂

∂t
−

(
− h̄2

2me

∂2

∂�r2
+ veff (�r, t )

)]
φk (x, t ) = 0. (12)

For a spin-singlet state with an even-N electron system, we
can restrict the effective potential to be spin independent. The
spin orbitals are represented by

φk (x, t ) =
{
ψk (�r, t ), α(μ) if k is odd,

ψk (�r, t ), β(μ) if k is even,
(13)

where ψk (�r, t ) denotes a time-dependent spatial orbital and α

and β stand for the spin functions.
The assumption represented by Eq. (12) indicates that the

time dependence of a Slater determinant is governed by the
TDSE represented by

0 =
[
ih̄

∂

∂t
− (T̂ + V̂eff (t ))

]
�K (x1, x2, . . . , xN , t )

=
[
ih̄

∂

∂t
− Ĥeff (t )

]
�K (x1, x2, . . . , xN , t ), (14)
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where

V̂eff (t ) =
N∑

j=1

veff (�rj , t ) (15)

and

Ĥeff (t ) = T̂ + V̂eff (t ). (16)

Therefore, using Eq. (14), Eq. (11) can be rewritten as

ih̄
∂

∂t
�approx(t ) = ih̄

L∑
K

dCK (t )

dt
�K (t )

+
L∑
K

CK (t )[T̂ + V̂eff (t )]�K (t ). (17)

On the other hand, using Eqs. (2) and (7) we obtain

Ĥ (t )�approx(t ) =
L∑
K

CK (t )[T̂ + V̂ext (t ) + Ŵee]�K (t ). (18)

If the wave function is exact, the left-hand side of Eq. (17)
and the left-hand side of Eq. (18) must be equal. However,
when an approximate wave function is adopted, they are not
equal to each other, and the time-dependent effective potential
veff (�r, t ) is defined so that the magnitude of this discrepancy
is minimized.

We first subtract Eq. (18) from Eq. (17) to obtain(
ih̄

∂

∂t
− Ĥ (t )

)
�approx(t )

= ih̄

L∑
K

dCK (t )

dt
�K (t ) +

L∑
K

CK (t )[Ṽ (t ) − Ŵee]�K (t ),

(19)

where Ṽ (t ) in Eq. (19) is defined as

Ṽ (t ) = V̂eff (t ) − V̂ext (t ) =
N∑

j=1

[veff (�rj , t ) − vext (�rj , t )]

=
N∑

j=1

ṽ(�rj , t ). (20)

The kinetic energy operators in Eqs. (17) and (18) cancel each
other out in Eq. (19). We refer to ṽ(�r, t ) in Eq. (20) as an
internal effective potential.

Next, we define the time-dependent norm N (t ) by

N (t ) = 〈�approx(t )|
(

ih̄
∂

∂t
− Ĥ (t )

)†

×
(

ih̄
∂

∂t
− Ĥ (t )

)
|�approx(t )〉. (21)

By setting the first variation of N (t ) with respect to Ṽ †(t )
to be 0, we obtain the variation equation for the effective

potential as

0 = ih̄

L∑
KL

C∗
K (t )

dCL(t )

dt
〈�K (t )|δṼ †(t )|�L(t )〉

+
L∑

KL

C∗
K (t )CL(t )〈�K (t )|δṼ †(t )(Ṽ (t ) − Ŵee )|�L(t )〉.

(22)

In Eq. (22), variations with respect to the spin orbitals are
not considered. This is because, as pointed out by Nazarov
in Ref. [29], spin orbitals remain unchanged at time t by the
variation of the potential at time t , although the time derivatives
of the spin orbitals at time t should be affected by the variation
of the potential, δṽ†(�rj , t ) = δv

†
eff (�rj , t ), as can be seen in

Eq. (12). This fact allows us to derive the variation equation for
the time-local effective potential in a straightforward manner.

C. The variation equation for the effective potential
and equations of motion for the CI coefficients

From the variation equation of Eq. (22), the effective
potential veff (�r, t ) = ṽ(�r, t ) + vext (�r, t ) needs to satisfy the
following linear integral equation, i.e., a Fredholm equation
of the second type (see Appendix A);

ṽ(�r1, t )γapprox(x ′
1, t |x1, t )

= 2
∫

dx2

[
e2

4πε0

1

r12
− ṽ(�r2, t )

]
�(2)

approx(x ′
1, x2, t |x1, x2, t )

+ 3
∫

dx2

∫
dx3

e2

4πε0

1

r23
�(3)

approx(x ′
1, x2, x3, t |x1, x2, x3, t )

− ih̄γ̃approx(x ′
1, t |x1, t ), (23)

where γapprox, �(2)
approx, and�(3)

approx denote, respectively, the first-,
second-, and third-order reduced density matrices associated
with the wave function �approx in the coordinate representation.

The RDMs are calculated in a manner similar to that in
Ref. [27] by using the wave function defined by Eq. (7). The
explicit definitions of RDMs are described in Appendix A. The
last term in Eq. (23) is defined as

ih̄γ̃approx(x ′
1, t

′|x1, t )

= ih̄N

∫
dx2· · ·

∫
dxN �∗

approx(x ′
1, x2, x3, . . . , xN , t ′)

×
L∑

K=1

dCK (t )

dt
�K (x1, x2, . . . , xN , t ). (24)

In Appendix B, we show that we can set the potential ṽ(�r, t )
as well as the diagonal element ih̄γ̃approx(x1, t |x1, t ) to be real-
valued functions. Because of this real-valuedness of ṽ(�r, t ),
the single-particle TDSE of Eq. (12) describes the unitary time
propagation of the spin orbitals, Therefore, the assumption of
Eq. (9) becomes valid as long as a set of initial spin orbitals is
orthonormalized.

As shown in Appendix C, the EOMs for the CI coeffi-
cients are derived based on the Dirac-Frenkel time-dependent
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variational principle as

ih̄
d

dt
�C(t ) = V (t ) �C(t ), (25)

where we have introduced a column vector with L elements
and an L × L Hermitian matrix defined as

( �C(t ))L = CL(t ), (26)
and

(V (t ))KL = 〈�K (t )|Ŵee − Ṽ (t )|�L(t )〉. (27)

It should be noted that we need to know beforehand the
EOMs for the spin orbitals in evaluating the terms of
〈�K (t )|ih̄∂/∂t |�L(t )〉, which we use in the derivation of the
EOMs for the CI coefficients.

D. Solution algorithm for the effective potential

Using the condition of the real-valuedness of ṽ(�r, t ) in
Eq. (23), we can calculate the quantity defined by

�(x ′
1, t |x1, t ) ≡ [ṽ(�r1, t ) − ṽ(�r ′

1, t )]γapprox(x ′
1, t |x1, t ). (28)

By setting x ′
1 = x1 in Eq. (28), we obtain �(x1, t |x1, t ) = 0,

which leads to the necessary condition for the real-valuedness
of ṽ(�r, t ) in Eq. (23) given by

〈�approx(t )|[ψ̂†(x1)ψ̂ (x1), Ṽ (t ) − Ŵee]|�approx(t )〉 = 0,

(29)

where the symbol [·, ·] stands for a commutator. The derivation
of Eq. (29) is shown in Appendix D and the fact that ṽ(�r, t )
could not be determined by simply solving Eq. (23) is explained
in Appendix E.

We assume that we have a set of orthonormalized spin
orbitals {φk (x, t )} (1 � k � 2M and N < 2M). The represen-
tations of the Fermi field operators in Eq. (29) are given using
the set of spin orbitals as

ψ̂†(x) =
2M∑
k=1

φ∗
k (x, t )â†

k (t ) (30)

and

ψ̂ (x) =
2M∑
k=1

φk (x, t )âk (t ), (31)

where â
†
k (t ) and âk (t ) denote, respectively, the creation and

annihilation operators of the single-particle state |k(t )〉, and
the spin orbitals are defined by

φk (x, t ) = 〈x|k(t )〉 = 〈x|â†
k (t )|0〉, (32)

with |0〉 representing the vacuum. The expressions of Eqs. (30)
and (31) become exact as long as we use a complete or-
thonormalized set of time-independent or time-dependent spin
orbitals, that is, when M → ∞.

Using the representations of Eqs. (30) and (31) together
with the commutation relation given by

[â†
k (t )âm(t ), â†

n(t )âl (t )] = δnmâ
†
k (t )âl (t ) − δkl â

†
n(t )âm(t ),

(33)

we can calculate the contribution of Ṽ (t ) in Eq. (29) as

〈�approx(t )|[ψ̂†(x)ψ̂ (x), Ṽ (t )]|�approx(t )〉
=

∑
ijs

(φ∗
i (x, t )φj (x, t )γsi (t )

−φ∗
s (x, t )φi (x, t )γij (t ))ṽjs (t )

=
∑
ijs

φ∗
i (x, t )(γ T )is (t )(ṽT )sj (t )φj (x, t )

−
∑
ijs

φ∗
s (x, t )(γ T )sj (t )(ṽT )ji (t )φi (x, t )

= ( �φ(x, t ))†[γT (t ), ṽT (t )] �φ(x, t ), (34)

where the superscript T denotes the transpose of a vector or a
matrix. We define here the column vector �φ(x, t ) as

( �φ(x, t ))T = (φ1(x, t ), φ2(x, t ), . . . , φ2M (x, t )) (35)

and the 2M × 2M Hermitian matrices as

γji (t ) = 〈�approx(t )|â†
i (t )âj (t )|�approx(t )〉

=
(i)∑
I

(−1)pI (i)+pJ (j )C∗
I (t )Cj

iI (t ) (36)

and

ṽij (t ) =
∫

dx φ∗
i (x, t )ṽ(�r, t )φj (x, t ). (37)

In Eq. (36), the symbol
∑(i)

I represents the summation over the
configurations that include a spin orbital φi as a constituent,
C

j

iI (t ) denotes the CI coefficient for a determinant that is
constructed from the determinant �I by a single substitution,
φj ← φi , and the symbol pI (i) stands for the position of the
ith spin orbital in �I , i.e., pK (i) = j , which means that i = kj

in Eq. (8). In Eq. (36), J of pJ (j ) stands for �
j

iI representing
the single substitution φj ← φi in �I , i.e., �J = �

j

iI . The
matrix γ(t ) is the spin-orbital representation of the 1-RDM of
γapprox(x ′, t |x, t ).

On the other hand, we evaluate the contribution of Ŵee in
Eq. (29) as

〈�approx(t )|[ψ̂†(x)ψ̂ (x), Ŵee]|�approx(t )〉

=
2M∑
ij

φ∗
i (x, t )(Xji (t ) − X∗

ij (t ))φj (x, t )

= ( �φ(x, t ))†(XT (t ) − X∗(t )) �φ(x, t ), (38)

where we have used the commutation relation

[â†
k (t )âm(t ), â†

p(t )â†
r (t )âs (t )âq (t )]

= δmpâ
†
k (t )â†

r (t )âs (t )âq (t ) − δmr â
†
k (t )â†

p(t )âs (t )âq (t )

+ δks â
†
p(t )â†

r (t )âq (t )âm(t ) − δkq â
†
p(t )â†

r (t )âs (t )âm(t )

(39)

and the expression of Ŵee given by Eq. (E2) in Appendix E.
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We define the 2M × 2M matrix X (t ) in Eq. (38) by its
matrix elements as

Xij (t ) =
2M∑
pqr

[i(t )q(t )|r (t )p(t )]�(2)
qpjr (t ), (40)

where �
(2)
qpjr (t ) is the spin-orbital representation of

�(2)
approx(x ′

1, x
′
2, t |x1, x2, t ) given by

�
(2)
qpjr (t ) = 〈�approx(t )|â†

j (t )â†
r (t )âp(t )âq (t )|�approx(t )〉 (41)

and the two-electron integrals, which are defined by

[j (t )q(t )|r (t )p(t )] =
∫

dx1dx2 φ∗
j (x1, t )φq (x1, t )

× e2

4πε0

1

r12
φ∗

r (x2, t )φp(x2, t ). (42)

In calculating �(2)(t ), we can use the relation given by

�
(2)
ijkl (t ) =

L∑
K

〈�approx(t )|â†
k (t )âi (t )|�K (t )〉

× 〈�K (t )|â†
l (t )âj (t )|�approx(t )〉

− δil〈�approx(t )|â†
k (t )âj (t )|�approx(t )〉

=
(il)∑
K

(−1)pK (i)+pK (l)+pJ (k)+pJ ′ (j )
(
Ck

iK (t )
)∗

C
j

lK (t )

− δkj γjk (t ), (43)

where the symbol
∑(il)

K represents the summation over the
configurations that include spin orbitals φi and φl as the
constituent orbitals.

We introduce the anti-Hermitian matrix B(t ) given by

B(t ) = X (t ) − X†(t ). (44)

By substituting Eqs. (34) and (38) into Eq. (29), we obtain

〈�approx(t )|[ψ̂†(x)ψ̂ (x), Ṽ (t ) − Ŵee]|�approx(t )〉
= ( �φ(x, t ))†([γT (t ), ṽT (t )] − BT (t )) �φ(x, t ) = 0. (45)

Equation (45) should hold for any x, and thus, we obtain

[ṽ(t ), γ(t )] = B(t ), (46)

which can be regarded as the equation with which the matrix
ṽ(t ) is determined. When the Hermitian matrix γ(t ) and the
anti-Hermitian matrix B(t ) are given, we can solve Eq. (46)
for the Hermitian matrix ṽ(t ) [30]. The Hermiticity of the
matrix ṽ(t ) is a necessary and sufficient condition for the
multiplicative potential function ṽ(�r, t ) to be real-valued.

We can construct ṽ(�r, t ) using ṽ(t ) as

ṽ(�r, t ) = 〈x|ṽ(t )|x〉 =
2M∑
ij

φi (x, t )ṽij (t )φ∗
j (x, t )

= ( �φ(x, t ))T ṽ(t )( �φ(x, t ))∗, (47)

where we have used the notation of Eq. (35). Equation (47)
can be used to determine the effective potential using the spin

orbitals {φk (x, t )} and the CI coefficients {CK (t )}. By using
the expression of Eq. (13), we can show that the right-hand
side of Eq. (47) does not depend on the spin coordinate μ.

If we assume that a single exact effective potential v̂eff (t )
exists when 2M → ∞ and that the corresponding internal
effective potential ṽ(t ) = v̂eff (t ) − v̂ext (t ) also exists, the form
of the potential defined by the right-hand side of Eq. (47)
represents the orthogonal projection of the exact operator
ṽ(t ) onto the subspace spanned by the finite set of {φk (x, t )}
(1 � k � 2M) [27]. We can thus regard the expression of
Eq. (47) as an approximation of the single exact effective
potential v̂eff (t ) using a finite number of spin orbitals. The
invariance of the effective potential under orbital rotation is
discussed in Appendix F and the gauge transformation from
the length gauge to the velocity gauge is shown in Appendix G.

In Fig. 1, we summarize the procedures introduced in
Secs. II B–II D in a flowchart.

E. Propagation of the wave function

In order to perform time propagation of the wave function
�approx(t ), we need to set the initial conditions. The initial
conditions are the effective potential veff (�r ) associated with
the initial stationary-state wave function and the spin orbitals
and CI coefficients constituting the initial stationary-state wave
function.

Once the EOM for the real-time propagation of the wave
function �approx(t ) is formulated, the wave function �approx

of the ground state can be calculated using the imaginary-
time propagation method as long as the ground state is not
degenerated [31–33]. Obtaining the ground state �approx is
equivalent to preparing the initial conditions for real-time
propagation of the wave function, that is, we can use �approx

as the initial wave function, as �approx(t = 0) = �approx and
veff (�r, t = 0) = veff (�r ). The spin orbitals and the CI coeffi-
cients optimized for the ground state �approx are used as the
initial conditions for Eqs. (12) and (25), respectively.

A possible iterative scheme for the imaginary-time prop-
agation to obtain the optimized time-independent effective
potential veff (�r ) and the optimized time-independent CI coef-
ficients for the ground state is shown in Appendix H. The spin
orbitals are obtained as the eigenfunctions of a single-particle
time-independent Schrödinger equation having the optimized
time-independent effective potential veff (�r ).

By using Eqs. (12), (23), and (25) we can show for real-time
propagation that the norm of the wave function is conserved
and that, as long as an external perturbation is absent, the
energy expectation value is also conserved irrespective of the
expansion length ofL. In Appendix H, we also show a possible
leapfrog integration scheme for real-time propagation of the
effective potential veff (�r, t ) and the CI coefficients.

III. COMBINATION WITH THE DENSITY
EQUATION THEORY

As long as the set of spin orbitals is complete or, equiva-
lently, ifL → ∞, we can apply the variation equation, Eq. (23),
to describe an exact wave function. In this section, we consider
this ideal limit of L → ∞ in Eq. (7) and assume that the
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Flow chart to calculate the variables for a multiconfiguration wave function

Variation equation satisfied by the internal-effective potential

Eq.(23)

Eq.(20)

Equation that determines the spin-orbital representation of 
the internal-effective potential

Eq.(46)

Eq.(36)

Eq.(44)

Eq.(40)

Eq.(41)

Eq.(47)

Eq.(37)

Equation of motion for the spin-orbitals 

Eq.(12)

Multiconfiguration expansion of an N-electron wave function

Eq.(7)

Equation of motion for the CI-coefficients

Eq.(25)

Eq.(21)

Non-negative norm to be minimized by optimization of the effective potential

The spin-orbital representation of the internal-effective potential

Real-valuedness of the effective potential

Eq.(29)

FIG. 1. Flowchart for the derivations of the equation of motion for the CI coefficients and the internal effective potential introduced in
Sec. II.

exact ground-state wave function �exact is calculated by the
imaginary-time propagation method. This �exact is the solution
of the time-independent Schrödinger equation for the lowest
eigenvalue Eexact of the relevant system as represented by

Ĥ0�exact = Eexact�exact, (48)

where Ĥ0 denotes the total Hamiltonian of the system having
no external perturbation, which means that vptb(�r, t ) = 0 in
Eq. (4).

We can simplify Eq. (23) by introducing the relations among
exact RDMs, which were derived by the density equation
theory [20,21,23]. It is shown by Nakatsuji in Ref. [21] that
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the density equation, also known as the contracted Schrödinger
equation, is equivalent to the Schrödinger equation as long
as the order (n) of the density equation is greater than or
equal to 2 (n � 2) [34–37]. As pointed out in Refs. [21]
and [38], the first-order (n = 1) density equation describes
a necessary condition to be fulfilled by the Schrödinger
equation.

We rewrite Eq. (23) using Eq. (20) for the exact ground-state
wave function as

ih̄γ̃exact (x
′
1|x1) + [t̂ (�r1) + veff (�r1)]γexact (x

′
1|x1)

+ 2
∫

dx2 [t̂ (�r2) + veff (�r2)]�(2)
exact (x

′
1, x

′
2|x1, x2)|x ′

2=x2

= [t̂ (�r1) + vext (�r1)]γexact (x
′
1|x1)

+ 2
∫

dx2

[
t̂ (�r2) + vext (�r2) + e2

4πε0

1

r12

]

×�
(2)
exact (x

′
1, x

′
2|x1, x2)|x ′

2=x2

+ 3
∫

dx2

∫
dx3

e2

4πε0

1

r23
�

(3)
exact (x

′
1, x2, x3|x1, x2, x3),

(49)

where we omit the time arguments in the RDMs and that in
γ̃exact. In Eq. (49), for convenience in the following discussion,
we have added on both sides the kinetic energy operators
t̂ (�r ) operating on the 1-RDM as well as on the second-order
reduced density matrix (2-RDM). The operator t̂ (�rj ) acts on
the unprimed argument xj in the RDMs.

The first-order density equation, which was first reported
by Nakatsuji [21] for exact RDMs, is given by

Eexactγexact (x
′
1|x1)

= [t̂ (�r1) + vext (�r1)]γexact (x
′
1|x1)

+ 2
∫

dx2

[
t̂ (�r2) + vext (�r2) + e2

4πε0

1

r12

]

×�
(2)
exact (x

′
1, x

′
2|x1, x2)|x ′

2=x2 + 3
∫

dx2

×
∫

dx3
e2

4πε0

1

r23
�

(3)
exact (x

′
1, x2, x3|x1, x2, x3). (50)

By subtracting Eq. (50) from Eq. (49), we obtain the relation

Eexactγexact (x
′
1|x1)

= ih̄γ̃exact (x
′
1|x1) + ĥeff (�r1)γexact (x

′
1|x1)

+ 2
∫

dx2 ĥeff (�r2)�(2)
exact (x

′
1, x

′
2|x1, x2)|x ′

2=x2 , (51)

where the single-particle effective Hamiltonian ĥeff (�r1) is
defined by

ĥeff (�r1) = t̂ (�r1) + veff (�r1). (52)

Equation (51) should be satisfied by an exact wave function,
and at this point, Eq. (51) is more stringent compared to the
variation equation, Eq. (23). Because there is ih̄γ̃exact (x ′

1|x1) on
the right-hand side of Eq. (51), this equation is different from
the first-order density equation describing a noninteracting
electron system, that is, a model system that is described
by a Hamiltonian composed of only single-particle operators.
Because Eq. (51) is derived from the combination of the varia-
tion equation, Eq. (49), and the first-order density equation,
Eq. (50), we refer to Eq. (51) as the variational first-order
density equation. As shown in Appendix I, a formula with
which we can calculate the total energy Eexact is obtained
by performing the integration with respect to x1 after setting
x ′

1 = x1 in Eq. (51) as

Eexact =
∫

dx1 ĥeff (�r1)γexact (x
′
1|x1)|x ′

1=x1

+ 1

N

∫
dx1 ih̄γ̃exact (x1|x1). (53)

We note that we cannot determine the origin of the effective
potential that can be treated as the common diagonal elements
of �e in ṽ in Eq. (46), i.e., an energy displacement by �e

for all spin orbitals, because the diagonal matrix �e 1 always
commutes with γ. However, the displacement �e does not
change the ground-state energy of the system because the
contribution of �e in Eexact cancels out as

�e

∫
dxγexact (x|x) + 1

N

∫
dx 〈�exact|n̂(x)(−N�e )|�exact〉

= 0 (54)
in Eq. (53).

The procedure adopted in the derivation of the variational first-order density equation can also be applied to an exact time-
dependent wave function. Using the time-dependent DET developed by Nakatsuji in Ref. [22], the first-order time-dependent
density equation for an exact wave function is expressed as

ih̄
∂

∂t
γexact (x

′
1, t

′|x1, t ) = [t̂ (�r1) + vext (�r1, t )]γexact (x
′
1, t

′|x1, t )

+ 2
∫

dx2

[
t̂ (�r2) + vext (�r2, t ) + e2

4πε0

1

r12

]
�

(2)
exact (x

′
1, x

′
2, t

′|x1, x2, t )|x ′
2=x2

+ 3
∫

dx2

∫
dx3

e2

4πε0

1

r23
�

(3)
exact (x

′
1, x2, x3, t

′|x1, x2, x3, t ), (55)

where the time derivative is taken only for the unprimed argument t in the same manner as in Ref. [22].
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On the other hand, similarly to the derivation of Eq. (49) from Eq. (23), we rewrite Eq. (23) for the time-dependent case as
follows:

ih̄γ̃exact (x
′
1, t

′|x1, t ) + [t̂ (�r1) + veff (�r1, t )]γexact (x
′
1, t

′|x1, t ) + 2
∫

dx2 [t̂ (�r2) + veff (�r2, t )]�(2)
exact (x

′
1, x

′
2, t

′|x1, x2, t )|x ′
2=x2

= [t̂ (�r1) + vext (�r1, t )]γexact (x
′
1, t

′|x1, t ) + 2
∫

dx2

[
t̂ (�r2) + vext (�r2, t ) + e2

4πε0

1

r12

]
�

(2)
exact (x

′
1, x

′
2, t

′|x1, x2, t )|x ′
2=x2

+ 3
∫

dx2

∫
dx3

e2

4πε0

1

r23
�

(3)
exact (x

′
1, x2, x3, t

′|x1, x2, x3, t ). (56)

By subtracting Eq. (56) from Eq. (55), we obtain the relation

ih̄
∂

∂t
γexact (x

′
1, t

′|x1, t ) = ih̄γ̃exact (x
′
1, t

′|x1, t ) + ĥeff (�r1, t )γexact (x
′
1, t

′|x1, t ) + 2
∫

dx2 ĥeff (�r2, t )�(2)
exact (x

′
1, x

′
2, t

′|x1, x2, t )|x ′
2=x2 ,

(57)

where the single-particle time-dependent effective Hamilto-
nian is defined as

ĥeff (�r1, t ) = t̂ (�r1) + veff (�r1, t ). (58)

We refer to Eq. (57) as the variational time-dependent first-
order density equation.

In solving Eq. (57), we may set the following initial
conditions:

veff (�r, t = 0) = veff (�r ), (59)

γ̃exact (x
′
1, t

′ = 0|x1, t = 0) = γ̃exact (x
′
1|x1), (60)

γexact (x
′
1, t

′ = 0|x1, t = 0) = γexact (x
′
1|x1), (61)

and

�
(2)
exact (x

′
1, x

′
2, t

′ = 0|x1, x2, t = 0) = �
(2)
exact (x

′
1, x

′
2|x1, x2),

(62)

where the quantities on the right-hand sides of the above equa-
tions are calculated for the exact ground-state wave function.

The variational time-dependent first-order density equation,
Eq. (57) can be rewritten as an EOM for RDMs having a
single time argument t by using the Hermitian property of the
RDMs as

ih̄
∂

∂t
γexact (x

′
1, t |x1, t )

= [ĥeff (�r1, t ) − ĥeff (�r ′
1, t )]γexact (x

′
1, t |x1, t )

+ ih̄[γ̃exact (x
′
1, t |x1, t ) + γ̃ ∗

exact (x1, t |x ′
1, t )]. (63)

where we use the relation

ih̄
∂

∂t
γexact (x

′
1, t |x1, t ) = ih̄

∂

∂t
γexact (x

′
1, t

′|x1, t )|t ′=t

−
[
ih̄

∂

∂t
γexact (x1, t

′|x ′
1, t )

]∗∣∣∣∣
t ′=t

.

(64)

By applying the expansion of Eq. (D5) to the second line of
Eq. (63), we obtain

ih̄
∂

∂t
γexact (x

′
1, t |x1, t )

= [ĥeff (�r1, t ) − ĥeff (�r ′
1, t )]γexact (x

′
1, t |x1, t )

+〈�exact (t )|[ψ̂†(x ′
1)ψ̂ (x1), Ĥ (t )−Ĥeff (t )]|�exact (t )〉.

(65)

Alternatively, from the first-order time-dependent density
equation, Eq. (55), we can derive

ih̄
∂

∂t
γexact (x

′
1, t |x1, t )

= [ĥ(�r1, t ) − ĥ(�r ′
1, t )]γexact (x

′
1, t |x1, t )

+ 2
∫

dx2
e2

4πε0

[
1

r12
− 1

r1′2

]
�

(2)
exact (x

′
1, x2, t |x1, x2, t ).

(66)

The expression of Eq. (66) corresponds to the first member of
the BBGKY hierarchy equations [24] that describe the time
evolution of a many-body fermionic system in a pure state in
terms of RDMs. Equation (65) plays the same role as Eq. (66)
within the present effective-potential theory. On the right-hand
side of Eq. (66), the two-particle Coulombic potential appears
in the second term. On the other hand, on the right-hand side of
Eq. (65), the two-particle Coulombic potential contributes to
both the first and the second terms. In the first term, a part of the
two-particle Coulombic potential, which can be represented by
single-particle operators, is included in the effective potential
in ĥeff (�r, t ). In the second term, the remaining part of the
Coulomb potential is included in the two-particle operator
represented by Ĥ (t ) − Ĥeff (t ) = Ŵee − Ṽ (t ).

By taking steps similar to those used in the derivation of
Eq. (45), we can further rewrite the second term on the right-
hand side of Eq. (65) as

〈�exact (t )|[ψ̂†(x ′
1)ψ̂ (x1), Ĥ (t ) − Ĥeff (t )]|�exact (t )〉

= ( �φ(x ′
1, t ))†

(
BT

exact (t ) − [
γT

exact (t ), ṽT (t )
]) �φ(x1, t ), (67)
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where the matrix Bexact (t ) is defined by Eq. (44). On the
other hand, from the real-valuedness condition of the effective
potential of Eq. (46), the right-hand side of Eq. (67) vanishes
identically, and consequently, we can write Eq. (65) as

ih̄
∂

∂t
γexact (x

′
1, t |x1, t ) = [ĥeff (�r1, t ) − ĥeff (�r ′

1, t )]

× γexact (x
′
1, t |x1, t ). (68)

Equation (68) shows that the effect of the two-particle operators
in the original Hamiltonian, Eq. (2), is properly described by
the effective potential of the first member of the BBGKY
hierarchy. Because the effective potential veff (�r, t ) in ĥeff (�r, t )
is determined by Eq. (46), veff (�r, t ) is determined not only
by the 1-RDM but also by the 2-RDM. This means that the
2-RDM is indirectly used in Eq. (68).

IV. COMPARISON WITH OTHER THEORIES

A. Comparison with localized Hartree-Fock theory

A variationally optimized time-dependent local effective-
potential theory within a single-determinantal approximation
is formulated by Nazarov in Ref. [29], which can be regarded
as an extension of the existing localized Hartree-Fock (LHF)
theory [39] to the time-dependent LHF (TDLHF) theory. The
LHF theory for stationary-state calculations can be regarded
as a good approximation [40] to the optimized effective-
potential theory [41,42]. In LHF theory as well as TDLHF
theory, the effective potential is optimized by using a single-
determinantal wave function. On the other hand, in the present
study, the multiconfiguration expansion of Eq. (7) is adopted
for representing the wave function. Therefore, the present
effective-potential theory can be regarded as an extension of
the procedure developed in Ref. [29]. Indeed, we can obtain
from Eq. (23) the expression of the time-dependent localized
exchange potential derived in Ref. [29] by assuming a single-
determinantal approximation in Eq. (7). We note that, within
a single-determinantal approximation of the wave function,
ih̄γ̃approx(x ′

1, t
′|x1, t ) = 0 in Eq. (24), and thus, Eq. (23) is

expressed as

ṽ(�r1, t )γapprox(x1, t |x1, t )

= 2
∫

dx2

[
e2

4πε0

1

r12
− ṽ(�r2, t )

]
�(2)

approx(x1, x2, t |x1, x2, t )

+ 3
∫

dx2

∫
dx3

e2

4πε0

1

r23

×�(3)
approx(x1, x2, x3, t |x1, x2, x3, t ) (69)

for x ′
1 = x1. We can see that Eq. (69) is exactly the same as the

equation derived in Ref. [29] with which the time-dependent
exchange potential vx (�r, t ) defined as

vx (�r, t ) = ṽ(�r, t ) − vH(�r, t ) (70)

was determined, where vH(�r1, t ) denotes the time-dependent
Hartree potential given by

vH(�r1, t ) = e2

4πε0

∑
σ

∫
d�r2

γapprox(�r2, σ, t |�r2, σ, t )

r12
. (71)

It is noted that the effective potential for the TDLHF is
derived by deleting the last term on the right-hand side of
Eq. (23). However, this term plays a central role in deriving
the effective potential for a wave function represented by a
multiconfigurational form as explained in Sec. II D.

B. Comparison with MCTDHF

In the present approach as well as in the MCTDHF, we adopt
a multiconfigurational wave function as an approximation of
an exact wave function and optimize the CI coefficients based
on the Dirac-Frenkel time-dependent variational principle.
However, in the present formulation, we optimize the effective
potential to generate and propagate the spin orbitals. On the
other hand, in the MCTDHF, we optimize the orbital func-
tions directly. Consequently, the ground-state wave functions
calculated by these two methods are different. Within the
single-determinantal approximation of the ground state, the
Hartree-Fock state [3] is obtained by the MCTDHF while
the localized Hartree-Fock state is obtained by the present
approach. This is because, within the MCTDHF, we take
the variations with respect to all the spin orbitals to derive
variation equations for spin orbitals. In the present formulation,
by contrast, the variation equation is derived by taking the
variation with respect to the effective potential under the
constraint that the effective potential is local and real-valued.
Because of this difference in the variational procedures, the
ground-state energy calculated by the LHF theory is always
higher than that calculated by the Hartree-Fock theory [39,40].
However, this difference is expected to be reduced when we
adopt the multiconfiguration expansion as suggested by the
expansion theorem [27].

The difference between the variations adopted in formulat-
ing the MCTDHF and the variations adopted in the present
theory is also reflected in the property of the potentials that
generate the spin orbitals by which the total wave function is
constructed. Within the MCTDHF, if we rearrange the EOMs
for the spin orbitals so that they are expressed in the form of the
single-particle TDSE, all the operators other than the kinetic
energy become complex-valued and orbital dependent as
exemplified by the TDHF potential in the single-determinantal
approximation [43,44]. Within the present formulation, we
can always find the single real-valued effective potential, and
thus, the EOM for the spin orbitals is a single-particle TDSE
specified by the effective potential. Alternatively, the EOMs in
the MCTDHF are derived as coupled nonlinear equations for
the spin orbitals. Because a variety of established algorithms
can be used in solving the single-particle TDSE, the numerical
implementation of the propagation of the spin orbitals by the
single-particle TDSE specified by the effective potential is
more straightforward than that in the MCTDHF. According to
the real-time propagation scheme proposed in Appendix H, the
multiconfigurational wave function and the effective potential
are determined simultaneously in a self-consistent manner.
Therefore, using an EOM for the propagation of the spin
orbitals, the variation of the time-dependent effective potential
in time is reflected directly to the motion of the spin orbitals.
This situation is in contrast to the conventional construction of
a time-dependent single-particle potential [17,19]. Within the
MCTDHF theory, the time-dependent single-particle potential
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for the time-dependent natural spin orbitals can be calculated
after the calculation of the time-dependent many-electron wave
function [43,44].

It is true that the present effective-potential theory defines
only a necessary condition to be fulfilled by a many-electron
TDSE. However, if the solution of a many-electron TDSE is
obtained as the total number of spin orbits is increased, the
converged solution can be regarded as a numerically exact
solution based on the expansion theorem as in the case of
MCTDHF calculations.

C. The N-representable problem

Within the DET, we cannot judge whether a given RDM
is derived from an antisymmetrized N -particle wave function
[45], that is, we cannot solve the N -representable problem
[38,46]. However, the solution of the variation equation,
Eq. (23), is free of the N -representable problem because the
RDMs are constructed directly from the wave function of
Eq. (7), and therefore, the density equations, Eqs. (50) and (57),
can be used for the solution algorithms by which the effective
potential is calculated.

We note that some necessary conditions for RDMs to be
N -representable have been obtained [35–38], and therefore,
the ground-state energy can be calculated without using a wave
function by making accurate reconstruction functionals for the
higher order RDMs using a trial 2-RDM [34–38,47–50]. It
can be said that the original goal of the DET is satisfactorily
achieved by adopting these accurate reconstruction function-
als. Recently, the propagation algorithm of a 2-RDM without
a wave function was tested and the numerical result confirms
that the reconstruction functional for a time-dependent 3-RDM
from a time-dependent 2-RDM is stable and accurate [51]. On
the other hand, in the present theory, the RDMs are calculated
using the time-dependent wave function of Eq. (7), in which the
occupied spin orbitals and the CI coefficients are propagated
in time by the explicit EOMs, Eqs. (12) and (25), respectively.
Therefore, the RDMs treated in the present theory are free of
the N -representable problem.

D. Comparison with Löwdin’s effective-potential theory

Brenig [52] showed that CI coefficients that correspond to a
single substitution from a reference configuration �K=1 ≡ �1

can be eliminated when the magnitude of the norm
|〈�1|�exact〉| is maximized, that is, the exact ground-state wave
function �exact can be written as

�exact = C1�1 +
∑
i<j

∑
p<q

C
pq

ij �
pq

ij

+
∑

i<j<k

∑
p<q<r

C
pqr

ijk �
pqr

ijk + · · · , (72)

where the indices i, j, k, . . . denote spin orbitals constituting
�1, p, q, r, . . . denote other spin orbitals, and all the spin
orbitals are orthonormalized. �pq

ij denotes a Slater determinant
obtained by the orbital substitutions of (p, q ) ← (i, j ) in
�1, and �

pqr

ijk by (p, q, r ) ← (i, j, k) in �1. An exact wave
function having the structure of Eq. (72) is said to satisfy the
Brillouin-Brueckner condition [53] and the spin orbitals are
referred to as Brueckner orbitals.

Apparently, the multiconfiguration expansion that satisfies
the Brillouin-Brueckner condition can readily be constructed
using the general expansion of Eq. (7) by setting the CI
coefficients to be 0 for the Slater determinants generated by
the single substitution from �1. This means that, by assuming
the multiconfiguration expansion of the wave function that
satisfies the Brillouin-Brueckner condition and by perform-
ing imaginary-time propagation, we can obtain the effective
potential that generates Brueckner orbitals in the form of ṽ(�r )
defined by Eq. (47) using the solution of ṽ for Eq. (46).

Note that the choice of the CI coefficients as shown in
Eq. (72) works as a constraint for the orbital rotation discussed
in Appendix F and fixes the spin orbitals uniquely to be
Brueckner orbitals. Therefore, we can see that the present
procedure to determine the effective potential based on the
expansion of Eq. (72) establishes a way to construct the
effective potential, whose existence was pointed out by Löwdin
in Ref. [25], which generates the exact self-consistent field
orbitals, i.e., Brueckner orbitals.

E. Comparison with Slater’s effective-potential theory

In the effective-potential theory proposed by Slater for
a multiconfigurational wave function [26], the effect of the
electron-nuclear interaction is not included in the effective
potential, and thus, the effective potential Ve(x) defined in
Ref. [26] corresponds to ṽ(�r ) in our formulation. For a spin-
singlet state with an even-N electron system, Slater’s effective
potential is independent of spin variables, and thus, Ve(x1) =
Ve(�r1), and we can write the effective potential defined in
Ref. [26] as

Ve(x1) =

∫
(dx ′

1)�∗(x1, . . . , xN )Ŵee�(x1, . . . , xN )∫
(dx ′

1)�∗(x1, . . . , xN )�(x1, . . . , xN )
, (73)

which corresponds to ṽ(�r ) in the present study as explained
below. Because the discussion below can be applied both to
an approximated and an exact wave function, hereafter, in
this section, we omit the subscripts “approx” and “exact” for
the wave function and for the RDMs. For the ground state,
our variation equation, Eq. (23), for the effective potential is
represented by

ṽ(�r1)γ (x1|x1)

= 2
∫

dx2

[
e2

4πε0

1

r12
− ṽ(�r2)

]
�(2)(x1, x2|x1, x2)

+ 3
∫

dx2

∫
dx3

e2

4πε0

1

r23
�(3)(x1, x2, x3|x1, x2, x3)

− ih̄γ̃ (x1|x1). (74)

Alternatively, we can rewrite Eq. (73) as

ṽ(�r1)γ (x1|x1) = 2
∫

dx2
e2

4πε0

1

r12
�(2)(x1, x2|x1, x2), (75)

where we use the relation of

Ve(�r1) ≡ ṽ(�r1). (76)
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From comparison of Eqs. (74) and (75), we find that

R(x1|x1) = ih̄γ̃ (x1|x1) + 2
∫

dx2 ṽ(�r2)�(2)(x1, x2|x1, x2)

− 3
∫

dx2

∫
dx3

e2

4πε0

1

r23

×�(3)(x1, x2, x3|x1, x2, x3) (77)

is missing in Slater’s formulation. Using the relation expressed
by Eq. (J7) in Appendix J, we can rewrite Eq. (77) as

R(x1|x1) = 2
∫

dx2
e2

4πε0

1

r12
�(2)(x1, x2|x1, x2)

− ṽ(�r1)γ (x1|x1), (78)

which will be 0 if we use Slater’s assumption, Eq. (75). There-
fore, we see that Slater’s effective potential can be deduced
within our approach by imposing a constraint represented by
R(x1|x1) = 0 in Eq. (77) to the variation equation, Eq. (74).
In this sense, the imaginary-time propagation scheme for
obtaining the optimized spin orbitals for a ground state shown
in Appendix H can be regarded as the exactification of Slater’s
approach based on the well-defined variational formulation.

As shown by Löwdin [27], we can derive Slater’s effective
potential as an averaged potential of the optimized spin orbitals
starting from the so-called extended Hartree-Fock equation.

Finally, we note that Eq. (74) as well as Eq. (75) can be
applied to describe a time-dependent wave function if they are
used together with the EOM for the CI coefficients of Eq. (25).

V. SUMMARY

In the present study, we have proposed a theory to solve
the time-dependent Schrödinger equation for many-electron
systems in which a time-dependent local effective potential is
introduced to determine the time-dependent spin orbitals. For
the time-dependent problem, the spin orbitals are propagated
by a time-dependent single-particle Schrödinger equation with
the time-dependent effective potential starting from the initial
spin orbitals determined for the many-electron ground-state
wave function. In order to describe the many-electron ground-
state wave function, we define the spin orbitals as the eigen-
functions of a time-independent single-particle Schrödinger
equation with a time-independent effective potential.

Based on the time-dependent variational principle, we have
derived a variation equation [Eq. (23)] by which the effective
potential is determined. We have provided Eq. (46), with which
we can determine the spin-orbital representation of the internal
effective potential, establishing a relation among the first-
and second-order reduced density matrices and the Coulom-
bic interaction operator in the spin-orbital representation.
Equation (46) ensures that the effective potential is a real-
valued function. The effective potential is also shown to be
invariant under the rotation of the spin orbitals.

We have introduced a possible iterative scheme for
imaginary-time propagation to obtain the optimized time-
independent effective potential and the optimized time-
independent CI coefficients for the ground state and a leapfrog
integration scheme for real-time propagation of the effective
potential and the CI coefficients.

By combining the variation equation, Eq. (49), with the
first-order density equation, Eq. (50), we obtain the variational
first-order density equation, Eq. (51). For the time-dependent
case, can also combine our variation equation, Eq. (56),
with the time-dependent first-order density equation, Eq. (55),
and derive the variational time-dependent first-order density
equation, Eq. (57). By setting the two time arguments used in
Eq. (57) to be identical, we can derive the first member of the
BBGKY hierarchy using the time-dependent single-particle
effective Hamiltonian as Eq. (68).

We have shown that the variational equation for the effective
potential [Eq. (23)] gives the effective potential derived by
Nazarov in Ref. [29] in the time-dependent localized Hartree-
Fock theory and have derived the effective potential for the
time-dependent localized Hartree-Fock theory by neglecting
the last term on the right-hand side of Eq. (23). On the other
hand, for a wave function represented in a multiconfigurational
form, we have shown that the neglected term in Eq. (23) plays
an essential role in deriving the equation by which the effective
potential is determined [Eq. (46)].

Based on the comparison with the present formulation,
we have clarified that we can calculate the effective potential
that generates Brueckner orbitals proposed by Löwdin by the
present formulation by assuming a wave function satisfying the
Brillouin-Brueckner condition and that we can derive Slater’s
effective potential for a multiconfigurational wave function
by imposing the constraint R(x1|x1) = 0 in Eq. (77) to the
variation equation for the effective potential of Eq. (74) derived
in the present study.

We can apply the present effective-potential approach to the
description of the dynamics of bosonic systems and systems
consisting of bosons and fermions. In order to describe a
non-Born-Oppenheimer molecular wave function, we have to
introduce nuclear amplitudes in the MCTDHF method [12,54].
It may also be possible to construct a non-Born-Oppenheimer
wave function within the present effective-potential theory by
introducing another effective potential for the nuclear motion
in addition to the effective potential for the electronic motion.
As proposed in an earlier MCTDHF paper [55], we are able
to calculate the effective-potential functions for the excited
states by projecting out numerically the wave functions for the
electronic states, having lower energies, starting from the first
excited state.
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APPENDIX A: DERIVATION OF EQ. (23) FROM EQ. (22)

In this Appendix, we omit the subscript “approx” for the
wave function and for the RDMs because the derivations here
can also be applied to an exact wave function.
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The permutation symmetry of the wave function with respect to the coordinates of the particles simplifies the expression of
Eq. (22) as

0 = ih̄
∑
K

dCK (t )

dt

∫
dx1 · · ·

∫
dxN�∗(x1, x2, . . . , xN , t )δṽ†(�r1, t )�(x1, x2, . . . , xN , t )

+
∫

dx1 · · ·
∫

dxN�∗(x1, x2, . . . , xN , t )δṽ†(�r1, t )

×
⎧⎨
⎩

N∑
j=1

ṽ(�rj , t ) − e2

4πε0

N∑
i<j

1

rij

⎫⎬
⎭�(x1, x2, . . . , xN , t ). (A1)

Equation (A1) should hold for an arbitrary variation of δṽ†(�r1, t ), and thus, we obtain

0 = ih̄
∑
K

dCK (t )

dt

∫
dx2 · · ·

∫
dxN�∗(x1, x2, . . . , xN , t )�K (x1, x2, . . . , xN , t )

+
∫

dx2 · · ·
∫

dxN�∗(x1, x2, . . . , xN , t )

⎧⎨
⎩

N∑
j=1

ṽ(�rj , t ) − e2

4πε0

N∑
i<j

1

rij

⎫⎬
⎭�(x1, x2, . . . , xN , t )

= ih̄
∑
K

dCK (t )

dt

∫
(dx ′

1) �∗�K +
∫

(dx ′
1) �∗

⎧⎨
⎩

N∑
j=1

ṽ(�rj , t ) − e2

4πε0

N∑
i<j

1

rij

⎫⎬
⎭�, (A2)

where we adopt the notation [27] ∫
(dx ′

1) ≡
∫

dx2 · · ·
∫

dxN . (A3)

Using the permutation symmetry of the wave function Eq. (A2) can be rewritten as

0 = ih̄
∑
K

dCK (t )

dt

∫
(dx ′

1) �∗�K +
∫

(dx ′
1) �∗ṽ(�r1, t )� + (N − 1)

∫
(dx ′

1) �∗ṽ(�r2, t )� − (N − 1)
∫

(dx ′
1) �∗ e2

4πε0

1

r12
�

− 1

2
(N − 1)(N − 2)

∫
(dx ′

1) �∗ e2

4πε0

1

r23
�. (A4)

We introduce the notation given by Eq. (24) to the first term in Eq. (A4) as

ih̄γ̃ (x ′
1, t

′|x1, t ) ≡ ih̄N

∫
(dx ′

1) �∗(x ′
1, x2, x3, . . . , xN , t ′)

L∑
K=1

dCK (t )

dt
�K (x1, x2, . . . , xN , t ). (A5)

The 1-RDM γ associated with time-dependent many-electron wave functions �(t ′) and �(t ) is defined by

γ (x ′
1, t

′|x1, t ) = 〈�(t ′)|ψ̂†(x ′
1)ψ̂ (x1)|�(t )〉

= NC1

∫
(dx ′

1) �∗(x ′
1, x2, x3, . . . , xN , t ′)�(x1, x2, x3, . . . , xN , t ), (A6)

where ψ̂†(x1) and ψ̂ (x1) are the creation and annihilation field operators for the fermion, respectively, and �(2) and �(3) are
defined, respectively, as

�(2)(x ′
1, x

′
2, t

′|x1, x2, t ) = 1

2!
〈�(t ′)|ψ̂†(x ′

1)ψ̂†(x ′
2)ψ̂ (x2)ψ̂ (x1)|�(t )〉

= NC2

∫
(dx ′

12) �∗(x ′
1, x

′
2, x3, . . . , xN , t ′)�(x1, x2, x3, . . . , xN , t ) (A7)

and

�(3)(x ′
1, x

′
2, x

′
3, t

′|x1, x2, x3, t ) = 1

3!
〈�(t ′)|ψ̂†(x ′

1)ψ̂†(x ′
2)ψ̂†(x ′

3)ψ̂ (x3)ψ̂ (x2)ψ̂ (x1)|�(t )〉

= NC3

∫
(dx ′

123) �∗(x ′
1, x

′
2, x

′
3, x4, . . . , xN , t )�(x1, x2, x3, x4, . . . , xN , t ′). (A8)
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In Eqs. (A7) and (A8), we adopt the notations [27]∫
(dx ′

12) ≡
∫

dx3 · · ·
∫

dxN and
∫

(dx ′
123) ≡

∫
dx4 · · ·

∫
dxN . (A9)

By using Eqs. (A5), (A7), and (A8), Eq. (A4) is rewritten as

0 = ih̄γ̃ (x ′
1t

′|x1t ) + ṽ(�r1, t )γ (x ′
1, t

′|x1, t )

+ 2
∫

dx2 ṽ(�r2, t )�(2)(x ′
1, x2, t

′|x1, x2, t ) − 2
∫

dx2
e2

4πε0

1

r12
�(2)(x ′

1, x2, t
′|x1, x2, t )

− 3
∫

dx2dx3
e2

4πε0

1

r23
�(3)(x ′

1, x2, x3, t
′|x1, x2, x3, t ), (A10)

which is Eq. (23).

APPENDIX B: REAL-VALUEDNESS OF THE EFFECTIVE POTENTIAL

In this Appendix, we show that the effective potential veff (�r, t ) given as the solution of Eq. (23) can be taken as a real-valued
function. We omit the subscript “approx” for the wave function as well as for the RDMs because the derivations here can also be
applied to an exact wave function.

The diagonal element of the variation equation, Eq. (23), is rewritten using the relation of Eq. (20) as

ih̄γ̃ (x1, t |x1, t ) + veff (�r1, t )γ (x1, t |x1, t ) + 2
∫

dx2 veff (�r2, t )�(2)(x1, x2, t |x1, x2, t ) = vext (�r1, t )γ (x1, t |x1, t )

+ 2
∫

dx2

[
e2

4πε0

1

r12
+ vext (�r2, t )

]
�(2)(x1, x2, t |x1, x2, t ) + 3

∫
dx2

∫
dx3

e2

4πε0

1

r23
�(3)(x1, x2, x3, t |x1, x2, x3, t ). (B1)

On the right-hand side of Eq. (B1), the first, second, and third terms are all real-valued because they are represented by the
operation of the Hermitian operators on the Hermitian RDMs. Consequently, the left-hand side of Eq. (B1) should be real-valued.

We rewrite the first term ih̄γ̃ (x1, t |x1, t ) in Eq. (B1) as

ih̄γ̃ (x1, t |x1, t ) = ih̄
∑
K

dCK (t )

dt
〈�(t )|n̂(x1)|�K (t )〉

=
∑
KL

VKL(t )CL(t ) 〈�(t )|n̂(x1)|�K (t )〉

=
∑
KL

CL(t ) 〈�(t )|n̂(x1)|�K (t )〉 〈�K (t )|Ŵee − V̂eff (t ) + V̂ext (t )|�L(t )〉

= 〈�(t )|n̂(x1)[Ŵee − Ṽ (t )]|�(t )〉
= 〈�(t )|n̂(x1)[Ĥ (t ) − Ĥeff (t )]|�(t )〉, (B2)

where n̂(x1) denotes the density operator represented by

n̂(x1) = ψ̂†(x1)ψ̂ (x1). (B3)

In the second line of Eq. (B2), we have used Eq. (25). In the third line, we have used the expression of the resolution operator
onto the CI space spanned by a finite number of Slater determinants

1̂ =
∑
K

|�K (t )〉〈�K (t )|. (B4)

In the fourth line, we have used the notation of Eq. (20).
In order to show that the effective potential veff (�r, t ) can be real-valued, we first assume that the effective potential is complex-

valued and is described as veff (�r, t ) = v′
eff (�r, t ) + iv′′

eff (�r, t ). The contribution of the imaginary part of the effective potential to
the term ih̄γ̃ (x1, t |x1, t ) on the left-hand side of Eq. (B1) is given by using Eq. (B2) as

�{ih̄γ̃ (x1, t |x1, t )} = − 〈�(t )|n̂(x1)
∫

dx2 ψ̂†(x2)v′′
eff (�r2, t )ψ̂ (x2)|�(t )〉

= −
∫

dx2 v′′
eff (x2, t ) 〈�(t )|δ(x1 − x2)n̂(x1) + ψ̂†(x1)ψ̂†(x2)ψ̂ (x2)ψ̂ (x1)|�(t )〉

= −v′′
eff (�r1, t )γ (x1, t |x1, t ) − 2

∫
dx2 v′′

eff (�r2, t )�(2)(x1, x2, t |x1, x2, t ). (B5)
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On the other hand, the contribution of the imaginary part of the second term and that from the imaginary part of the third term on
the right-hand side of Eq. (B1) are given by

�
[
veff (�r1, t )γ (x1, t |x1, t ) + 2

∫
dx2 veff (�r2, t )�(2)(x1, x2, t |x1, x2, t )

]

= v′′
eff (�r1, t )γ (x1, t |x1, t ) + 2

∫
dx2 v′′

eff (�r2, t )�(2)(x1, x2, t |x1, x2, t ). (B6)

The imaginary parts, Eqs. (B5) and (B6), cancel each other out in Eq. (B1) regardless of the value of v′′
eff (�r, t ). Therefore, we are

allowed to adopt the simplest condition of v′′
eff (�r, t ) ≡ 0 throughout the formulation, and consequently, from Eq. (B5), we find

that ih̄γ̃ (x1, t |x1, t ) is real-valued.

APPENDIX C: DERIVATION OF EQ. (25)

In this Appendix, we derive the EOM for the CI coefficients based on the Dirac-Frenkel time-dependent variational principle
[15,16], which is expressed as

〈δ�(t )|ih̄ ∂

∂t
− Ĥ (t )|�(t )〉 = 0, (C1)

where δ�(t ) denotes a possible variation of the wave function. In this section, we omit the subscript “approx” for the wave
function and for the RDMs because the procedure below is applied not only to an approximated wave function but also to an exact
wave function. In order to obtain the EOMs for the CI coefficients, we consider the variation of the wave function defined by

δ�(t ) = ∂�(t )

∂CK (t )
= �K (t ). (C2)

By substituting Eq. (C2) into Eq. (C1), we obtain

〈�K (t )|ih̄ ∂

∂t
|�(t )〉 = 〈�K (t )|Ĥ (t )|�(t )〉. (C3)

The left-hand side of Eq. (C3) can be rewritten as∑
L

〈�K (t )|ih̄ ∂

∂t
|�L(t )〉 CL(t ) =

∑
L

ih̄
dCL(t )

dt
〈�K (t )|�L(t )〉 +

∑
L

〈�K (t )|ih̄ ∂

∂t
|�L(t )〉CL(t )

=
∑
L

ih̄
dCL(t )

dt
δKL +

∑
L

〈�K (t )|Ĥeff (t )|�L(t )〉 CL(t )

= ih̄
dCK (t )

dt
+

∑
L

〈�K (t )|Ĥeff (t )|�L(t )〉 CL(t ), (C4)

where we have used the definition of Eq. (12) in the first line to express the L × L matrix element of 〈�K (t )|Ĥeff (t )|�L(t )〉 and
Eq. (10). Alternatively, using Eq. (7) we rewrite the right-hand side of Eq. (C3) as

〈�K (t )|Ĥ (t )|�(t )〉 =
∑
L

〈�K (t )|Ĥ (t )|�L(t )〉 CL(t ). (C5)

By substituting Eqs. (C4) and (C5) into Eq. (C3) and by using Eqs. (2), (15), and (20), we obtain

ih̄
dCK (t )

dt
=

∑
L

〈�K (t )|Ŵee − Ṽ (t )|�L(t )〉 CL(t ), (C6)

We note that the result expressed by Eq. (C6) can also be obtained by applying McLachlan’s norm minimization principle [28].

APPENDIX D: DERIVATION OF EQ. (29)

In this Appendix, we derive Eq. (29). We omit the subscript “approx” for the wave function and for the RDMs because the
procedure below can also be applied to an exact wave function. First, by taking the complex conjugate of Eq. (23), we obtain

ṽ(�r1, t )γ ∗(x ′
1, t |x1, t ) = 2

∫
dx2

[
e2

4πε0

1

r12
− ṽ(�r2, t )

]
�(2)∗(x ′

1, x2, t |x1, x2, t )

+ 3
∫

dx2

∫
dx3

e2

4πε0

1

r23
�(3)∗(x ′

1, x2, x3, t |x1, x2, x3, t ) + ih̄γ̃ ∗(x ′
1, t |x1, t ), (D1)
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where we have used the fact that we have chosen the effective potential to be real-valued. Using the Hermiticity of the RDMs,
the left-hand side of Eq. (D1) and the first and second terms on the right-hand side of Eq. (D1) can be rewritten as

ṽ(�r1, t )γ (x1, t |x ′
1, t ) = 2

∫
dx2

[
e2

4πε0

1

r12
− ṽ(�r2, t )

]
�(2)(x1, x2, t |x ′

1, x2, t )

+ 3
∫

dx2

∫
dx3

e2

4πε0

1

r23
�(3)(x1, x2, x3, t |x ′

1, x2, x3, t ) + ih̄γ̃ ∗(x ′
1, t |x1, t ). (D2)

If we exchange the coordinates x ′
1 and x1 in Eq. (D2), we obtain

ṽ(�r ′
1, t )γ (x ′

1, t |x1, t ) = 2
∫

dx2

[
e2

4πε0

1

r1′2
− ṽ(�r2, t )

]
�(2)(x ′

1, x2, t |x1, x2, t )

+ 3
∫

dx2

∫
dx3

e2

4πε0

1

r23
�(3)(x ′

1, x2, x3, t |x1, x2, x3, t ) + ih̄γ̃ ∗(x1, t |x ′
1, t ). (D3)

By subtracting Eq. (D3) from Eq. (23), we obtain

�(x ′
1, t |x1, t ) = [ṽ(�r1, t ) − ṽ(�r ′

1, t )]γ (x ′
1, t |x1, t ) = 2

∫
dx2

e2

4πε0

[
1

r12
− 1

r1′2

]
�(2)(x ′

1, x2, t |x1, x2, t )

− ih̄[γ̃ (x ′
1, t |x1, t ) + γ̃ ∗(x1, t |x ′

1, t )]

= 2
∫

dx2
e2

4πε0

[
1

r12
− 1

r1′2

]
�(2)(x ′

1, x2, t |x1, x2, t ) − 〈�(t )|[ψ̂†(x ′
1)ψ̂ (x1), Ŵee − Ṽ (t )]|�(t )〉, (D4)

where, in the last line, we have used the relation

ih̄γ̃ (x ′
1, t |x1, t ) = ih̄

L∑
K

dCK (t )

dt
〈�(t )|ψ̂†(x ′

1)ψ̂ (x1)|�K (t )〉 =
L∑
L

CL(t ) 〈�(t )|ψ̂†(x ′
1)ψ̂ (x1)[Ŵee − Ṽ (t )]|�L(t )〉

= 〈�(t )|ψ̂†(x ′
1)ψ̂ (x1)[Ŵee − Ṽ (t )]|�(t )〉, (D5)

which can be derived from the right-hand side of Eq. (24) in a manner similar to that used in the derivation of Eq. (B2). By setting
x ′

1 = x1 in Eq. (D4), we obtain Eq. (29).

APPENDIX E: DIFFICULTY IN DIRECT DETERMINATION OF THE POTENTIAL ṽ(�r1, t ) FROM EQ. (23)

In this Appendix, we show that we could not determine the effective potential as the solution of Eq. (23) as long as we use
Eq. (25) in eliminating dCK (t )/dt in Eq. (24). The right-hand side of Eq. (D5) derived in Appendix D is evaluated by using the
second quantized expression of the single-particle operator Ṽ (t ) defined by

Ṽ (t ) =
∫

dx ψ̂†(x)ṽ(�r, t )ψ̂ (x) (E1)

and the two-particle operator Ŵee defined as

Ŵee = 1

2

∫
dx2

∫
dx3 ψ̂†(x2)ψ̂†(x3)

e2

4πε0

1

r23
ψ̂ (x3)ψ̂ (x2). (E2)

Then we obtain

ih̄γ̃ (x ′
1, t |x1, t ) = 2

∫
dx2

e2

4πε0

1

r12
�(2)(x ′

1, x2, t |x1, x2, t ) + 3
∫

dx2

∫
dx3

e2

4πε0

1

r23
�(3)(x ′

1, x2, x3, t |x1, x2, x3, t )

− ṽ(�r1, t )γ (x ′
1, t |x1, t ) − 2

∫
dx ṽ(�r, t )�(2)(x, x ′

1, t |x, x1, t ). (E3)

This reproduction of the variation equation, Eq. (23), essentially stems from the use of the assumption of the single-particle
TDSE, Eq. (12), in deriving the EOMs for the CI coefficients as shown in Eq. (C4). In order to obtain ṽ(�r, t ) as the solution
of Eq. (23), we need an additional condition imposed on Eq. (23). That condition is real-valuedness of the effective potential
ṽeff (�r, t ) or, equivalently, real-valuedness of the internal effective potential ṽ(�r, t ).

APPENDIX F: PROPERTY OF EQ. (46) UNDER ORBITAL ROTATION

In this Appendix, we consider the property of Eq. (46) under orbital rotation and transformation of the CI coefficients associated
with the orbital rotation that keeps the wave function unchanged. Using a 2M × 2M unitary matrix u, the orbital rotation from
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a set of spin orbitals {φl} to a new set of spin orbitals {φ′
k} can be represented by

φ′
k (t ) =

2M∑
l=1

φl (t )ulk (1 � k, l � 2M ), (F1)

that is,

( �φ′(t ))T = ( �φ(t ))T u, (F2)

with the notation of Eq. (35). In order to keep the wave function unchanged under this orbital rotation, the associated change in
the CI coefficients from {CI (t )} to {C ′

I (t )} should be determined so that �approx(t ) is represented as

�approx(t ) =
L∑

I=1

CI (t )�I (t ) =
L∑

J=1

C ′
J (t )�′

J (t ), (F3)

where the prime denotes the wave function represented by the new set of spin orbitals. The transformation from {CI (t )} to {C ′
I (t )}

can be expressed as

C ′
J (t ) =

L∑
I=1

〈�′
J (t )|�I (t )〉 CI (t ) (1 � J � L). (F4)

The inner product 〈�′
J (t )|�I (t )〉 in Eq. (F4) can be represented as 〈�′

J (t )|�I (t )〉 = det{DJI (t )}, using DJI (t ), representing
an N × N matrix with elements of DJI

kl (t ) = 〈φ′
Jk

(t )|φIl
(t )〉 . By using the definition of γ(t ) in Eq. (36) and Eq. (F1), we can

derive the representation of the 1-RDM as

γapprox(x ′
1, t |x1, t ) = 〈�(t )|ψ̂†(x)ψ̂ (x)|�(t )〉 =

2M∑
ab

φ∗
a (x ′

1, t )φb(x1, t )γba (t )

=
2M∑
pq

φ′∗
q (x ′

1, t )φ′
p(x1, t )

[
2M∑
ab

u
†
pbγba (t )uaq

]
, (F5)

which shows that the representation of γapprox(x ′
1, t |x1, t ) using the rotated orbitals denoted γ′(t ) is given by

γ′(t ) = u† γ(t ) u. (F6)

Similarly, we can show that the matrix X of Eq. (40) is transformed to X ′(t ) as

X ′(t ) = u† X (t ) u. (F7)

From Eq. (F7) and Eq. (44), we obtain

B′(t ) = u† B(t ) u. (F8)

Finally, we can show that the matrix ṽ(t ) of Eq. (37) is transformed as

ṽ′(t ) = u†ṽ(t ) u. (F9)

From Eqs. (F6), (F8), and (F9), we conclude that the form of Eq. (46) determining the effective potential is invariant under the
orbital rotation, that is,

[ṽ′(t ), γ′(t )] = B′(t ). (F10)

We compared the internal effective potentials obtained from Eqs. (46) and (F10). If we substitute the relation of Eq. (F2) into
Eq. (47), we obtain

ṽ(�r, t ) = ( �φ′(x, t ))T u†ṽ(t ) u( �φ′(x, t ))∗ = ( �φ′(x, t ))T ṽ′(t )( �φ′(x, t ))∗ = ṽ′(�r, t ), (F11)

where we have used the relation u u† = 1 in the first line and Eq. (F9) in the second line. Therefore, we can see that the internal
effective potential ṽ(�r, t ), and consequently the effective potential veff (�r, t ), is invariant under the orbital rotation.

Using Eq. (F11), we can also confirm that the single-particle TDSE of Eq. (12) is invariant under the orbital rotation of Eq. (F1).
We rewrite Eq. (12) as

ih̄
∂

∂t
( �φ(x, t ))T = (t̂ + ṽeff (�r, t ))( �φ(x, t ))T . (F12)

By multiplying both sides by u from the right, we obtain

ih̄
∂

∂t
( �φ′(x, t ))T = (t̂ + ṽeff (�r, t ))( �φ′(x, t ))T , (F13)
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where we have used the definition of Eq. (F2) and the conclusion from Eq. (F11). Therefore, for the time propagation of the wave
function, there is an arbitrariness with respect to the orbital rotation, although the internal effective potential remains the same
as shown by Eq. (F11). This invariance of the effective potential is suitable to analyze the motion of electrons because we only
need to refer to a single effective potential regardless of the orbitals adopted.

We note that, except for possible sets of degenerate spin orbitals of the same spatial symmetry, we could not choose arbitrarily
the unitary matrix u, which is introduced in Eq. (F1), for the imaginary-time propagation because the initial spin orbitals are
determined as the eigenfunctions of a single-particle time-independent Schrödinger equation.

APPENDIX G: GAUGE TRANSFORMATION

When we adopt the velocity gauge to describe the interaction of an electron and an external laser field instead of the interaction
represented in the length gauge, Eq. (6), it is necessary to replace the kinetic energy operator in Eq. (12) with

t̂ (�r ) = − h̄2

2me

∂2

∂�r2
⇒ 1

2me

{
h̄

i

∂

∂�r + e �A(t )

}2

, (G1)

where

�A(t ) = −
∫ t

−∞
dt ′ �E (t ′) (G2)

denotes the vector potential of the external field. Accordingly, the single-particle TDSE represented by Eq. (12) should be read
as [

ih̄
∂

∂t
−

(
1

2me

{
h̄

i

∂

∂�r + e �A(t )

}2

+ veff (�r, t )

)]
φk (x, t ) = 0. (G3)

In order to obtain the effective potential in the velocity gauge in Eq. (49), it is necessary to regard t̂ (�r ) as the right-hand side of
Eq. (G1) and assume that vext (�r, t ) = ven(�r ) by setting vptb(�r, t ) = 0 in Eq. (4). Because the kinetic energy operators in Eqs. (17)
and (18) cancel each other out in deriving Eq. (19), we can perform the gauge transformation from the length gauge to the velocity
gauge by simply replacing the kinetic energy operator as shown in Eq. (G1) and by nullifying the perturbation represented using
vptb in Eq. (6) in the length gauge.

APPENDIX H: POSSIBLE SCHEMES FOR TIME PROPAGATION

In this Appendix, we propose possible numerical schemes for both imaginary-time propagation of the wave function and
real-time propagation. In this section, we omit the subscript “approx” for the wave function and the RDMs because the derivations
below can be applied not only to an approximated wave function but also to an exact wave function.

First, we consider imaginary-time propagation to calculate the converged quantities that are used in the construction of a
ground-state wave function in the form of Eq. (7). The calculation steps are as follows:

(i) We prepare a trial set of initial spin orbitals {φ(n)
k (x)} and CI coefficients { �C (n)(τ )}, where the superscript integer “n”

denotes the number of iterations and the argument τ is the imaginary time. For instance, if we assume the Hartree-Fock orbitals
for the initial guess, we prepare N Hartree-Fock spin orbitals and set C

(n=0)
1 (τ = 0) = 1 and C

(n=0)
K (τ = 0) = 0 for K � 2,

where �
(n=0)
K=1 is chosen as the Hartree-Fock state �HF.

(ii) We propagate the CI coefficients for a time increment of δτ by adopting the EOM, Eq. (25), for the imaginary-time
argument τ , which is represented by

−h̄
d

dτ
�C (n)(τ ) = V (n)(τ ) �C (n)(τ ), (H1)

where the matrix element of V (n)(τ ) is evaluated by using {φ(n)
k (x)} and { �C (n)(τ )}. The norm of the CI coefficients is not maintained

in the course of the time propagation represented by Eq. (H1) because the propagation is not unitary. We thus renormalize the
propagated CI coefficients { �C (n)(τ + δτ )} so that they fulfill

∑
K |C (n)

K (τ + δτ )|2 = 1 and regard the renormalized CI-coefficients
as { �C (n+1)(τ + δτ )}.

(iii) Next, using {φ(n)
k (x)} and { �C (n+1)(τ + δτ )}, we calculate the spin-orbital representation of the first-order RDM as

γ(n+1)(τ + δτ ) and that of the second-order as �(2)(n+1)(τ + δτ ). Using {φ(n)
k (x)}, we evaluate the two-electron integrals defined

by Eq. (42).
(iv) We solve Eq. (46) for ṽ using the quantities prepared in step iii. Then we construct the updated effective potential using

Eq. (47) as v
(n+1)
eff (�r, τ + δτ ). If there is no external perturbation, we can set ṽ = veff − ven from Eqs. (4) and (20).

(v) Finally, we calculate the spin orbitals for k = 1, 2, . . . , N, . . . as the eigenfunctions of the single-particle time-independent
Schrödinger equation obtained by numerical diagonalization,[

− h̄2

2me

∂2

∂�r2
+ v

(n+1)
eff (�r, τ + δτ )

]
φ

(n+1)
k (x) = ε

(n+1)
k φ

(n+1)
k (x), (H2)

where εk denotes the kth eigenvalue.
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When the conditions {
φ

(n+1)
k (x)

} = {
φ

(n)
k (x)

}
and { �C (n+1)(τ + δτ )

} = { �C (n)(τ )
}
, (H3)

are numerically satisfied, we regard that convergence is achieved. If convergence is not achieved, we have to iterate the above
steps i–v using the spin orbitals {φ(n+1)

k (x)} and the CI coefficients { �C (n+1)(τ + δτ )} as the trial spin orbitals and CI coefficients
in step i.

We note that the eigenequation, Eq. (H2), in step v can also be solved by propagation of the single-particle TDSE in the
imaginary-time domain, as discussed in Refs. [3] and [33], by rewriting the real-time EOM for the spin orbitals, Eq. (12), as

− ∂

∂τ
φk (x, τ ) =

[
− h̄2

2me

∂2

∂�r2
+ veff (�r, τ )

]
φk (x, τ ). (H4)

By setting veff (�r, τ ) = v
(n+1)
eff (�r, τ + δτ ) and φk (x, τ ) = φ

(n)
k (x, τ ) and integrating Eq. (H4) for δτ , we obtain a propagated set

of spin orbitals {φ(n)
k (x, τ + δτ )}, which may not be an orthonormalized set. When {φ(n)

k (x, τ + δτ )} is not an orthonormalized
set, by using the Gram-Schmidt orthogonalization method, we are able to reorthonormalize the set of {φ(n)

k (x, τ + δτ )}. Then we
regard the renormalized set as {φ(n+1)

k (x, τ + δτ )}.
By using the converged spin orbitals and CI coefficients, we can construct the ground-state wave function as

�(x1, x2, . . . , xN ) =
L∑

K=1

CK�K (x1, x2, . . . , xN ), (H5)

where we omit the time argument τs because we treat a stationary-state wave function. We note that, similarly to the Hartree-Fock
method, the orbital energy εk in Eq. (H2) is defined for the constituent spin orbitals [43] of a multiconfigurational wave function.

Next, we consider real-time propagation. For real-time propagation, there are many ways to implement numerically. When we
adopt the split operator method [56], for instance, the orbitals are propagated as

φk (x, t + δt ) � e−it̂ (�r ) δt
2h̄ e−iveff (�r,t+δt/2) δt

h̄ e−it̂ (�r ) δt
2h̄ φk (x, t ), (H6)

where δt denotes a time step. In order to perform the transformation of Eq. (H6), we need to have the effective potential at
t + δt/2, that is, we need to know the wave function �(t + δt/2) or, equivalently, the spin orbitals {φk (x, t + δt/2)} and the
CI coefficients {CK (t + δt/2)}. Consequently, as the initial conditions, we need to know the spin orbitals {φk (x, δt/2)} and the
CI coefficients {CK (δt/2)} in addition to {φk (x, t = 0)} and {CK (t = 0)}. The quantities at t = δt/2 are calculated by using
the results obtained from the imaginary-time propagation, i.e., the spin orbitals {φk (x, t = 0)} are propagated for δt/2 using
Eq. (12) as {φk (x, t = δt/2) = e−iεkδt/2h̄φk (x, t = 0)} and the CI coefficients {CK (t = 0)} are propagated using Eq. (25) under
the condition that an external perturbation is absent. In this example, the external perturbation must be imposed on later than
t = δt/2. In this way, real-time propagation with the split operator method will be performed by using the leapfrog integration
scheme [56] with the two discretized time series t1 = (0, δt, 2δt, . . . ) and t2 = (δt/2, 3δt/2, 5δt/2, . . . ) alternatively.

APPENDIX I: DERIVATION OF EQ. (53)

In this Appendix, we derive Eq. (53). By taking a trace of the left-hand side of Eq. (51), we obtain∫
dx1Eexactγexact (x1|x1) = NEexact. (I1)

On the other hand, by taking a trace of the second term on the right-hand side of Eq. (51), we obtain

2
∫

dx1

∫
dx2 ĥeff (�r2)�(2)

exact (x1, x
′
2|x1, x2)|x ′

2=x2 = (N − 1)
∫

dx1 ĥeff (�r1)γexact (x
′
1|x1)|x ′

1=x1 , (I2)

where we have used a general relation applicable to a set of the 1-RDM and 2-RDM expressed as∫
dx1dx2 t̂ (�r2)�(2)(x1, x

′
2|x1, x2)|x ′

2=x2 = N − 1

2

∫
dx1 t̂ (�r1)γ (x ′

1|x1)|x ′
1=x1 . (I3)

Therefore, the contributions from the second and the third terms on the right-hand side of Eq. (51) become∫
dx1 ĥeff (�r1)γexact (x

′
1|x1)|x ′

1=x1 + 2
∫

dx1

∫
dx2 ĥeff (�r2)�(2)

exact (x1, x
′
2|x1, x2)|x ′

2=x2 = N

∫
dx1 ĥeff (�r1)γexact (x

′
1|x1)|x ′

1=x1 , (I4)

which shows that Eq. (53) holds.
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APPENDIX J: THE INTEGRAL OF THE DIAGONAL ELEMENT OF EQ. (24)

We give an explicit expression of the integration of the diagonal element of Eq. (24) for a stationary state. The result is
expressed as

1

N

∫
dxih̄γ̃ (x|x) =

∫
dx1

∫
dx2

1

r12
�(2)(x1, x2|x1, x2) −

∫
dx1ṽ(�r1)γ (x1|x1). (J1)

The proof of Eq. (J1) is shown below.
First, we rewrite the left-hand side of Eq. (24) as

ih̄γ̃ (x|x) = N

∫
dx1 · · ·

∫
dxN 〈�|x1 · · · xN 〉 δ(x − x1)〈x1 · · · xN |[Ŵee − Ṽ ]�〉, (J2)

where we have used the resolution of identity in the coordinate representation,

1̂ =
∫

dx1 · · ·
∫

dxN |x1 · · · xN 〉〈x1 · · · xN |, (J3)

and the matrix element of n̂(x) expressed as

〈x1 · · · xN |n̂(x)|x ′
1 · · · x ′

N 〉 = [
�N

j=1δ(xj − x ′
j )

][ N∑
k=1

δ(x − xk )

]
(J4)

in the coordinate representation and the permutation symmetry of each wave function with respect to the coordinates of the
particles. Then the contribution from the single-particle part in Eq. (J2) is evaluated as

N

∫
dx1 · · ·

∫
dxN 〈�|x1 · · · xN 〉 δ(x − x1) 〈x1 · · · xN |Ṽ |�〉 = ṽ(x)γ (x|x) + 2

∫
dx ′ṽ(x ′)�(2)(x, x ′|x, x ′), (J5)

and that from the two-particle interaction is evaluated as

N

∫
dx1 · · ·

∫
dxN 〈�|x1 · · · xN 〉 δ(x − x1) 〈x1 · · · xN |Ŵee|�〉

= 2
∫

dx2
1

|�r − �r2|�
(2)(x, x2|x, x2) + 3

∫
dx2

∫
dx3

1

r23
�(3)(x, x2, x3|x, x2, x3). (J6)

By substituting Eqs. (J5) and (J6) into Eq. (J2), we obtain

ih̄γ̃ (x|x) = 2
∫

dx2
1

|�r − �r2|�
(2)(x, x2|x, x2) + 3

∫
dx2

∫
dx3

1

r23
�(3)(x, x2, x3|x, x2, x3)

− ṽ(x)γ (x|x) − 2
∫

dx ′ṽ(x ′)�(2)(x, x ′|x, x ′). (J7)

Finally, by integrating Eq. (J7) with respect to x, we derive∫
dxih̄γ̃ (x|x) = N

∫
dx1

∫
dx2

1

r12
�(2)(x1, x2|x1, x2) − N

∫
dx1ṽ(x1)γ (x1|x1), (J8)

where we have utilized the recursive relation of the RDMs for 2 � p � N given by∫
dxp�(p)(x ′

1, . . . , x
′
p−1, xp|x1, . . . , xp−1, xp ) = N − p + 1

p
�(p−1)(x ′

1, . . . , x
′
p−1|x1, . . . , xp−1). (J9)

Equation (J8) is equivalent to Eq. (J1). As can be understood from the derivation, Eq. (J1) holds for an approximated wave
function as well as for an exact wave function and can be used in both time-independent and time-dependent cases.
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