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Laser cooling by sawtooth-wave adiabatic passage
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We provide a theoretical analysis for a recently demonstrated cooling method. Two-level particles undergo
successive adiabatic transfers upon interaction with counterpropagating laser beams that are repeatedly swept
over the transition frequency. We show that particles with narrow linewidth transitions can be cooled to near
the recoil limit. This cooling mechanism has a reduced reliance on spontaneous emission compared to Doppler
cooling, and hence shows promise for application to systems lacking closed cycling transitions, such as molecules.
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I. INTRODUCTION

The use of coherent light to cool the motion of particles such
as atoms to sub-Kelvin temperatures has greatly expanded the
capabilities of atomic and molecular physics [1]. The earliest
and simplest mechanism demonstrated and understood was
Doppler cooling [2,3], which relies on preferential absorption
between counterpropagating lasers, followed by spontaneous
emission. While Doppler cooling is simple and robust, the
large number of spontaneous emissions involved has several
drawbacks: Spontaneously emitted photons impart random
momentum kicks to the particle that cause diffusion and
limit the achievable temperatures. These spontaneous emission
events can also result in the particle falling into internal states
that are no longer near resonance with the applied light so
that the cooling ceases. In the case of atoms, the latter can
be mitigated by adding a small number of additional lasers to
“repump” into cooled states, but in the case of molecules the
number of uncooled states may be so large that this approach
becomes a significant challenge [4]. Doppler cooling can reach
the recoil temperature (set by the recoil energy from a single
emitted photon) for narrow linewidth transitions such that
γ < ωr , where γ and ωr are the optical transition linewidth and
recoil frequency, respectively. However, the cooling timescale
in this parameter regime is long, scaling inversely with γ .

Several approaches to laser cooling have been developed
to mitigate the negative effects of spontaneous emission
[5]. In sub-Doppler cooling mechanisms such as Sisyphus
cooling [6], the energy removed per spontaneously emitted
photon is large, allowing lower temperatures to be reached.
In Raman sideband cooling [7], tight confinement of the atom
can suppress the effect of momentum recoil associated with
spontaneous emission, enabling cooling to nearly the ground
state of the external potential well. Cavity-cooling techniques
[8] can be used to reduce free-space spontaneous emission
by causing preferential decay to a desired state via the output
coupler of an optical resonator.

Recently, we have experimentally demonstrated a cool-
ing mechanism, named sawtooth-wave adiabatic passage
(SWAP) cooling in which particles are coherently driven
between ground and excited states of a narrow-linewidth opti-
cal transition by counterpropagating, frequency-swept lasers.

Spontaneous emission is still critical in order to remove
entropy from the system to achieve steady-state cooling,
but by coherently driving a particle between its ground and
excited state multiple times, large amounts of energy can be
removed per spontaneous emission. This provides a way to
generate significant forces and to reach low temperatures while
maintaining a large velocity capture range. The approach is
largely insensitive to perturbations such as laser frequency
drifts, magnetic fields, and ac Stark shifts. These factors have
made SWAP cooling a useful experimental technique for
cooling atomic strontium using its 7.5-kHz linewidth, dipole-
forbidden 1S0 → 3P 1 transition [9]. A related procedure has
been used in the generation of a magneto-optical trap [10].
Sub-Doppler cooling of 87Rb was recently observed using
SWAP cooling with two-photon Raman transitions between
ground hyperfine states [11]. In general, the approach is
applicable to any atomic species, especially alkaline-earth-like
atoms that possess intercombination transitions. Further, the
reduced reliance on spontaneous emission may make SWAP
cooling a useful tool for cooling molecules that have narrow
linewidth optical transitions, such as the 160-kHz linewidth
X2� → A′2�3/2 transition in YO [12].

Here, we present a detailed theoretical analysis of SWAP
cooling. We explore the minimum achievable temperature as
well as the various laser-particle interactions that affect particle
dynamics. We investigate its capture range and the forces
involved in the cooling process. We show that for appropriate
parameters, SWAP cooling can be used to cool to near the
recoil limit. We also simulate the rate at which spontaneous
photons are emitted during cooling, confirming that the amount
of energy removed per spontaneous emission event can greatly
exceed the limits of Doppler cooling.

II. BASIC MECHANISM

The main mechanism for momentum removal in SWAP
cooling is the coherent transfer of a particle toward zero
momentum via adiabatic passage. Momentum is removed by
time-ordered stimulated absorption and emission of photons
caused by interaction with a standing wave formed by counter-
propagating laser beams. To describe the cooling, we consider
a two-level particle with internal states |e〉 and |g〉, separated
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FIG. 1. (a) Spatial setup of the standing wave (two counterpropa-
gating lasers with frequency ωL(t )) and particle (circle) with velocity
v in the laboratory frame. (b) Energy level diagram of the bare internal
states, separated by energy �E = h̄ωa.

in energy by h̄ωa, and one dimension of motional freedom
along the ẑ direction (see Fig. 1). We choose to represent the
external degree of freedom in the momentum basis and with
label |p〉, where p denotes a momentum eigenstate such that
p̂ |p〉 = p |p〉.

As shown in Fig. 2, the laser frequencies ωL(t ) follow
an asymmetric sawtooth-wave form with full range �s and
period Ts so that the slope of the sawtooth ramp is α ≡ �s/Ts .
The sawtooth frequency ramp is centered on the transition
frequency ωa, and the frequency is linearly ramped from below
to above ωa. We approximate the wave number k to be fixed
throughout the sweeping sequence. This also implies that the
recoil frequency, ωr = h̄k2/2m, is fixed, where m is the mass.

The direction of particle motion matters since Doppler shifts
set the time ordering of which beam first interacts with the
particle. To understand this time ordering, consider a particle
initially in the state |g, pi〉. The Doppler shift ensures that
the counterpropagating beam is the first to sweep across the
transition frequency. If we first focus on the case with pi > 0,
this adiabatically transfers the particle to the state |e, pi − h̄k〉
via stimulated absorption. After some time, the co-propagating
beam will achieve resonance, adiabatically transferring the
particle to |g, pi − 2h̄k〉 via stimulated emission. For pi < 0,
the mapping is |g, pi〉 → |e, pi + h̄k〉 → |g, pi + 2h̄k〉. In
either case, the particle is transferred closer to zero momentum.

FIG. 2. (Top) The laser frequency ωL(t ) as a function of time. The
approximate resonance frequencies for a particle with velocity v are
labeled. The sweep range is chosen to be large enough such that both
beams will become resonant with the particle at some time during the
sweep. (Bottom) The ideal excited-state fraction Pe in the adiabatic
regime. The particle remains in the excited state for a time interval τe.

The net result is the removal 2h̄k of momentum and transfer
back to the particle’s initial internal state without spontaneous
emission. Subsequent sweeps would then continue to remove
momentum in units of 2h̄k. Figure 2 shows this process by
illustrating the ideal excited state fraction Pe over two sweeps.

The particle’s internal state at the beginning of a sweep is
a crucial factor in determining the impulse it receives from
each laser. If the particle instead begins a sweep in the excited
state, it is transferred away from zero momentum. Hence, one
of the roles of spontaneous emission is to ensure that the
particle begins a sweep in the ground state. This is achieved
by requiring an imbalance between the times spent inside and
outside of the two resonances, which corresponds to

�s > 4|kv|. (1)

This condition also enforces the requirement that the sweep
range �s is large enough for both laser beams to achieve
resonance with the particle.

There are several other conditions that must be satisfied
in order to realize SWAP cooling. In order to ensure a low
probability of decay during the time interval the particle is in
the excited state τe, we require the condition,

τe � 1

γ
. (2)

Importantly, the Rabi frequency of each laser beam �0, and
the laser frequency sweep rate α, must satisfy the condition,

κ ≡ �2
0

α
� 1, (3)

so that there is a substantial probability Pa for an adiabatic
transition at each resonance [13]:

Pa = 1 − exp

[
−π

2

�2
0

α

]
. (4)

We shall refer to κ as the adiabaticity parameter. Any κ

that satisfies Eq. (3) is said to be within the adiabatic regime,
and any κ that does not satisfy Eq. (3) is said to be within the
diabatic regime.

III. SYSTEM DYNAMICS

The quantum master equation,

dρ̂

dt
= 1

ih̄
[Ĥ , ρ̂] + L̂(ρ̂), (5)

governs the time evolution of the density matrix ρ̂, whose
Hilbert space includes both the particle’s internal and external
degrees of freedom. The Hamiltonian Ĥ captures the coherent
dynamics, while the Lindblad superoperator L̂(ρ̂ ) captures
the incoherent dynamics due to spontaneous emission and the
associated recoil.

The operators ẑ and p̂ describe the particle’s position and
momentum, respectively. The excited and ground states, |e〉
and |g〉, form a pseudospin 1/2 system. The usual raising (σ̂+ =
|e〉 〈g|) and lowering (σ̂− = |g〉 〈e|) operators, along with the
usual Pauli spin operators σ̂ x,y,z, whose coordinate labels are
implicitly understood to refer to the pseudospin space (e.g.,
σ̂ z = |e〉 〈e| − |g〉 〈g|, etc.), operate on the internal states.
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The electric field of the applied lasers is polarized along
the quantization axis x̂ (see Fig. 1) and is described in first
quantization by the operator,

Ê(ẑ, t ) = x̂E0[cos (kẑ + η(t )) + cos (kẑ − η(t ))]. (6)

Here, the amplitude of each standing wave is E0, and the
time-dependent accumulated phase of the laser field η(t ), from
initial time t0 is

η(t ) ≡
∫ t

t0

ωL(t ′) dt ′. (7)

In the interaction picture defined by the free Hamiltonian,

Ĥ0(t ) = p̂2

2m
+ h̄

2
ωaσ̂

z, (8)

the particle’s nondissipative dynamics, under the dipole and
rotating wave approximations, is described by the interaction
Hamiltonian,

Ĥ = h̄

2
�s cos

(
kẑ + kp̂

m
t

)
(σ̂+e−iθ (t ) + H.c.), (9)

where

θ (t ) ≡
∫ t

t0

ωL(t ′) − ωa dt ′ = η(t ) − ωat (10)

is the time-dependent phase of the laser field’s detuning from
resonance. The standing wave’s peak Rabi frequency,

�s ≡ 2�0 = −2 〈e|d̂|g〉 · x̂E0

h̄
, (11)

characterizes the interaction strength of the electric field with
the particle’s electric dipole operator d̂.

The Lindblad operator,

L̂(ρ̂) = − γ

2

(
σ̂+σ̂−ρ̂ + ρ̂σ̂+σ̂− − 2

{
3

5
σ̂−ρ̂σ̂

+ 1

5
eikẑσ̂−ρ̂σ̂+e−ikẑ + 1

5
e−ikẑσ̂−ρ̂σ̂+eikẑ

})
, (12)

describes the effect of spontaneous emission. In order to keep
the momentum distribution on a discretized grid, we have
approximated the dipole radiation pattern to produce recoil
of magnitudes −h̄k, 0, and h̄k along ẑ with probabilities 1

5 :
3
5 : 1

5 , respectively [14]. We consider numerical and theoretical
results of Eq. (5) in the following sections.

IV. DYNAMICS IN THE HIGH-VELOCITY REGIME

The core mechanism whereby SWAP cooling removes
momentum and energy from a particle’s motion is most easily
understood in a regime in which one can consider that the
particle interacts sequentially with one traveling wave and
then the other. We shall henceforth refer to this as the “high-
velocity regime.” To define it, we must consider the time it
takes to adiabatically transfer a particle with initial velocity
vi between its internal states, which we call τjump, as well
as the time interval separating the two resonances, which we
denote by τres. In the adiabatic regime, it can be shown that
τres = 2(kvi − 2ωr )/α and τjump = 2�0/α (see Appendix A
and [15], respectively).

0

0.5

1

τjump τjump

τe

τresP
e

Time (one sweep)

FIG. 3. The excited state fraction Pe of a particle prepared in
the state |g, 10h̄k〉 over one sweep. Values, in units of ωr , are �s =
200, Ts = 22, and �0 = 5.

Figure 3 shows the time ordering of these processes, as well
as a measure of the total excited time τe, defined as the sum of
τjump and τres in this regime.

Roughly half of each τjump overlaps with τres. Therefore,
to keep the resonances separated, we define the high-velocity
regime to be the range of velocities that satisfy τjump < τres, or

|�0| < |kvi − 2ωr | (high-velocity regime). (13)

It is important to emphasize that particles outside of the
high-velocity regime may still be cooled under the SWAP
cooling procedure. However, their dynamics are more difficult
to describe and analyze qualitatively.

A. Dressed state picture

A convenient and intuitive way to understand adiabatic
transfer is the dressed state formalism. Working in the laser
frame, we diagonalize the Hamiltonian,

Ĥ (t ) = p̂2

2m
− h̄

2
δ(t )σ̂ z + h̄

2
�s cos(kẑ)σ̂ x, (14)

at each instant in time. Here, δ(t ) ≡ αt is the laser detuning
from resonance, since the detuning is linearly ramped from
−�s/2 to �s/2. We track the evolution of the minimal set of
eigenstates necessary to demonstrate the evolution of a particle
that begins a sweep in the state |g, p〉 in the high-velocity
regime. This set maps to the bare eigenstates,

{|g, p〉 , |e, p − h̄k〉 , |g, p − 2h̄k〉 , |e, p − 3h̄k〉}, (15)

in the limit of large detuning (|δ(t )| � |kv|). The avoided
crossing of a multiphoton process known as a Doppleron
resonance, which does not affect the dynamics of a particle
in the high-velocity regime, is also present (see Appendix B
for details).

Figure 4 shows the instantaneous eigenvalues as the detun-
ing is linearly ramped. Starting in the state |g, p〉, the particle
diabatically crosses the higher-order Doppleron resonance,
thus being transferred into a different eigenstate. It then
undergoes two adiabatic crossings, which correspond to the
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|g, p − 2h̄k

|g, p

|e, p − 3h̄k

|e, p − h̄k

|e, p − 3h̄k

|e, p − h̄k

|g, p − 2h̄k

|g, p
n = 1
Doppleron
resonance

E
n
er

gy

Detuning

FIG. 4. Eigenvalue energy versus detuning for the four coupled
states given in Eq. (15). The inset shows the splitting of an n = 1
Doppleron resonance, which is small in the high-velocity regime.
The red arrows identify the physical path being considered. Dashed
lines show the evolution of the uncoupled states. Values, in units of
ωr , are �0 = 2, α = ωr = 1, Ts = 50. p = 4h̄k.

two resonances previously discussed, and ends up in the state
|g, p − 2h̄k〉, signifying the removal of 2h̄k of momenta.
It is important to note that Fig. 4 only depicts the correct
evolution of a particle that follows the red arrows; in reality, the
surrounding states would couple to states of higher and lower
momenta.

B. Coherent dynamics

In order to further illustrate the dynamics strictly due
to coherent evolution, we numerically calculated the time
evolution of the root-mean-square (rms) momentum of the
particle, prms =

√
〈p̂2〉, as it underwent SWAP cooling starting

from the initial state |ψi〉 = |g, 10h̄k〉 and without spontaneous
emission (γ = 0). The Rabi frequency was chosen such that
the simulation operated in the high-velocity regime for all
momentum states |pi | > h̄k.

Figure 5 shows the rms momentum prms versus time,
expressed in terms of the number of sweeps. The probability
of finding the particle in the excited state, Pe = |〈e|ψ〉|2, is
also shown on the right-hand axis. One sees that during each
sweep the particle was adiabatically transferred to the excited
state and then back to the ground state. Each transition was
accompanied by a reduction in the particle’s momentum by h̄k

for a total of 2h̄k per sweep. As the momentum of the particle
was reduced, the time between transitions became shorter (i.e.,
the width of the pulses became smaller). This is what one
would expect since the velocity of the particle and therefore
the accompanying Doppler shift is decreased.

By symmetry, and as confirmed by calculation, the rms
momentum decreased in an identical manner for the state
with opposite initial momentum |g,−10h̄k〉. Course graining
over the individual sweeps, the effective force exerted on the
particle drives it toward zero velocity, independent of its initial
direction of motion. As a result, one should draw an important
distinction between the force exhibited here and a “slowing
force” that can be understood as applying a uniform translation
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FIG. 5. Root-mean-square momentum prms (steplike curve; ma-
genta online) for a particle starting in the state |g, 10h̄k〉 over five
sweeps. The curve exhibiting rising and falling pulses shows the
excited state fraction Pe (cyan online). The particle experiences a
significant reduction in prms and is left in a superposition of the internal
states. Values, in units of ωr , are �s = 120, Ts = 1000, and �0 = 1.

to the momentum of all particles. Such slowing forces are
often implemented in the context of slowing a molecular beam
with chirped-frequency light [16] or using rapidly varying
electrostatic potentials as is done in Stark decelerators [17],
but do not lead to steady-state cooling.

On the final sweep shown in Fig. 5, the particle approached
zero momentum where the dynamics are modified. At the
end of the final sweep, the particle had a 50% probability of
occupying the |g, 0〉 state, and a 25% probability of occupying
each of the |e, h̄k〉 and |e,−h̄k〉 states, resulting in a final rms
momentum of prms = h̄k/

√
2 and a final excited state proba-

bility of Pe = 1/2. We will see that being left in the excited
state at the end of the sweep is an important consideration for
understanding the final equilibrium temperature.

C. High-velocity regime dynamics including dissipation

We have shown that under the influence of purely coherent
dynamics, a particle prepared in its internal ground state can
be sufficiently transferred to low momentum. In a realistic
system, however, the presence of spontaneous emission re-
stricts the amount of time a particle may remain in the excited
state, Eq. (2), which increases for higher initial momentum.
Nevertheless, in the context of the high-velocity regime in
the adiabatic limit, it can be shown that there is no upper
bound on the momentum states that can be transferred to
lower momentum via the SWAP cooling procedure, contingent
that arbitrarily high Rabi frequencies and sweep rates are
accessible. However, there exists a fundamental lower bound:∣∣∣ p

h̄k

∣∣∣ � 1 + 2κγ

ωr

. (16)

This motivates the use of SWAP cooling on a transition for
which κγ /ωr is small. It is a requirement of adiabatic transfer
to have κ at least on the order of unity, so the experimentalist
only has the freedom to vary the ramp slope α and Rabi
frequency �0 accordingly. Regardless of experimental laser
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FIG. 6. �prms vs pi [(a) and (c)] and Pe vs pi [(b) and (d)] for a
particle that started in the state |g, pi〉 at the beginning of a sweep.
The various momentum regions in Eq. (18) are labeled in Fig. 6(a) and
are presented in all subplots by vertical, dashed lines. The horizontal,
dashed line corresponds to �prms = 0. The adiabaticity parameter κ

lies in the diabatic regime for plots (a) and (b) (κ = 0.5, �0 = 9.5ωr )
and in the adiabatic regime for plots (c) and (d) (κ = 4, �0 = 26.8ωr ).
Values common to all plots, in units of ωr , are �s = 360, Ts = 2.

parameters, narrow linewidth transitions (on the scale of the
recoil frequency) are preferable if the goal is to maximally cool
the system.

V. FORCES AND CAPTURE RANGE

For analyzing the cooling dynamics, it is useful to inves-
tigate the equivalent classical force exerted on a particle as
a function of its velocity or momentum. We have chosen to
describe this relationship by defining various quantities that
provide information about the impulse imparted to the particle
over a single sweep.

A. Conservative forces

One way to describe impulsive momentum kicks applied to
the particle is the change in its rms momentum due to a single
sweep:

�prms ≡
√

〈ψf | p̂2 |ψf 〉 −
√

〈ψi | p̂2 |ψi〉, (17)

where |ψi〉 is the state of the particle prior to the sweep
and |ψf 〉 is the state of the particle after the sweep. We
describe the impulse in this way (rather than the average
momentum) because the system exhibits Bragg oscillations,
which are transitions between resonantly coupled momentum
states |p〉 ↔ |−p〉 (see Appendix C). These oscillations yield
an additional momentum change that is qualitatively different
to the adiabatic transfer dynamics that we are interested in and
does not contribute to the cooling process. The rms momentum
is a measure that by construction excludes the effect of such
Bragg oscillations.

Figures 6 and 7 show the computed rms impulse �prms

versus the initial momentum pi for a particle initially prepared
in |ψi〉 = |g, pi〉 and |ψi〉 = |e, pi〉, respectively. The values
chosen for the adiabaticity parameter, κ = 0.5 (top rows) and
κ = 4 (bottom rows), demonstrate the system’s behavior in the
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FIG. 7. �prms vs pi [(a) and (c)] and Pe vs pi [(b) and (d)] for a
particle that started in state |e, pi〉 at the beginning of a sweep. The
various momentum regions in Eq. (18) are labeled in Fig. 7(a) and are
presented in all subplots by vertical, dashed lines. The adiabaticity
parameter κ lies in the diabatic regime for plots (a) and (b) (κ =
0.5, �0 = 9.5ωr ) and in the adiabatic regime for plots (c) and (d)
(κ = 4,�0 = 26.8ωr ). Values common to all plots, in units of ωr , are
�s = 360, Ts = 2.

diabatic and adiabatic regimes, respectively, and were varied
by changing only the Rabi frequency �0. The probability of
being left in the excited state at the end of the sweep Pe is also
provided.

To aid in the description of the dynamics, we have labeled
specific regions of momentum space with the symbols (0),
(1), and (2), where (i) labels the maximum number of lasers
the particle substantially interacts with at any time during the
sweep. More specifically, a particle with initial velocity vi lies
within the region defined by

|kvi | >
�s

2
region (0),

|�0| < |kvi | <
�s

2
region (1), (18)

|kvi | < |�0| region (2).

Note that region (1) roughly corresponds to the high-
velocity regime, Eq. (13). Uninterestingly, particles in region
(0) do not significantly interact with the laser field, so we
restrict our discussion to regions (1) and (2).

For most states in region (1), the resulting �prms andPe after
the sweep are roughly constant. The general results of a diabatic
sweep in region (1), as seen in both figures, may be interpreted
as giving a low imparted impulse and a failure to return the
particle to its initial internal state. In contrast, the general
results of an adiabatic sweep in region (1) are an impulse
of |�prms| ≈ 2h̄k and significant return to the initial internal
state; these are the ideal coherent dynamics of the high-velocity
regime as previously discussed. The highest momentum states
within region (1) do not quite undergo this ideal behavior, even
in the adiabatic regime, because the particle does not begin the
sweep in an eigenstate of the Hamiltonian, Eq. (9).

As previously mentioned, Dopplerons and the ambiguous
time ordering of the two laser interactions can significantly
modify the force in region (2) such that the physics is more
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FIG. 8. Various quantities for a particle that is subject to a single
sweep with γ �= 0 as a function of its initial momentum pi . (a) �pavg

(average impulse, in units of h̄k). (b) P ss
e (steady-state population). (c)

ξ (number of scattered photons). The vertical, dashed lines correspond
to the four conditions |kv| < �s/2 (where �prms falls to zero) and
|kv| < �s/4 (the capture range). Each point was averaged over 1000
trajectories. Values, in units of ωr , are �s = 1800, Ts = 1.0, �0 =
60, γ = 1.

complex. The effect of this complex behavior is clearly visible
in Figs. 6 and 7 as |pi | approaches zero. In particular, a particle
within region (2) initially in the internal ground state will be
transferred to the excited state after a sweep, which would then
send it on a trajectory toward increasingly higher momentum.
This motivates the requirement described by Eq. (1), which
will on average reset the particle to the ground state for the
next sweep via spontaneous emission.

B. Forces including dissipation

While Sec. V A provides insight into the conservative
forces in SWAP cooling, it does not include the dissipative
features that ultimately lead to phase-space compression and
equilibration. Moreover, we enforced specific state preparation
at the beginning of each sweep. In order to explore the forces
one would expect in the laboratory, i.e., with γ �= 0 and no
specific state preparation, we define an average impulse as

�pavg ≡ Tr[p̂ρ̂f ] − Tr [p̂ρ̂i], (19)

with the constraint that the internal state populations are the
same at the beginning and end of the sweep. The quantities ρ̂i

and ρ̂f are the density operators associated with the initial and
final particle states, respectively. We shall call these internal
state populations the “steady-state” populations, P ss

e for each
pi . Note that steady state here refers only to the internal
state populations being equal before and after the sweep
cycle; the momentum in general will change. This choice of
representing the impulse is motivated by the desire to compare
to other cooling methods where the internal populations reach
a stationary situation, and to thereby allow investigation of
the relationship between force and particle velocity in a more
general context.

Figure 8(a) displays �pavg for a large range of initial
momentum states pi . The parameters were chosen such that the
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FIG. 9. �p± vs pi . The sharp, linear feature in �p+ is due to
Bragg oscillations, which mix the particle between the |±pi〉 states
before it reaches resonance with the lasers. Each point is averaged over
1000 trajectories. Values, in units of ωr , are �s = 1800, Ts = 1.0,
�0 = 60, γ = 1.

time between the two laser interactions τres obeyed τres � 1/γ

for all |kvi | < �s/2. We see that the overall effect of SWAP
cooling yielded an impulse toward zero momentum for |kvi | <

�s/4 and an impulse away from zero momentum for �s/4 <

|kvi | < �s/2. This motivates Eq. (1) as a characterization
of the momentum capture range of SWAP cooling. For low
momentum, the effects of Bragg oscillations, Dopplerons, and
the ambiguous time ordering of laser interactions results in
momentum dynamics that differ from those in the high-velocity
regime.

Figures 8(b) and 8(c) present the steady-state excited state
fraction P ss

e , and the average number of incoherent scattering
events per sweep, which we call ξ , for the same parameters. We
see that impulses with magnitudes of nearly 2h̄k are imparted
for |pi | near 25h̄k with only ∼0.2 scattering events per
sweep. Moreover, the momentum states around |pi | = 25h̄k

experienced an average force of |�pavg/Ts | ≈ 2h̄kγ , which is
roughly four times the cooling force that one expects from a
radiation pressure force that fully saturates the atomic transi-
tion. This means that SWAP cooling can provide large cooling
forces with a relatively low scattering rate. We investigate this
useful feature in more detail in Sec. VII.

The effect of Bragg oscillations at low pi , which manifests
as a sharp, linear feature in Fig. 8(a), is elucidated by consider-
ing the effect of switching the sweep direction. As described in
Appendix C, Bragg oscillations can mix the particle between
the |±pi〉 states before the particle resonates with the lasers,
so the net �pavg is independent of the sweep direction. To
compare �pavg with and without these oscillations, we define
impulses �p± in the following way:

�p± ≡ (�pavg)pos ± (�pavg)neg

2
, (20)

in which the subscripts “pos” and “neg” refer to the sign of
the ramp, i.e., red to blue or blue to red detuning, respectively.
By symmetry, we expect the effect of Bragg oscillations to
be present in �p+ and to cancel in �p−. Figure 9 displays
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FIG. 10. Frequency profile for the simplified “sweep-wait” cool-
ing scheme.

�p± as a function of the initial momentum pi . The substantial
effect of Bragg oscillations were seen to be present in �p+ for
|pi | < 7h̄k. For pi nearer to the high-velocity regime, which
is |pi | > 30.5h̄k for this set of parameters, Bragg oscillations
do not play a significant role, and we observe �p+ tending to
zero, and �p− tending to ±1.5h̄k.

VI. TEMPERATURE LIMIT AS γ → 0

We now provide the results of a SWAP cooling simulation
that includes the effects of dissipation, but in the limit γ → 0.
To accomplish this, we modified the frequency profile to be a
series of single sawtooth ramps with period Ts � 1/γ , each
separated by a time Twait � 1/γ , as shown in Fig. 10. This
“sweep-wait” scheme effectively mimics the cooling process
for a particle with an ultranarrow linewidth. It also reduced
the required computation time by allowing (i) �s to be small
and (ii) the use of the analytical expression for free-space
spontaneous decay. We modeled the limit Twait → ∞ and
γ → 0 by setting γ = 0 and projecting any remaining excited
state population to the ground state, along with simulating any
accompanying momentum recoil.

Figure 11 presents the evolution of a particle that started in
the state |g, 10h̄k〉 under this cooling scheme. At the end of
this simulation, the temperature of the particle was observed
to asymptote to a value near the recoil limit 2Tr , where

kBTr ≡ (h̄k)2

2m
= h̄ωr , (21)

and kB is Boltzmann’s constant. We use the variance in p as a
measurement of the 1D temperature T , i.e.,

σ 2
p

2m
≈ 〈p2〉

2m
= 1

2
kBT . (22)

It should be noted that not all steady-state solutions are
Gaussian in nature, but are centered on zero momentum. Thus,
the first equality in Eq. (22) universally holds once the system
has equilibrated.

It is also interesting to consider how the final temperature
scales with �0. Figure 12 displays this relationship in both the
diabatic and adiabatic regimes. A minimum temperature was
found just within the adiabatic regime. From the numerics, the
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FIG. 11. Cooling of a particle that begins in the state |g, 10h̄k〉 to
the recoil limit after five sweep-wait cycles. (Top inset) A snapshot of
the momentum distribution P (p) halfway through the seventh sweep.
(Bottom inset) A closer look at the cooling trajectory once the system
reached equilibration. The recoil limit 2Tr is included as a horizontal,
dashed line. This curve is the average of 100 trajectories. Values, in
units of ωr , are �s = 100, Ts = 60, and �0 = 2.

temperature was observed to follow a linear relationship,

kBT = 1
2 h̄�0, (23)

in the adiabatic regime, which we attribute to decreased time
ordering between adiabatic transfers and the particle spending
more time in the excited state, hence more scattering events.
This linear relationship held for at least twice the domain of
Fig. 12. An increase in temperature was observed in the diabatic
regime, which we attribute to both a reduction in conservative
forces as described in Sec. V A, and the presence of a significant
excited state fraction at the end of each sweep, leading to more
diffusion from spontaneous emission.
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FIG. 12. Stationary values of 〈p2/2m〉 as a function of �0 in the
sweep-wait sequence. The vertical, solid line labels the value of �0

that divides the diabatic and adiabatic regimes. The recoil limit is
represented as a horizontal, dashed line. Deep within the adiabatic
regime, the temperature scales linearly with �0. Values, in units of ωr ,
are �s = 100, Ts = 60. Each point is averaged over 500 trajectories.
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FIG. 13. 〈p̂2〉/2m vs the average number of scattered photons for
SWAP cooling and Doppler cooling. For both methods, ωr = γ = 1.
The SWAP parameters, in units of ωr , are �0 = 28, �s = 391, Ts =
1, and Doppler parameters are � = 40, δ = −40. The SWAP cooling
data is over 38 sweeps. Each curve is averaged over 1000 trajectories.
We extract an average cooling efficiency for SWAP cooling of up to
5h̄k per scattered photon.

VII. COOLING EFFICIENCY

We now compare the efficiency of SWAP cooling with
Doppler cooling. We define “cooling efficiency” here as the
energy carried away from the system per scattering event.
This choice is motivated in part by the potential application of
SWAP cooling to systems where closed cycling transition may
not be accessible and therefore a large number of spontaneous
emission events are undesirable. We calculate the cooling
efficiency by preparing an ensemble of particles in a specific
initial state |g, 20h̄k〉, and subsequently applying both Doppler
and SWAP cooling for comparison. Here, we used the SWAP
cooling scheme presented in Fig. 2, in which dissipation is
included at all times.

Clearly, many fewer scattered photons are required for
SWAP cooling to reduce the energy and to bring the system
close to equilibrium (see Fig. 13). In fact, in the simulation,
SWAP cooling was able to remove up to an average of 5h̄k of
momentum per scattered photon. As a consequence, in compar-
ison to Doppler cooling’s ideal cooling efficiency, we deduce
that SWAP cooling promises to be well-suited to cooling
particles where the adverse affects of spontaneous emission are
significant, such as those that lack closed cycling transitions.

VIII. CONCLUSION

The SWAP procedure proves to be a robust and simple
cooling mechanism. Our analysis of both the coherent and
dissipative dynamics of two-level particles suggests that it
has numerous applications, such as to systems with narrow
linewidth or no closed cycling transitions. We have shown its
ability to cool particles to the recoil limit while simultaneously
inducing larger cooling forces and maintaining a higher cooling
efficiency than Doppler cooling.

In the future, it will be interesting to further elaborate
on the concept of a cooling efficiency, i.e., the removal of

a system’s energy and entropy per scattering event, in the
general context of laser cooling theory. For example, the
information associated with the momentum of a particle
initially in the state |g, pi〉 may be encoded in the time record
of spontaneously emitted photons. This provides significant
motivation for a systematic analysis of entropy dynamics in
the various implementations of laser cooling that may prove
to be an insightful and useful endeavor for the laser cooling
and atomic physics community.

The scope of the calculations presented in this paper were
limited to two-level atoms moving along one dimension. It
will be interesting to consider more general atomic systems
and more general geometries of laser and trapping fields. In
particular, SWAP cooling may be applied to magneto-optical
trapping [10], to optical lattices, and to general multilevel
laser cooling strategies [11]. Furthermore, while it is important
to recognize that while our calculations are fully quantum
mechanical (consisting of a complete description of the internal
and external variables) with the inherent advantages of not
having to make approximations, it will also be useful to develop
and validate semiclassical methods where many-sweep cycles
can be treated with higher efficiency. This will be important to
treat more massive systems such as complex molecules.
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APPENDIX A: RESONANCE TIMES AND INTERVALS
IN THE ADIABATIC LIMIT

In the adiabatic limit (�2
0 � α), most of the population

transfer for a motionless particle occurs around t = 0 for
a detuning profile δ(t ) = αt , as this is when the laser is
in resonance with the particle. By energy conservation [see
Eq. (B2) with n = 0], motional degrees of freedom translate
this “resonance period” for a particle in the state |g, p〉
interacting with a right-traveling wave to the time that satisfies

αtright − ωr (2β + 1) = αtright − kv − ωr = 0, (A1)

where β ≡ p/h̄k. For high-velocity particles (kv � ωr ), the
resonance period agrees with the intuitive Doppler shift result.
However, the additional recoil term is important for low
velocity (kv � ωr ) particles. A similar result can be found for
the interaction of a ground-state particle with a left traveling
wave (β → −β), which translates the resonance period to

αtleft − ωr (−2β + 1) = αtleft + kv − ωr = 0. (A2)

The resonance periods for a particle starting in the excited
state can be found with the substitution ωr → −ωr on the addi-
tional recoil term. It is easily shown that adiabatic transfer with
motion has the same probability as the motionless case [13].

In the high-velocity regime [see Eq. (13)], there is one
stimulated absorption and one stimulated emission per sweep
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(b)

(a)

FIG. 14. (a) A first-order Doppleron resonance, characterized by
the condition βf = βi − 3. (b) A Bragg resonance between the states
|g,±2h̄k〉.

in SWAP cooling. From Eqs. (A1) and (A2), the time separating
these resonant phenomena for a particle with initial velocity
vi , labeled τres, is

τres = 2(kvi − 2ωr )

α
. (A3)

It should be noted that (A3) is only valid in the adiabatic
limit, since the time associated with the stimulated absorption
recoil has been included. An understanding of these resonance
times and intervals provides insight into the particle dynamics
for various momentum states in SWAP cooling.

APPENDIX B: DOPPLERON REGIME

As the laser frequencies are swept, multiphoton transitions
often called Dopplerons come to resonance even when single-
photon transitions do not. As shown in Fig. 14(a), an nth-order
Doppleron process is characterized by the absorption of n + 1
photons from one beam and the emission of n photons into the
other, resulting in a (2n + 1)h̄k net momentum transfer to the
particle and the particle being left in the opposite internal state
from which it started [18]. In general, Doppleron resonances
can occur both before and after the single-photon resonances,
and their existence has the potential to substantially affect
particle dynamics outside the high-velocity regime.

Doppleron resonances only occur for specific values of laser
detuning. For a particle with initial momentum pi = βi h̄k, the

time of an nth-order Doppleron resonance can be found from
energy conservation:

β2
i h̄ωr + (n + 1)h̄ωL(t ) = nh̄ωL(t ) + h̄ωa + β2

f h̄ωr . (B1)

We have neglected the ac Stark shift here for simplicity.
In Eq. (B1), the terms proportional to n are the energies of
the photons being absorbed and emitted, h̄ωa is the transition
energy, and the terms proportional to ωr are the initial and final
kinetic energies of the particle.

Paired with the momentum condition βf = βi − (2n + 1),
where βf is the particle’s momentum after the Doppleron
process, the time tn of an nth-order Doppleron resonance for a
laboratory-frame laser detuning profile δn(t ) = αtn obeys

αtn = −(2n + 1)kvi + (2n + 1)2ωr

= −
(

n + 1

2

)
(kvi + kvf ). (B2)

Regardless of the Rabi frequency, multiphoton effects
become relevant for low momentum states. From numerical
methods, the first-order splitting in a dressed state picture (see
Fig. 4) behaves as

�(1) ≈ �3
0

16(kvi − 3ωr )2
, (B3)

which suggests that the probability of adiabatically passing
through a first-order Doppleron resonance is [13]

P (1)
a = 1 − exp

[
− π

512

�6
0

α(kvi − 3ωr )4

]
. (B4)

The size of the argument in this exponential can be used
to define the conditions for which Dopplerons are relevant for
a particle with velocity vi . Because SWAP cooling requires
Eq. (3) to be satisfied, we choose to define the Doppleron
regime as follows:

|�0| > |kvi − 3ωr | (Doppleron regime). (B5)

Comparing this result with Eq. (13), we see that the
Doppleron regime describes nearly all remaining states out-
side the high-velocity regime. Of course, there exist similar
conditions for higher-order Doppleron resonances.

Increasing �0, i.e., allowing for more Doppleron reso-
nances, may decrease the amount of time it takes to reach a
steady-state temperature, as they allow for more momentum
transfer. However, the final temperature increases with �0 (see
Fig. 12). Thus, minimum temperatures with a high capture
range may be achieved by dynamically changing the Rabi
frequency as the particle is cooled over time.

APPENDIX C: BRAGG OSCILLATIONS

Momentum states experience nontrivial effects due to Bragg
oscillations, i.e., particle scattering from a light grating (the
standing wave). These transitions, which are between states
with ±βh̄k momenta where β is an integer, occur at a rate
[19],

�B,β (t ) ≈ |�0|2β

4β (8ωr )β−1[(β − 1)!]2δ(t )β
, (C1)
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provided that |δ(t )| > |�0| > γ. Figure 14(b) displays the
energy diagram for a Bragg resonance between the |g,±2h̄k〉
states. If there are many oscillations, it is likely that system
noise will cause the oscillations for different particles to
become out of phase, leaving, on average, half of the atoms
in either momentum state. This phenomenon is an important
consideration in the analysis of the impulses in Fig. 9.

Integrating Eq. (C1) and dividing by 2π gives the total
number of β th-order Bragg oscillations between times ti and
tf :

Nβ (ti , tf ) = 1

2π

∣∣∣∣
∫ tf

ti

�B,β (t ′) dt ′
∣∣∣∣

∝
∣∣∣∣
∫ tf

ti

1

δ(t ′)β
dt ′

∣∣∣∣. (C2)

The quantities ti and tf are related to the times of stimulated
absorption and emission during the sweep process, as these will

carry the particle away from the states that are experiencing
Bragg oscillations.

To provide a few interesting examples, first-order Bragg
transitions affect the dynamics of the initial states |ψ〉0 =
|g, h̄k〉 , |g, 3h̄k〉. From Eq. (C2) and using Eqs. (A1) and (A2),

N1 ≈ κ

8π
ln

∣∣∣∣2ωr

�s

∣∣∣∣, |ψ〉0 = |g, h̄k〉 ;

N1 ≈ κ

8π
ln

∣∣∣∣ �s

6ωr

∣∣∣∣, |ψ〉0 = |g, 3h̄k〉 . (C3)

The Bragg oscillations occur before the SWAP resonances
for |g, h̄k〉 and after the SWAP resonances for (|g, 3h̄k〉).
Although N1 scales logarithmically with �s in both cases, a
sufficiently large sweep range will promote multiple Bragg
oscillations.
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