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Application of the complex Kohn variational method to attosecond spectroscopy

N. Douguet,1 B. I. Schneider,2 and L. Argenti1
1Department of Physics, University of Central Florida, Orlando, Florida 32186, USA
2Physics Division, National Science Foundation, Gaithersburg, Maryland 20899, USA

(Received 12 June 2018; published 6 August 2018)

The complex Kohn variational method is extended to compute light-driven electronic transitions between
continuum wave functions in atomic and molecular systems. This development enables the study of multiphoton
processes in the perturbative regime for arbitrary light polarization. As a proof of principle, we apply the method to
compute the photoelectron spectrum arising from the pump–probe two-photon ionization of helium induced by a
sequence of extreme ultraviolet and infrared light pulses. We compare several two-photon ionization pump–probe
spectra, resonant with the (2s2p) 1P o

1 Feshbach resonance, with independent simulations based on the atomic
B-spline close-coupling STOCK code, and find good agreement between the two approaches. This finite-pulse
perturbative approach is a step towards the ab initio study of weak-field attosecond processes in polyelectronic
molecules.
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I. INTRODUCTION

The availability of attosecond sources [1] covering a wide
frequency domain [2–13] has allowed experimentalists to
explore ultrafast processes in gases [14] and solids [15,16].
Experimental pump–probe techniques with subfemtosecond
time resolution [17,18], such as attosecond transient absorption
spectroscopy (ATAS) [2,3,19–21] and RABBITT (reconstruc-
tion of attosecond beating by interference of two-photon
transitions), photoelectron interferometric techniques [22–24],
are key to investigating ultrafast dynamics in molecules and
atoms. In particular, attosecond spectroscopy allows us to
highlight and resolve in time autoionization decay, which is
driven by electron correlation, the role of coherent valence
excitation in dissociating molecules, and the emergence of
circular dichroism in the photoemission from chiral systems
[25]. For example, the complete characterization of an elec-
tron wave packet created through an autoionizing resonance
has recently been achieved in helium [23], where oxygen-
autoionizing Rydberg states were studied in an electronically
and vibrationally resolved fashion with ATAS [3], and the
dynamics of systems as complex as CF4

+ and SF6
+ was studied

through time-resolved x-ray absorption spectroscopy [26]. An
attosecond photoelectron interferometry study on camphor
enantiomers [24] revealed an angular dependence of the
photoemission delay as large as 24 attoseconds (as) between
electrons ejected forward and backward upon photoionization
by circularly polarized light.

The development of accurate computational and theoretical
tools to treat multiphoton processes in complex molecules
is essential to the interpretation of experimental results in
attosecond dynamics [25,27–29]. The computational treatment
of such processes is challenging, as it requires an explicit rep-
resentation of multielectronic bound and continuum states. In
particular, crucial aspects of atomic and molecular ionization,
such as autoionizing resonances and interchannel coupling,
cannot be satisfactorily accounted for within single-active-
electron approaches.

In recent years, our understanding of multiphoton processes
in correlated systems has made progress using either direct
integration of the time-dependent Schrödinger equation or
perturbative calculations, and developing new non-Gaussian
or hybrid bases for the expansion of the electronic wave
function [25,27–34]. Here, we present an adaptation of the
complex-Kohn (CK) variational method [35,36] to compute
free–free electronic transition dipole moments in polyelec-
tronic systems, with applications to multiphoton processes in
the perturbative regime.

The present implementation of the CK method [37,38]
combines the MESA [39] quantum-chemistry package with
Coulomb functions and an adaptive-grid method [40] to com-
pute the bound–bound, bound–free, and free–free integrals that
are needed to evaluate the elements of the electronic Hamil-
tonian within the close-coupling fixed-nuclei approximation.
The transition dipole matrix elements from a bound state to
the multichannel continuum states are variationally optimal
[41,42]. Over the past three decades, the CK method has proven
to accurately represent the molecular electronic continuum, as
demonstrated by its successful description of processes such
as dissociative recombination [43–46], dissociative electron
attachment [47,48], vibrational excitation [37,38], photoion-
ization [18,49–52], and photodetachment [53,54].

The CK method has also been successfully employed
to compute the photoionization cross sections of mid-sized
molecules such as methanol [47], SF6 [50], or CF4 [52]. In
addition, the CK code has the option of using effective core
potentials [55,56], and hence it can be applied to larger systems
as long as the interaction between core electrons and external
time-dependent fields can be neglected.

Bound–free and free–free electronic transition dipole
moments can be used in lowest-order perturbation theory
(LOPT) to treat multiphoton processes in the weak-field
regime [57,58]. When applicable, perturbative approaches
offer two key advantages over time-step integration of the
time-dependent Schrödinger equation (TDSE). First, they are
efficient, as they can predict with a modest computational

2469-9926/2018/98(2)/023403(12) 023403-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.023403&domain=pdf&date_stamp=2018-08-06
https://doi.org/10.1103/PhysRevA.98.023403


N. DOUGUET, B. I. SCHNEIDER, AND L. ARGENTI PHYSICAL REVIEW A 98, 023403 (2018)

cost the outcome of the interaction with an arbitrary (and
hence arbitrarily long) sequence of pulses and for any
given polarization. Second, they offer insight on a reaction
mechanism, as they allow one to disentangle the contribution
of individual quantum paths to a given process.

The application of perturbative methods in the multiphoton
ionization of complex systems has mostly been limited by
the need of computing free–free electronic transition dipole
moments, which are notoriously challenging to estimate, as
evidenced by several theoretical studies [59–65]. On the other
hand, several accurate methods, such as the R-matrix theory
[66], the Schwinger variational method [67], the complex Kohn
variational method [35,36], and the XCHEM method [29] can
now provide accurate multielectron continuum wave functions
and could be employed to evaluate free–free transition dipole
moments in multielectronic systems.

In this work, we consider two-photon ionization of the
1s2 1Se ground state of helium as a proof of principle of the
method on a simple atomic target and using a relatively small
calculation. Two-photon ionization of helium is induced by
overlapping extreme ultraviolet (XUV) with either infrared
(IR) or visible (VIS) pulses, with the XUV tuned on the
2s2p 1P o Feshbach resonance. Even though the method can
treat pulses with arbitrary light polarization (e.g., orthogonal
or elliptically polarized), here we consider linearly polarized
XUV and IR pulses along the same axis to simplify the
presentation of the approach. The free–free dipole moments are
compared with results obtained from an independent stationary
calculation performed with an extension of the STOCK B-spline
close-coupling code for atomic ionization [68]. Furthermore,
the photoelectron spectra obtained with the present finite-
pulse perturbative method are compared with those computed
by integrating numerically the time-dependent Schrödinger
equation in the atomic STOCK close-coupling basis. The current
calculations have reproduced a pump–probe experiment in
which two consecutive odd high harmonics of a fundamental
visible pump are followed by a weak replica acting as a
probe. This pump–probe scheme, which is at the basis of
RABBITT spectroscopy [23,24,69,70], creates multiple two-
photon pathways to the harmonic sidebands whose interference
as a function of the pump–probe delay enables one to retrieve
the phase of the resonant ionization amplitude. In all these com-
parisons we find good agreement between the present method
and independent benchmark simulations, which indicate that
stationary continuum calculations can be fruitfully used in as-
sociation with finite-pulse perturbative formulas to predict the
outcome of pump–probe simulations in the weak-field limit.

The paper is organized as follows. In Sec. II A we sum-
marize the CK method, its extension to compute the free–free
transition dipole moments, and the perturbative approach used
to evaluate stationary and finite-pulse two-photon amplitudes.
Our results are presented and discussed in Sec. III. Finally, in
Sec. IV we offer our conclusions and outlook. Unless stated
otherwise, atomic units are used throughout.

II. THE THEORETICAL APPROACH

A. The complex Kohn wave function

In the CK variational method, the (N + 1)-electron non-
relativistic wave function is expanded in the close-coupling

form

ψ�E =
∑
�′

Â[��′ (x1, . . . , xN, ζN+1)F�′,�E (rN+1)]

+
∑

μ

d�E
μ �μ(x1, . . . , xN+1), (1)

where xi = (ri , ζi ) are the position and the spin variables of the
ith electron and �� (x1 · · · xN, ζN+1) are the channel functions
for a parent-ion state. The channel functions are built from
a set of internal orbitals coupled to the photoelectron spin
ζN+1. This leads to a well-defined total multiplicity 2S + 1
and spin projection � for the wave function. The projector
Â (Â2 = Â) ensures the wave function is antisymmetric for
all electrons. The channel label � specifies the state of the ion,
the total multiplicity, and the asymptotic photoelectron angular
quantum numbers � and m. The close-coupling expansion over
�′ typically runs over both open and closed channels at the
total electronic energy E of interest. The internal orbitals are
chosen as a subset of the total set of molecular orbitals used in
the calculation, and the configuration state functions (CSFs)
used to construct �� (x1 . . . xN, ζN+1) are built from these
internal orbitals and are typically designed to yield reasonably
accurate representations of the ground and excited ionic states
of the target. The elements �μ are (N + 1) electron CSFs built
exclusively from internal orbitals and are employed to describe
short-range electron correlation effects. Henceforth, we refer
to the space spanned by the internal orbitals as the reference
space.

In the case of open channels, the scattering orbitals
F�′,�E (r ) are expanded in a set of external molecular orbitals
ϕσ and continuum functions f �E

�m (r) and h�′E
�′m′ (r),

F�′,�E (r) =
∑

σ

c�′,�E
σ ϕσ (r)

+
∑
�′m′

[
f �E

�m (r)δ�′� + h�′E
�′m′ (r)T �′�E

�′m′,�m
]
. (2)

The continuum functions f �E
�m and h�E

�m asymptotically ap-
proach the regular- and irregular-outgoing Coulomb function,
respectively, with energy ε�′ = E − E�′ and orbital angular
momentum �,

f �E
�m (r) ∼ sin θ� (r )√

k�r
Y�m(r̂ ), (3)

h�E
�m (r) ∼ exp[iθ� (r )]√

k�r
Y�m(r̂ ), (4)

θ� (r ) = k�r + Z

k�

ln 2k�r − �π

2
+ σ�(k� ), (5)

where k� = √
2(E − E� ), Z is the residual charge, and

σ�(k) = arg �(� + 1 − iZ/k� ) is the Coulomb phase shift.
The continuum functions f �E

�m and h�E
�m are orthogonalized to

all the molecular orbitals, namely, the internal orbitals φi used
to build the parent ions �� , as well as the external molecular
orbitals ϕσ featured in the scattering functions F�′,�E :

∀i, σ, �,
〈
φi

∣∣f �E
�m

〉 = 0, and
〈
ϕσ

∣∣f �E
�m

〉 = 0. (6)

In earlier publications, the internal and external molecular
orbitals were referred to as “target” and “scattering” orbitals,
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respectively [35,36]. In the case of closed channels, the
functions F�′,�E only comprise the contribution from the
external molecular orbitals ϕσ . The states �μ in (1) relax
the orthogonality constraint on the F�′�E functions and bring
in to the close-coupling expansion additional correlation and
polarization terms that cannot be expressed as a parent ion
augmented by an internal orbital.

Here, and for further development, it is convenient to
employ a Feshbach notation [71] for the partitioning of the
Kohn wave function. Thus, we write ψ�E = Pψ�E + Qψ�E ,
where, in the photoionization case, Q is the projector onto
the reference space, and P = 1 − Q projects onto the space
spanned by the product of target channel and external orbitals,
as well as open target channels and free functions. Since the
P space also comprises closed channels, it contributes to the
description of Feshbach resonances.

Finally, the coefficients d�E
μ , c�′,�E

σ , and the elements of
the T matrix in Eqs. (1) and (2), are treated as variational
parameters and are obtained by requiring the functional

[T �′�E] = T �′�E − 2
∫

ψ�′E[Heff (E) − E]ψ�′E (7)

to be stationary (Kohn variational principle). The effective
Hamiltonian within the P space, Heff (E) = HPP + Vopt (E),
is computed by adding to the energy operator restricted to the
P space, HPP , the optical potential due to the excitation to
the Q space, Vopt (E) = HPQ[E − HQQ]−1HQP [35,36]. In
its present implementation, HPP does not include exchange
integrals that explicitly involve continuum functions. This is
a consequence of the separable approximation made in the
construction of the optical potential, which becomes increas-
ingly more accurate as the Gaussian basis set approaches
completeness in the molecular region [35].

B. Computation of transition dipole moments

The method to compute the one-photon dipole transition
matrix elements 〈ψ�E |O|�j 〉 between a Kohn function, the
dipole operator O = ε̂ · ∑N+1

i=1 �ri expressed in the length form,
and a bound state expanded in the reference space of internal
orbitals, where ε̂ is the light polarization vector and �ri are the
electron vector positions, has been described in earlier studies
[49,51]. The 〈Qψ�E |O|�j 〉 and 〈Pψ�E |O|�j 〉 matrix ele-
ments are evaluated separately. Since 〈Qψ�E|O|�j 〉 involves
bound molecular orbitals only, it is computed with standard
many-body techniques already implemented in the MESA code.
The 〈Pψ�E |O|�j 〉 element, which can be expressed in terms
of the one-body transition density matrix between the Pψ�E

and the �j state [35,72], is evaluated in two steps. First, the
one-particle transition density matrix between the �j state
and channel functions of the form Â[��ϕσ ], where ϕσ is an

arbitrary external orbital, is computed,

ρj�σ (r1, r′
1) =

∑
ζ1

∫
dx2 . . . dxN+1 �j (x1, . . . , xN+1)

× Â [�� (x′
1, . . . , xN ; ζN+1) ϕσ (rN+1)]ζ ′

1=ζ1 .

(8)

The only nonvanishing elements of ρj�σ (8) are those between
an internal orbital φi and the external orbital ϕσ . Furthermore,
these matrix elements do not depend on the latter, since
ϕσ is not represented in ��: ∀σ, σ ′, ρ

j�

i = 〈φi |ρj�σ |ϕσ 〉 =
〈φi |ρj�σ ′ |ϕσ ′ 〉. In particular, they keep the same value even if
ϕσ is a free function, as long as that function has been orthog-
onalized to the internal orbitals. Therefore, 〈Pψ�E |O|�j 〉 can
be computed from ρ

j�

i , c�′,�E
σ , and the one-electron transition

dipole moments 〈φi |o|ϕσ 〉, 〈φi |o|f �E
�m 〉, and 〈φi |o|h�E

�m 〉. The
latter elements are evaluated using the same adaptive three-
dimensional grid used to compute any other bound–free and
free–free integral appearing in the CK method [40]. The current
version of the CK method employs the length form of the
dipole operator o = ε̂ · �r , with �r the electron vector position.
Extension to the velocity form is beyond the scope of the
present paper and will be considered for future publications.

Computation of free–free transition matrix elements

The procedure to compute the transition dipole
moments O�E,�′E′ = 〈ψ�E |O|ψ�′E′ 〉 between two Kohn
functions involves the evaluation of 〈Qψ�E |O|Qψ�′E′ 〉,
〈Qψ�E |O|Pψ�′E′ 〉, and 〈Pψ�E |O|Pψ�′E′ 〉. The terms
involving the Q-space functions can be computed as before,
after replacing the real expansion coefficients on the CSFs,
�μ, associated with a correlated bound function �j , by
the complex Kohn coefficients d�E

μ associated with the
Kohn function (1). On the other hand, the evaluation of
〈Pψ�E |O|Pψ�′E′ 〉 requires some additional care.

Because the scattering functions F�′,�E are chosen to
be orthogonal to all the molecular orbitals that appear in
�� , the P -space transition dipole matrix elements may be
expressed as

〈Pψ�E |O|Pψ�′E′ 〉 =
∑
��

〈��F�,�E|O|��F�,�′E′ 〉

=
∑
��

〈��|O|��〉〈F�,�E|F�,�′E′ 〉

+ δ��〈F�,�E|o|F�,�′E′ 〉, (9)

where 〈��|O|��〉 represents transitions between ionic chan-
nels � and �, and 〈F�,�E|o|F�,�′E′ 〉 represents a one-electron
transition from a single continuum associated with a common
ionic factor.

The overlap and dipole terms in (9) take the form

〈F�,�E|F�,�′E′ 〉 =
∑

σ

c�,�E∗
σ c�,�′E′

σ + δ�,�′
〈
f �E

�,m

∣∣f �′E′
�′,m′

〉 + ∑
�′′,m′′

T ��′E′
�′′m′′,�′m′

〈
f �E

�,m

∣∣h�E′
�′′,m′′

〉

+
∑
�′′,m′′

T ��E∗
�′′m′′,�m

〈
h�E

�′′,m′′
∣∣f �′E′

�′,m′
〉 + ∑

�1,m1

∑
�2,m2

T ��E∗
�1m1,�m

T ��′E′
�2m2,�′m′

〈
h�E

�1,m1

∣∣h�E′
�2,m2

〉
; (10)
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〈F�,�E|o|F�,�′E′ 〉 =
∑
σ,σ ′

c�,�E∗
σ c

�,�′E′
σ ′ 〈ϕσ |o|ϕσ ′ 〉 +

∑
σ

[
c�,�E∗
σ 〈ϕσ |o∣∣f �′E′

�′,m′
〉 + c�,�′E′

σ

〈
f �E

�,m

∣∣o|ϕσ 〉]

+ δ�,�′
〈
f �E

�,m

∣∣o∣∣f �′E′
�′,m′

〉 + ∑
σ

∑
�′′,m′′

[
T ��E∗

�′′m′′,�mc�,�′E′
σ

〈
h�E

�′′,m′′
∣∣o|ϕσ 〉 + c�,�E

σ T ��′E′
�′′m′′,�′m′ 〈ϕσ |o∣∣h�′E′

�′′,m′′
〉

+ T ��′E′
�′′m′′,�′m′

〈
f �E

�,m

∣∣o∣∣h�′E′
�′′,m′′

〉 + T ��E∗
�′′m′′,�m

〈
h�E

�′′,m′′
∣∣o∣∣f �′E′

�′,m′
〉]

+
∑
�1,m1

∑
�2,m2

T ��E∗
�1m1,�m

T ��′E′
�2m2,�′m′

〈
h�E

�1,m1

∣∣o∣∣h�′E′
�2,m2

〉
. (11)

Here, we follow the prescription of Rescigno and Orel [41]
and use in Eqs. (10) and (11) the trial value of the T -matrix
elements, i.e., the elements appearing on the right-hand side
of Eq. (7), as dictated by the variational principle [41].

The overlap between orthogonalized asymptotic functions
in (10) and (11) are decomposed into two parts. For the case
of two outgoing functions, the overlap is written as〈

h�E
�,m

∣∣h�′E′
�′,m′

〉 = 〈
h�E

�,m

∣∣h�′E′
�′,m′

〉
[0,Rb] + 〈

h�E
�,m

∣∣h�′E′
�′,m′

〉
[Rb,∞]. (12)

The first part, 〈h�E
�,m|h�′E′

�′,m′ 〉[0,Rb], is the overlap evaluated up
to a fixed boundary radius Rb and computed with the three-
dimensional grid of McCurdy and Rescigno [40]. Then, using
the identity

(ε − ε′)〈ϕ|ϕ′〉[Rb,∞] = 〈Hϕ|ϕ′〉[Rb,∞] − 〈ϕ|Hϕ′〉[Rb,∞]

= 1
2

〈
ϕ
∣∣r−1∂2

r rϕ′〉
[Rb,∞] − 1

2

〈
r−1∂2

r rϕ
∣∣ϕ′〉

[Rb,∞], (13)

it can be shown that the second part of the integral can be
computed using the following expression:

〈
h�E

�,m

∣∣h�′E′
�′,m′

〉
[Rb,∞] = 1

2
P

S (Rb )

ε� − ε′
�′

+ π

4
δ�′,�δ(ε� − ε′

�′ ),

(14)

where P denotes the principal value. The prefactor π/4 in
front of the δ function arises from the proper normalization of
the asymptotic outgoing function in (4), and the surface term
S (R), evaluated at R, is given by

S (R) = R
[
h�E∗

�,m ∂rrh
�′E′
�′,m′ − h�′E′∗

�′,m′ ∂rrh
�E
�,m

]
R
. (15)

We have verified numerically that the overlaps in (12) are
independent of the choice of Rb to a high level of precision.

We now turn towards the computation of one-electron
free–free transition dipole moments, e.g., terms such as
〈f �E

�,m |o|h�′E′
�′,m′ 〉. In the velocity form, the dipole matrix elements

can be decomposed as in (12), with the advantage that the
boundary term can be expressed in analytical form as r →
∞ [32]. The transition dipole moment in the length form,
〈f �E

�,m |ε̂ · �r|h�′E′
�′,m′ 〉, on the other hand, requires additional cau-

tion [59,60,65], as it exhibits a second-order pole at E = E′.
In hydrogen, the singular part of the dipole matrix elements is
known analytically [59,60]. Komninos et al. [65] have reported
that the regularized dipole operator DSF (r ) = r , for r < r0,
and DSF (r ) = r0, for r � r0, represents a good approximation
as long as r0 = 3λ/8, where λ is the laser wavelength. This
finding indicates that a smooth regularization of the dipole
kernel can be a practical way of circumventing the on-shell
singularity.

In the present case, we have chosen to regularize the dipole
matrix elements as

〈
f �E

�,m

∣∣ε̂ · �r∣∣h�′E′
�′,m′

〉 = ε̂ ·
∫

f �E
�,m (�r )�rh�′E′

�′,m′ (�r )ξ�
R0

(r )d3r, (16)

where ξ�
R0

(r ), exemplified in Fig. 1, is a smooth step function
that transitions from ∼1 to ∼0 in an interval centered at r = R0

and with characteristic width �,

ξ�
R0

(r ) = 1

2
− 1

2
erf

(
r − R0

�

)
, (17)

where erf (x) is the error function, erf (x) = 2√
π

∫ x

0 e−t2
dt

[[73], Eq. 7.2.1]. The parameters R0 and � in (17) should be
set such that ξ�

R0
(r ) ∼ 1 to high accuracy in the region where

Gaussian functions assume non-negligible values. This condi-
tion ensures consistency with the orthogonalization procedure
between free and bound functions. The parameter R0 provides
a measure of the size of the region where net photon exchange
occurs. Large values of r are not involved with effective
photon exchange, but solely with the oscillatory motion of
the electron driven by the external field. As R0 is increased,
the regularized free–free transition dipole moment gradually
approaches the (ε� − ε′

�′ )−2 divergence. Any finite-resolution
observable computed using this regularization procedure is
expected to converge to a physically sound value in the limit
of R0 → ∞ (or, optionally, � → ∞ and �/R0 → 0). The
role of the width � is to ensure a smooth decay and hence to
accelerate spectral convergence, since the artifacts associated
to the regularization exhibit a spectral width of the order of
1/�. In practice, the validity of this regularization procedure
is assessed through the convergence of the final results with
respect to R0 and �.

0 100 200 300 400 500 600
r (a.u.)

0.0
0.2
0.4
0.6
0.8
1.0

regularization function ξR

region of allowed overlap
 Δ

FIG. 1. Function ξ�
R0

(r ) with R0 = 350 a.u. and � = 100 a.u.
employed in this study to regularize the free–free dipole moments
expressed in the length form. The dashed domain represents the region
where bound and free functions can overlap.
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C. Two-photon dipole transition matrix elements

The two-photon dipole transition matrix elements
(2PTME), from the ground state of an atom or molecule
to a final state in the continuum associated with a channel �,
have the following expression:

M�E,g (ω) = 〈ψ�E |OG+(ωg + ω)O|�g〉, (18)

where G+(ω) = (ω − H + i0+)−1 is the retarded resolvent of
the field-free Hamiltonian H, |�g〉 is the ground-state wave
function of the system with energy Eg = h̄ωg , and O is the
dipole operator in the length form. One way to evaluate 2PTME
is to expand the intermediate resolvent in a complete set of
states. Assuming that such an expansion can be limited to
bound and single-ionization scattering states, the 2PTME is
expressed in the following form:

M�E,g (ω) =
∑
�′

∑∫
dE′ O�E,�′E′O�′E′,g

ω + ωg − E′ + i0+ , (19)

where the integral includes a summation over bound-state
energies as well as an integration over the continuum levels.
The index � is used to characterize electronic bound states
below the first ionization threshold as well as the degenerate
continuum levels. The evaluation of M�E,g (ω) in Eq. (19)
using variational scattering functions is the principal aim of
the present study. From a numerical standpoint, the elements
O�′E′,g and O�E,�′E′ must be computed using an energy mesh
adequate to perform a quadrature in the continuum. It is
important to pay particular attention close to resonances, where
the energy denominators become small and there are large
contributions to the sum over states. In order to ensure the
accuracy of (19), the dipole moments are finally interpolated on
a finer energy grid and the QUADPACK package [74] is employed
to evaluate the principal value P of the integral.

The ionization amplitudes in the perturbative regime can
be readily evaluated from M�E,g (ω). In the present situation
for which we consider a linearly polarized electric field to fix
ideas, E(t ) = E(t ) · ẑ, with Fourier transform (FT) F̃ (ω) =
(2π )−1

∫
E(t ) exp(iωt )dt , the two-photon amplitude takes the

well-known form [58]

A(2)
�E,g = −i

∫
F̃ (ωE,g − ω)F̃ (ω)M�E,g (ω)dω, (20)

where ωE,g = E − Eg . It is straightforward to obtain results
for various characteristics of the pulses (e.g., harmonic wave-
length, light intensity, or pump–probe time delay) as one only
needs to recompute the FT of the field and evaluate the simple
integral (20).

III. RESULTS AND DISCUSSION

To benchmark the present extension of the CK method to
compute continuum–continuum transitions in polyelectronic
systems, we consider the two-photon photoionization of the
helium atom in the proximity of the 2s2p 1P o autoionizing
state. This process is sufficient to illustrate the main aspects
of the approach and has already been the subject of extensive
theoretical and experimental investigations in the past. We will
consider only small-size, but quite accurate calculations to
test the new approach. It should be noted that the accuracy

of the results can in principle be systematically improved by
extending the size of the close-coupling expansion in Eq. (1).

A. Description of the scattering calculations

For the short-range orbitals, we employ the cc-pVQZ basis
set of Woon and Dunning [75], complementing it with s and
p diffuse orbitals with exponents 0.05 and 0.02. The basis
set is then used to compute He+ orbitals by diagonalizing
the one-electron Hamiltonian. A well-known difficulty in
photoionization is the accurate description of both the N

and (N + 1)-electron system from a single set of atomic or
molecular orbitals. Here, we improve the description of the
1s2 ground state by including the 1s Hartree-Fock orbital in
the construction of the orbital space that is used for both the
ions and the neutral. In the calculation of the scattering states,
besides the 1s He+ parent ion, we include also the 2s and
2p excited channels, whose energies are virtually exact. The
two-electron reference space is built out of four s orbitals
and two p orbitals, leading to a ground-state energy for the
neutral atom of −2.880 40 a.u., which is very close to the
Hartree-Fock limit and not far from the exact nonrelativistic
value (−2.903 72 a.u.). The resulting close-coupling expansion
in (1) includes a total of 145 CSFs.

As most quantum-chemistry codes, MESA is able to ac-
count for molecular symmetry in terms of the D2h point group
and its subgroups. In the case of linearly polarized light along
the ẑ axis, therefore, the He ground state belongs to the Ag

irreducible representation, and for the excited states we need
only consider the states with Ag and B1u symmetry. To simplify
the discussion, in the following we will hide this inessential
technicality and refer to state symmetry in their proper SO(3)
representation S, P , and D.

The calculations used for comparison are based on the
atomic STOCK code, which, for single-photon ionization pro-
cesses in stationary conditions, has proven to provide reliable
results [31,68,76]. The present calculations are based on a time-
dependent extension of the STOCK code [77]. For the present
purpose, it suffices to say that STOCK has been used to construct
a close-coupling basis equivalent to the one employed in
the CK calculation but in which the radial part of both the
localized and the continuum orbitals is expressed in terms of
a B-spline basis [78] with asymptotic node spacing �r = 0.4
a.u., reaching a maximum radius of approximately 600 a.u.
The parent-ion orbitals are virtually exact. The scattering states
ψ−

αE , where α is any channel open at the total energy E, are
obtained by solving the Lippmann-Schwinger equation, with
incoming boundary conditions at the edge of the quantization
box, using a method equivalent to the one explained in Sec. 3.4
of [31]. Thanks to the small number of channels, the solution
of the scattering problem is, within the chosen truncated
close-coupling space, also virtually exact. For the purpose of
comparing with the CK calculation, the continuum–continuum
matrix elements in STOCK are estimated using the same
regularization procedure discussed in Sec. II B 1. To compute
the effect of a sequence of pulses on the ground state of the
atom, the TDSE is numerically integrated in the spectral space
of the field-free Hamiltonian H0 projected on the B-spline
close-coupling basis, starting from the 1Se ground state and
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using the second-order unitary exponential propagator

U (t + dt, t ) = e−iH0dt/2e−iHI (t+dt/2)dt e−iH0dt/2e−iVCAP dt ,

(21)

where, in the STOCK code, HI (t ) = α �A(t ) · �p is the dipole
interaction operator in velocity form and VCAP is a complex-
absorbing potential [79] that prevents unphysical reflection of
the photoelectron wave packet from the box boundary. Since
the goal of the present calculation is to compare the result
of two separate methods, we have restricted the configuration
space to only the 1Se and 1P o symmetries, leaving out the
1De symmetry. The time-dependent wave function �(t ) is
expressed in the spectral basis of H0. As a consequence, the
action of H0 on the propagating wave function is exact, whereas
the action of the dipolar Hamiltonian is calculated with an iter-
ative Krylov-space method. Once the pulse has terminated, the
asymptotic photoelectron distribution is obtained by projecting
the two-electron wave packet on scattering solutions fulfilling
incoming boundary conditions.

B. Bound–free, free–free, and two-photon
dipole transition elements

1. Bound–free transition dipole moments

The consistency between single-channel continua, at ener-
gies below the 2s/2p threshold, computed with the MESA+CK
and with the STOCK code can be confirmed by comparing
the corresponding dipole transition matrix elements. Figure 2
shows the bound–free transition dipole moment between He
ground state and the 1P continuum near the (2s2p)1P o

1 reso-
nance. The resonance position differs by ∼ meV between the
two methods, which is a small discrepancy compatible with
the difference between the two radial bases (Gaussian functions
versus B-splines, in MESA and STOCK, respectively). The pho-
toionization cross sections computed with the two approaches
exhibit excellent agreement once the MESA calculations are
scaled by an overall factor of 1.2, arguably due to the difference
with which the transition of the continuum wave function,
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FIG. 2. Square of the bound–free transition dipole moment
|O�E,g|2 between He ground state �g and continuum state ��E ,
calculated using the Kohn method (black solid line) and STOCK (blue
dashed line).

from short to long radii, is accomplished in the two methods,
when a limited number of Gaussian functions in MESA+CK
are employed. The cross-section profile reproduces well the
experimental data [80].

2. Free–free transition dipole moments

We now consider the free–free transition dipole moments
O�E,�′E′ obtained in the length form of the dipole operator
using the continuum states from either the CK or the STOCK

code. The real and imaginary parts of the elements O�E,�′E′

are shown in Fig. 3 for transitions between two continuum
states ��′E′ and ��E with 1P and 1S symmetry, respectively.
We observe a striking agreement between the two completely
independent sets of calculations. The sharp horizontal and
vertical features near 35.6 and 33.2 eV photoelectron energy
correspond to the (2s2p)1P o

1 and (2s2)1Se
1 resonances, respec-

tively. The dipole moment diverges as (E − E′)−2 for E ≈ E′
[59,60], and the rapid oscillations of the dipole moments, from
negative to positive values around the diagonal E ≈ E′ (see
color scaling in Fig. 3), are due to our regularization procedure
in Eq. (16), where we set R0 = 350 a.u. and � = 100 a.u. (see
Fig. 1). This procedure restricts photon exchange to a finite
radial region, r � R0, which is a satisfactory approximation if
the change in radial momentum associated to the absorption or
emission of a probe photon ω is sufficiently large, (k − k′) 
1/R0, or, alternatively, ω  √

E/R0. In the test calculations
discussed below, where we combine XUV with either optical
or 800-nm near-infrared light, and with the present value of
R0, this condition is met—indeed, we find good agreement
with benchmark calculations. To describe the effect of infrared
light with longer wavelength, on the other hand, may require
extending R0 to larger values.

The study of He photoionization above the first excited
threshold is beyond the scope of this work, however, it is well
within the capability of the present approach. Highly excited
Rydberg states, which are well described in STOCK, can be
included in the Kohn method as well by adding very diffuse
Gaussian functions. Indeed, structure calculations of Rydberg
states up to principal quantum number n = 5 were successfully
performed using MESA [45].

3. Two-photon dipole transition elements

The bound–free O�E,g and free–free O�E,�′E′ transition
dipole moments can be combined to compute the 2PTME
M�E,g (ω). First, we recast Eq. (19) in the following way:

M�E,g (ω) =
∑
�′

P
∫

dE′O�E,�′E′O�′E′,g

ω + ωg − E′

− iπ
∑
�′

O�E,�′ω+ωg
O�′ω+ωg,g, (22)

where in our case, the final channel � corresponds to electronic
states with either 1S or 1D symmetry. For photoionization
leading to the He+(1s) ground state, the final photoelectron
angular momentum is thus either � = 0 or � = 2. In the
above expression, we discarded the contribution from excited
bound states, since it is negligible at the photoelectron energy
considered. Computing the principal part of the integral in
Eq. (22) using the QUADPACK [74] package, we have taken
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FIG. 3. Real (upper panels) and imaginary (lower panels) parts of the free–free transition dipole moments O�E,�′E′ as a function of E′

and E, from the 1P to 1S symmetries, calculated in the length gauge, using the Kohn (left panels) and the velocity gauge STOCK (right panels)
methods (see text for details).

an integration interval in E′ extending from 26 to 43 eV.
We have verified that this energy range is sufficient to ensure
the convergence of M�E,g (ω) in the energy region and light
frequency of interest.

The real part of M�E,g (ω) is shown in Fig. 4. The effect
of the (2s2p)1P o

1 resonance is clearly seen near ω = 58.6
eV. One can also observe in the 2PTME the signature of
high-lying Rydberg states with 1P o

1 symmetry. The band of
singular values of M�E,g (ω) at ω = E − ωg is associated to
the near singularity of O�E,�′E′ for E ≈ E′. We also recog-
nize the characteristic oscillations due to the regularization
procedure (16).

C. Ionization schemes and two-photon ionization probability

Attosecond spectroscopy enables us to study photoemission
in the time domain and access information on ultrafast pro-
cesses. In the RABBITT technique [69], an XUV attosecond
pulse train (APT), generated by the interaction between an

FIG. 4. Real part of M�E,g (ω) for a two-photon transition to the
final 1S electronic state leading to 2He+(1s ) product as a function of
the final electron energy E and the photon frequency ω.
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FIG. 5. Ionization schemes considered in this study: (a) two-
photon ionization with a combined XUV and IR or optical field, and
(b) RABBITT-like scheme with two XUV pulses with frequencies ω0

and ω separated by twice the IR frequency.

active medium and an intense VIS or IR pulse, is combined with
a delayed weak replica of the latter and used to ionize a target
atom or molecule. In traditional RABBITT, the APT comprises
only odd-order harmonics of the fundamental driving laser
frequency. In the weak-field regime, two distinct ionization
pathways interfere at a middle sideband SB2n; the first pathway
is characterized by the absorption of a photon from the
harmonic H2n+1 followed by the emission of an IR photon,
while the second pathway involves the absorption of a photon
from H2n−1 followed by the absorption of an IR photon. The
amplitudes for these two processes combine with different
relative phases as a function of the time delay τ between the
APT and the IR pulse. As a result, the interference between the
two amplitudes gives rise to a harmonic beating of the sideband
intensity at twice the IR frequency. This technique has been
extensively applied to measure photoemission delays in atoms
(see [23] and references therein) and, most recently, to study the
photoemission delay anisotropy near a Fano resonance in argon
[81]. Here, we propose to test the validity of our methodology
by considering a similar pump–probe scheme.

First, we benchmark the accuracy of two-photon ionization
amplitudes, which are central quantities in RABBIT spec-
troscopy, in the presence of just one XUV harmonics, as
illustrated in Fig. 5(a). The time-dependent vector potential
A(t ) = Aω0 (t ) + A	(t ), with A(t ) = A(t ) · ẑ, is formed out
of an XUV pulse with central frequency ω0, tuned at the
(2s2p)1P o

1 resonance, and an overlapping IR or optical field
of frequency 	 that induces absorption or emission of an
additional photon. The vector potential of the XUV pulse has
a Gaussian envelope with σ = 5.5 fs,

Aω0 (t ) = A0 cos(ω0t ) exp

(−4t2 ln 2

σ 2

)
, (23)

whereas the vector potential of the IR or optical field has a
cosine-square envelope, it contains N cycles of the central
carrier frequency, and is delayed by τ with respect to the center

of the XUV pulse,

A	(t, τ ) = A	 cos [	(t − τ )] cos2

(
	(t − τ )

2N

)
. (24)

The ionization by the XUV field gives rise to a main line
(ML) in the photoelectron spectrum, with a characteristic Fano
resonant modulation. The sidebands, for either IR photon
emission (SB−1) or absorption (SB1), shaped by both the
two-photon matrix element and the field spectrum, reproduce
the resonant profile with smoother features.

To assess the accuracy of A(2)
�E,g calculated in the CK

method, we have performed calculations varying the probe
frequencies, their duration, and relative delay. For all calcula-
tions, the XUV pulse has a peak intensity of 1011 W/cm2. Here,
we present the ionization probability to the � = 1S state only,
i.e., � = 0, and we rescale the ionization probability to obtain
an equal maximum of the peaks computed with the STOCK

and the 2PCK methods. In contrast with the 2PCK method, the
TDSE calculations in STOCK were performed in velocity form.
Agreement between calculations obtained in different gauges
is strong evidence of the robustness of the calculation.

In the first set of calculations, we use an optical field with
wavelength λ = 300 nm, time delay τ = 0, intensity 2.5 ×
1011 W/cm2, and two different pulse lengths with FWHM
30 fs and 50 fs. For such a small wavelength, the two-photon
transition matrix element O�′E′,�E is sampled in a region with
E′ − E ≈ 4 eV, which is very far from the diagonal band
E′ = E where the effect of the regularization procedure is
most visible. It should be noted, however, that the 2PTME
in Eq. (19) involves an integration over the complete energy
interval, and hence the effect of the regularization procedure
cannot be entirely eliminated.

Figure 6 shows the partial ionization probability in 1S

symmetry for both pulses at SB−1. The STOCKand Kohn
methods are in quite good agreement. In both cases, the
resonant profile exhibits a small shoulder. As the pulse length
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FIG. 6. Two-photon ionization probability from helium ground
state to the final � = 1S state at SB−1 calculated using both STOCK

and Kohn methods. The optical pulse has intensity 2.5×1011 W/cm2,
wavelength 300 nm, and FWHM 30 fs in (a) and (b), and 50 fs in (c)
and (d).
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FIG. 7. Same as Fig. 6 for an infrared pulse with wavelength
785 nm and FWHM 26 fs, calculated at SB−1 in (a) and (b), and
at SB1 in (c) and (d).

is increased, in both calculations the shoulder becomes less
pronounced, the main peak narrows, and it is accompanied by
a flat pedestal. There are also some differences. In the Kohn
method the shoulder is more pronounced and broader for the
30-fs FWHM pulse, whereas the pedestal is smaller for the
50-fs FWHM pulse.

Next, we consider a probe field with a larger wavelength λ =
785 nm, intensity 2×1011 W/cm2, and pulse duration FWHM
26 fs. The results at both sidebands are shown in Fig. 7. Once
again, the two methods are in good agreement, with a shoulder
well delimited by a clear minimum. The agreement is nearly
perfect for the upper sideband, SB1, while the value of the
minimum at SB−1 differs slightly in the two calculations.

Figure 8 shows the result of a similar calculation conducted
employing an IR pulse with a slightly longer wavelength, λ =
800 nm, and significantly shorter duration, 13 fs FWHM. As
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FIG. 8. Same as Fig. 7 for an infrared pulse with wavelength
800 nm and FWHM 13 fs.

expected, the peaks are broader and the resonance modulation
on the ionization probability is less pronounced than for the
case of the pulse durations of FWHM 26 fs (see Fig. 7).

The results presented so far have been obtained setting
the pump–probe delay to zero (τ = 0). This is because the
two-photon scheme examined in Fig. 6(a) does not give rise
to multiple interfering ionization pathways, and hence the
photoelectron spectrum does not exhibit any rapid sinusoidal
modulation as a function of the time delay. Conversely, any
change in the two-photon ionization probability as a function
of τ is a sensitive probe of the accuracy of the Kohn calculation.
Here, we use again a short pulse (λ = 800 nm and FWHM
13 fs) and plot in Fig. 9 the 1S ionization probability at SB1,
calculated with the two methods, at τ = −1.45, 0, and 1.45 fs.
Note the value τ = 1.45 fs is only slightly larger than half a
period of the IR, but a significant change is seen compared to
zero time delay. In this case, the two methods are in excellent
agreement.

Finally, we consider the RABBITT scheme presented in
Fig. 5(b). Here, we use again an IR pulse with wavelength
800 nm and FWHM 26 fs to limit envelope effects for time
delays spanning a few IR periods around τ = 0. We use two
Gaussian XUV pulses: one with central frequency ω0 tuned at
the resonance and which gives rise to the two-photon amplitude
A(2)

R at SB1, and one with central frequency ω1 = ω0 − 2	,
giving rise to a nonresonant two-photon amplitude A(2)

NR at
SB1. The resulting total 1S photoelectron amplitude isA(2)

�E,g =
A(2)

R + A(2)
NR . The photoelectron spectrum is
∣∣A(2)

�E,g

∣∣2 = ∣∣A(2)
R

∣∣2 + ∣∣A(2)
NR

∣∣2

+ 2
∣∣A(2)

R

∣∣∣∣A(2)
NR

∣∣ cos(2	τ + φ), (25)

where

A(2)
R = ∣∣A(2)

R

∣∣ei(φR−	τ ); A(2)
NR = ∣∣A(2)

NR

∣∣ei(φNR+	τ ), (26)

with φ = φR − φNR . The phases φR and φNR are the resonant
and nonresonant two-photon ionization phases, respectively.
To a good approximation, |A(2)

R | and |A(2)
NR| are independent

of the time delay in the neighborhood of τ = 0. As a result,
the apparent phase shift of the 2	 oscillation of the signal
coincides with φ. Therefore, instead of fitting the signal as a
function of τ to compute φ, we can directly extract it from the
ab initio amplitudes computed at τ = 0 as

φ = arg
[
A(2)

R A(2)∗
NR

]
. (27)

The resulting φ, shown in Fig. 10 as a function of the photo-
electron energy, exhibits the characteristic sigmoidal resonant
modulation observed in past experimental and finite-pulse
theoretical studies [23,58,70,82,83]. Using a longer pulse and
a methodology similar to the rainbow RABBITT technique
would enable the extraction of the 2PTME using the Kohn
method.

So far, our implementation of the two-photon Kohn method
has shown a convincing agreement with the STOCK method,
which supports the idea that it can represent a viable theoretical
approach to the attosecond spectroscopy of molecules in a
perturbative regime. Yet minor differences with the benchmark
and possible improvements deserve some comments.
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FIG. 9. Same as Fig. 6 at the sideband SB1 for an infrared pulse with wavelength 800 nm and FWHM 13 fs, and for a time delay (a)
τ = −1.45 fs, (b) τ = 0 fs, and (c) τ = 1.45 fs.

First, the results of one- and two-photon ionization in many-
body systems on a hybrid basis are very sensitive to the level
at which correlation is treated, as well as to the convergence of
the radial basis in individual close-coupling channels. Whereas
the description of He+ states is essentially exact and the He
ground state is computed with comparable accuracy, in the two
approaches, the scattering states in the STOCKmethod are less
constrained and hence supposedly more accurate than those
obtained with the relatively small-size calculation used in the
Kohn method.

Second, the finite-pulse calculations with the MESA+CK and
the simulations with the STOCK method are computed in two
different gauges, which are expected to coincide only in the
limit of a complete basis for any model Hamiltonian with a
local potential.

Third, the regularization procedure used in the Kohn method
to compute free–free transition dipole moments in length
form is expected to have some repercussion on the final
results. This approximation can be improved by increasing
the grid size. In the present implementation, however, the
free–free integrals are calculated by mapping the continuous
functions on a three-dimensional grid. As a result, the size of
the calculation increases with the cube of the linear size of
the quantization box, which becomes rapidly too expensive
as the maximum radius is increased. This limitation can be
circumvented in future implementations, since at distances
larger than the region where the Gaussian primitive functions
have an appreciable value, the free–free integrals can be
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ad
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FIG. 10. Phase of the two-photon ionization amplitude in 1S

symmetry extracted using the RABBITT technique (see text for
details).

computed on a one-dimensional radial grid, which would
drastically reduce the size of the calculation. Another pos-
sibility is to use analytical values between shifted Coulomb
functions beyond a given boundary, regularized as prescribed
in Refs. [59] and [60]. Finally, the Kohn method can be
extended to calculate transition dipole moments in velocity
form where only simple poles exist and an exact formula can be
used.

IV. CONCLUSIONS AND OUTLOOK

We have developed and presented a method to compute
atomic and molecular pump–probe photoelectron spectra in
the perturbative regime, based on variational multielectron
continuum wave functions obtained from the complex vari-
ational Kohn method. We have used two-photon ionization
of helium near the (2s2p)1P o

1 resonance as a proof of princi-
ples of our approach and compared it with results obtained
using STOCK, an atomic B-spline close-coupling package.
The free–free transition dipole moments obtained in the two
methods are in remarkable agreement. We have also compared
the photoelectron spectra predicted by the two methods for
various combinations of XUV and optical or IR pulses with
different wavelengths, lengths, and delays, again finding good
agreement.

Our implementation of the Kohn method can efficiently
compute one- and two-photon ionization amplitudes and can
be applied to large molecules. It could be used to compute
both integral and angle-resolved observables in pump–probe
experiments, such as product yields in molecular dissociation.
In principle, the perturbative approach can be extended to com-
pute still higher-order multiphoton amplitudes, which would
open the way to perturbative ab initio estimates of attosecond
transient absorption spectra in the weak-field regime.
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