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Improved one-dimensional model potentials for strong-field simulations
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Based on a plausible requirement for the ground-state density, we introduce an alternative one-dimensional
(1D) atomic model potential for the 1D simulation of the quantum dynamics of a single active electron atom
driven by a strong, linearly polarized few-cycle laser pulse. The form of this density-based 1D model potential also
suggests improved parameters for other well-known 1D model potentials. We test these 1D model potentials in
numerical simulations of typical strong-field physics scenarios and we find an impressively increased accuracy of
the low-frequency features of the most important physical quantities. The structure and the phase of the high-order
harmonic spectra also have a very good match to those resulting from the three-dimensional simulations, which
enables one to fit the corresponding power spectra with the help of a simple scaling function.
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I. INTRODUCTION

Atomic and molecular physics has witnessed a revolution
due to the appearance of attosecond pulses [1–14]. True
understanding of the phenomena in attosecond and strong-field
physics often needs the quantum evolution of an involved
atomic system driven by a strong laser pulse [15–21]. How-
ever, an analytic or even numerically exact solution of the
corresponding Schrödinger equation is beyond reach in this
nonperturbative range, except for the simplest cases. There-
fore, approximations are unavoidable and very important.

For linearly polarized pulses, the main dynamics happens
along the electric field of the laser pulse which underlies
the success of some one-dimensional (1D) approximations
[22–33]. These typically use various 1D model potentials to
account for the behavior of the atomic system. However, the
particular model potential chosen heavily influences the 1D
results, and their comparison with the true three-dimensional
(3D) results is usually nontrivial. One of these important
deviations is that the dipole moment, created by the same
electric field, may have much larger or much smaller values
in the 1D than in the 3D simulation.

In the present paper, we introduce and test 1D atomic
model potentials for strong-field dynamics driven by a lin-
early polarized laser pulse. Our key idea is to require the
ground-state density of the 1D model to be equal to the
reduced 3D ground-state density, obtained by integrating over
spatial coordinates perpendicular to the direction of the laser
polarization. According to density functional theory, this 1D
ground-state density determines the corresponding 1D model
potential up to a constant, which we set by matching the
ground-state energies. Comparison of the resulting formula
with well-known 1D model potentials inspires us to use some
of the latter with improved parameters. Then we test these
improved 1D model potentials by applying them in careful
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numerical simulations of strong-field ionization by a few-cycle
laser pulse. Based on these results we make a conclusion about
the best of these 1D model potentials. We use atomic units in
this paper.

II. 3D AND 1D MODEL SYSTEMS

A. 3D reference system

First, we define the 3D system which we aim to model
in one dimension. We write the Hamiltonian H 3D

0 of a 3D
hydrogen atom or hydrogenlike ion in cylindrical coordinates
ρ =

√
x2 + y2 and z as

H 3D
0 = Tz + Tρ − Z√

ρ2 + z2
, (1)

where Z is the charge of the ion core (Z = 1 for hydrogen)
and the two relevant terms of the kinetic energy operator are
given by

Tρ = − 1

2μ

[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ

]
, Tz = − 1

2μ

∂2

∂z2
, (2)

where μ denotes the (reduced) mass of the reduced system. By
solving the equation

H 3D
0 ψ100(z, ρ) = E0ψ100(z, ρ), (3)

we get the well-known ground-state energy and wave function
of the Coulomb problem [34,35] as

E0 = −μZ2

2
, ψ100(z, ρ) = N e−μZ

√
ρ2+z2

, (4)

where N is a real normalization factor. We consider the action
of a linearly polarized laser pulse on this atomic system in the
dipole approximation by the potential

Vext(z, t ) = zEz(t ) (5)
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and seek solutions of the time-dependent Schrödinger equation

i
∂

∂t
�3D(z, ρ, t ) = [

H 3D
0 + Vext(z, t )

]
�3D(z, ρ, t ) (6)

that start from the ψ100(z, ρ) ground state at t = 0, and we
compute it up to a specified time Tmax. This time-dependent
Hamiltonian still has axial symmetry around the direction of
the electric field of the laser pulse, which makes the use of
cylindrical coordinates practical. For the efficient numerical
solution of the time evolution in real space, we use the
algorithm described in [36] which incorporates the singularity
of the Hamiltonian directly, using the required discretized
Neumann and Robin boundary conditions.

B. 1D model system

In order to model the above-described 3D time-dependent
process in one dimension, it is customary to assume a 1D
atomic Hamiltonian of the following form:

H 1D
0 = Tz + V 1D

0 (z), (7)

where V 1D
0 (z) is an atomic model potential of choice. Then we

seek solutions of the time-dependent Schrödinger equation

i
∂

∂t
�1D(z, t ) = [

H 1D
0 + Vext(z, t )

]
�1D(z, t ), (8)

where the external potential Vext(z, t ) is given in Eq. (5). In this
article we introduce an alternative form of V 1D

0 (z) to model
strong-field processes physically as correctly as possible. But
before doing so, let us shortly recall some of the 1D potentials
used earlier. We then propose certain improvements of these
known formulas aiming that the resulting 1D simulations
reproduce the 3D system’s strong-field response quantitatively
correctly.

C. Conventional 1D model potentials

There are a number of well-known 1D atomic model
potentials in the literature [26–28], having their advantages and
disadvantages. Here we summarize the basics of two of these,
which we think to be the most important for the modeling of
strong-field phenomena.

The soft-core Coulomb potential is defined as

V 1D
0,Sc(z) = − Z√

z2 + α2
, (9)

where the smoothing parameter α is usually adjusted to match
the ground-state energy to a selected single electron energy.
For μ = 1, Z = 1, and α2 = 2, its ground-state energy and
ground state can be used as a 1D model hydrogen atom:

E0,Sc = −1

2
, ψ0,Sc(z) = NSc(1 +

√
z2 + 2)e−√

z2+2, (10)

where NSc is the normalization factor. The most important fea-
tures of this model potential are that it is a smooth function, and
it has an asymptotic Coulomb form and Rydberg continuum.
The energy of its first excited state is E1,Sc = −0.2329034.

The 1D Dirac delta potential [29–31]

V 1D
0,DD(z) = −Zδ(z) (11)

has the following ground-state energy and ground state:

E0,DD = −Z2

2
, ψ0,DD(z) =

√
Ze−Z|z|, (12)

for μ = 1. The singularity of V 1D
0,DD(z) at z = 0 is sometimes

considered a disadvantage, but this gives rise to a Robin
boundary condition, just like the Coulomb singularity does
in three dimensions. Note that the ground state eigenfunction
of this potential shows the same exponential form and cusp as
that of the 3D hydrogen atom, while the corresponding energy
eigenvalue is also the same (with Z = 1).

Despite these facts, the experience shows that Eqs. (9) and
(11) do not give strong-field simulation results that would be
quantitatively comparable to those of the reference 3D system
(cf. [28,37,38]), therefore, the model system parameters need
to be manually adjusted, for example, by changing the strength
of Vext(z, t ).

III. DENSITY-BASED MODEL POTENTIALS

A. Derivation of the 1D analytic model potential

As an alternative to the conventional potentials we now
propose another 1D potential to be denoted here by V 1D

0,M(z).
In view of its peculiarities, we then also suggest certain
improvements in the previously known 1D model potentials.

Our inspiration of deriving this alternative model potential
originated from the ground-state density functional theory of
multielectron atoms. More specifically, the following deriva-
tion is analogous to the derivation of the Kohn-Sham potential
of a helium atom with a single orbital: knowing the correct
reduced (single-particle) density [39], one can invert the
Schrödinger equation to determine the Kohn-Sham potential
[40]. In this way one can model the ground state of the system
as accurately as it is possible with a single orbital. However, in
the present paper we consider just single active electron atoms
and we make the analogous reduction from the 3D electron
coordinates to the z coordinate of the single electron.

For developing our 1D model potential, we need the 1D
reduced density of the 3D ground state that is defined by

�100
z (z) = 2π

∫ ∞

0
|ψ100(z, ρ)|2ρ dρ. (13)

After the substitution of Eq. (4) for the integrand, we can
perform this integral analytically, which yields the closed form

�100
z (z) = μZ

2
(2Zμ|z| + 1)e−2Zμ|z|. (14)

Our key idea is now to require the 1D model system to
have its ground-state density identical with �100

z (z). According
to density functional theory, this 1D ground-state density
determines the corresponding 1D model potential V 1D

0,M(z) up
to a constant. We can calculate this potential straightforwardly:
we define the ground state of the 1D model atom obviously as
ψ0(z) = √

�100
z (z), i.e.,

ψ0(z) =
√

μZ

2

√
2μZ|z| + 1e−μZ|z|, (15)

and then we invert the eigenvalue equation of H 1D
0 as

V 1D
0,M(z) = E0,M + 1

ψ0(z)

1

2μ

∂2

∂z2
ψ0(z). (16)

023401-2



IMPROVED ONE-DIMENSIONAL MODEL POTENTIALS FOR … PHYSICAL REVIEW A 98, 023401 (2018)

FIG. 1. Plot of the analytic potential (21) (in purple) and its
regularized Coulomb part [second term of Eq. (21), in cyan], for
Z = 1, μ = 1. We also plot the difference Ṽ 1D

0,M(z) − V 1D
0,M(z) (see

the discussion in Sec. IV) calculated with step size �z = 0.2, and
magnified by a factor of 5 (in red). This is to illustrate the numerical
correction to be introduced by Eq. (26).

After performing the differentiation we get

V 1D
0,M(z) = E0,M + 2μ3Z4|z|2 − μZ2

(2μZ|z| + 1)2 . (17)

In order to determine the ground-state energy, we rewrite this
potential as

V 1D
0,M(z) = E0,M + μZ2

2

(2μZ|z| + 1)(2μZ|z| − 1) − 1

(2μZ|z| + 1)2 ,

(18)
and then we impose the asymptotic value

lim
|z|→∞

V 1D
0,M(z) = 0, (19)

which yields the ground-state energy

E0,M = E0 = −μZ2

2
. (20)

Using this value, after some algebraic manipulations we arrive
at the following instructive form of our density-based 1D
atomic model potential:

V 1D
0,M(z) = − 1

2μ

1

22
(|z| + 1

2μZ

)2 −
1
2Z

|z| + 1
2μZ

. (21)

Let us make a few important notes. It is the asymptotic tail of
the reduced 1D ground-state density �100

z (z) that determines
the ground-state energy E0,M in such a nontrivial way that it
is identical to the ground-state energy of the 3D system, E0.
The asymptotic tail of �100

z (z) also determines the regularized
1D Coulomb potential with effective charge 1

2Z which is the
second term in Eq. (21). This term is dominant over the short-
range first term of Eq. (21) not only in the asymptotic tail
but also around the center at least by a factor of 2 (see the
corresponding curves of Fig. 1). The minima of both terms of
V 1D

0,M(z) at z = 0 decrease with increasing Z or μ. For Z =
1 and μ = 1, the energy of its first excited state is E1,M =
−0.0904408 approximately.

B. Improved 1D model potentials

The results of Sec. III A, especially the somewhat surprising
value of an effective charge of 1

2Z, suggested by the second
term of the density-based model potential (21), inspire us to
use the 1D soft-core Coulomb potential and a 1D regularized
Coulomb potential with accordingly modified values of their
parameters. As we will see, these modifications lead indeed to
improved results in strong-field simulations.

We use 1
2Z in the nominator of the soft-core Coulomb

potential, which then requires to change also the parameter
α in order to maintain that its ground-state energy matches the
3D ground-state energy. These lead us to the following formula
of the improved 1D soft-core Coulomb potential with μ = 1:

V 1D
0,M,Sc(z) = −

1
2Z√

z2 + 1
4Z2

with E0,M,Sc = −Z2

2
, (22)

which has the correct 1
2Z/|z| asymptotic behavior when

|z| → ∞. The energy of its first excited state is E1,M,Sc =
−0.1058670.

We also introduce the improved 1D regularized Coulomb
potential as

V 1D
0,M,C(z) = −

1
2Z

|z| + a
, (23)

where the value of the parameter a is determined by requiring
that the ground-state energy is E0,M,C = −μZ2

2 . For Z = 1 we
set a ≈ 0.32889, which yields E0,M,C ≈ −0.5000007 (for μ =
1). We note that this has been computed numerically with the
spatial step size �z = 0.2.

The sophisticated numerical method to be outlined in the
next section enables us to make additional refinements regard-
ing the 1D density-based potential, as well as the 1D delta
potential. These improvements are explained below, especially
by the formulas given in Eqs. (26) and (27).

IV. NUMERICAL METHODS OF THE SOLUTION

Usually, the time-dependent Schrödinger equation (8) must
be solved numerically in the nonperturbative regime. We
discretize the time variable with time steps �t as tk = k�t ,
and the spatial coordinate with steps �z as zj = j�z (k, j are
integer indices). The discretized wave function is written as
�1D(zj , tk ). We write the discretized form of the 1D atomic
model Hamiltonian as

H̃0 = T̃z + V 1D
0 (zj ), (24)

where, based on our experiences detailed in [36,38], we use
the following 11-point finite difference method [41] for the
discretization of the kinetic energy operator Tz:

T̃z�(zj , tk ) = − 1

2μ

5∑
s=−5

c
(5)
|s| �

1D(zj + s�z, tk ) (25)

(see Table 1 of [41] for the coefficients c). This is accurate
up to �z10 for smooth functions (it is also limited by the
Fourier representation). Then, the discrete Hamiltonian be-
comes an 11-banded diagonal matrix which operates on the
column vector of the discretized wave function in coordinate
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representation. Regarding the use of the atomic model potential
in numerical simulations, this is the most important step since
it defines the numerical eigensystem of the atom.

Regarding the time evolution, we use a three-step splitting
of the U (t, t + �t ) evolution operator which has an accuracy
of �t4, and each of its substeps are propagated using the usual
second-order Crank-Nicolson method [42] with a discrete
second-order effective Hamiltonian (the particular formulas
can be found in Secs. 3.1 and 4.1 in [36]). We find ground
states and ground-state energies by performing imaginary time
propagation [43,44]. For integrations, we use the quadrature
formula

∫
f (z)dz ≈ ∑

j f (zj )�z because the numerical time
evolution is unitary with respect to this summation.

When using the potential (22) the method described above
can be applied without further complications. In the case of
our density-based model potential a refinement is necessary as
Eq. (21) is not differentiable in the origin, just as the true 3D
Coulomb potential. Therefore, the ground state and energy of
the discrete Hamiltonian (24) with V 1D

0,M(zj ) is accurate only
up to �z2. This is the reason why its ground-state density does
not equal �100

z (zj ) accurately enough, unless �z is extremely
small. We avoid this inaccuracy in the following way. Instead
of V 1D

0,M(zj ), we use its following discretized form in the
computations:

Ṽ 1D
0,M(zj ) = E0 − 1

ψ0(zj )
T̃zψ0(zj ). (26)

This definition of Ṽ 1D
0,M(zj ) ensures that the discretized ground-

state vector ψ0(zj ) is the eigenvector of Eq. (24) with Ṽ 1D
0,M(zj )

and the corresponding energy is Ẽ0,M = E0, numerically ex-
actly. The energy of the corresponding first excited state (with
�z = 0.2) is Ẽ1,M = −0.0904385, which is close enough to
E1,M. We have plotted the difference Ṽ 1D

0,M(z) − V 1D
0,M(z) in

Fig. 1, magnified by a factor of 5.
The discretized form of the analytic model potential,

Ṽ 1D
0,M(zj ), suggests also a modified discretization of the Dirac

delta potential that we introduce as

Ṽ 1D
0,DD(zj ) = E0,DD − 1

ψ0,DD(zj )
T̃zψ0,DD(zj ) (27)

using the corresponding exact ground state ψ0,DD(zj ) and
energy E0,DD. This is a finite discretized potential which
eliminates any singular feature from the corresponding Hamil-
tonian matrix. As we show in Appendix B, such definitions
enable consistent and accurate simulations with high-order
finite differences; therefore, it is a valid choice to define a
potential using numerical inversion from its ground state.

V. RESULTS AND COMPARISON OF THE 1D AND 3D
CALCULATIONS

In this section, we present and compare the results of strong-
field simulations based on the 1D model potentials discussed in
the previous sections. We selected the mean value of the dipole
moment 〈z〉(t ) and its standard deviation σz(t ), the mean value
of the velocity 〈vz〉(t ), and the ground-state population loss
g(t ) to characterize the dynamics resulting from the solutions
of Eq. (8) with the various model potentials and from the
solution of Eq. (6) as a reference. We also investigate the

relation between the resulting various dipole power spectra
p(f ), which is one of the most important quantities for high-
order harmonic generation [17,45,46] and attosecond pulses.
For the formulas of these physical quantities and for some
details about the numerical accuracy of the simulations, see
Appendixes A and B.

In these simulations, we model the linearly polarized few-
cycle laser pulse with a sine-squared envelope function. The
corresponding time-dependent electric field has nonzero values
only in the interval 0 � t � NCycleT according to the formula

Ez(t ) = F sin2

(
πt

2NCycleT

)
cos

(
2πt

T

)
, (28)

where T is the period of the carrier wave, F is the peak electric
field strength, and NCycle is the number of cycles under the
envelope function. Unless otherwise stated, we set NCycle =
3 and T = 100; the latter corresponds to a ∼725 nm near-
infrared carrier wavelength. From Fig. 2 on, the vertical dashed
lines denote the zero crossings of the respective Ez(t ) electric
field.

We consider hydrogen in most of the simulations; i.e., we
use Z = 1 and μ = 1 if not otherwise stated explicitly. We set
typically �z = 0.2 and �t = 0.01 since these are sufficient
for the numerical errors to be within line thickness. We use
box boundary conditions and we set the size of the box to be
sufficiently large so that the reflections are kept below 10−8

atomic units.
The 3D reference results [i.e., the simulation results of the

true 3D Schrödinger equation (6)] are plotted in Figs. 2–8
in blue and are labeled “3D-reference.” The 1D simulation
results and their respective colors are plotted as follows: our
density-based model potential from numerical inversion (26)
in purple, our improved soft-core Coulomb potential (22) in
gold, our improved regularized Coulomb potential (23) in red,
the conventional soft-core Coulomb potential (9) in green, and
the discretized Dirac delta potential (11) in dark blue.

A. Low-frequency response

First, we discuss the results of a moderately strong laser
pulse having a peak electric field value of F = 0.1. We plot the
corresponding time-dependent mean values 〈z〉(t ) (the magni-
tude of which equals the dipole moment in atomic units) and
their standard deviationsσz(t ) in Fig. 2, and the time-dependent
mean velocities 〈vz〉(t ) and the ground-state population losses
g(t ) in Fig. 3 for all the 1D model systems listed above.
These curves justify that the simulation results obtained with
our density-based model potential and the improved model
potentials are already quantitatively comparable to the 3D
results; i.e., these model potentials capture the essence of the
3D process. This fact is in strong contrast with the poor results
of the conventional 1D soft-core and 1D Dirac delta potentials,
which is caused mainly by their too-weak and too-strong
binding forces, respectively.

The graphs of the improved soft-core Coulomb potential are
clearly the closest to the 3D reference in most of these cases;
i.e., this potential provides the quantitatively best model of the
3D case, despite that its ground-state density is not the exact
reduced density of the 3D case. The results of our numerical
density-based model potential are somewhat less close to the
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(a) (b)

FIG. 2. Time dependence of (a) the mean values 〈z〉(t ) and (b) the standard deviations σz(t ) using different 1D model potentials, under the
influence of the same external field with F = 0.1, NCycle = 3, and T = 100. Results of the corresponding 3D simulation are plotted in blue.

3D reference. Although these simulations start from the exact
reduced density of the 3D case, the electron is somewhat more
strongly bound to the ion core than is optimal. The results
obtained using the improved regularized Coulomb potential
are very close to those of the density-based model potential,
but the former potential is even somewhat stronger than needed.

In a typical strong-field simulation, the ground-state pop-
ulation loss g(t ) is close to the probability of ionization.
Due to the presence of the transverse degrees of freedom in
three dimensions, it is then reasonable that the g(t ) values are
somewhat larger in a 3D simulation than in one dimension.
Note that the g(t ) curves of the 1D simulations follow very
well the 3D reference curve in accordance with this.

The lack of the transverse degrees of freedom affects the
〈vz〉(t ) curves of the 1D simulations in a different way: These

exhibit the high-frequency oscillations with larger amplitude
than the 3D reference curve. This can be explained by taking
into account that rescattering on the ion core is a much stronger
factor in one dimension, and that the integration over the
transverse directions decreases the effect of the 3D density
oscillations on the reduced mean values. We analyze this in
more detail in the next section.

In order to demonstrate the capabilities of the density-
based and the improved 1D model potentials, we selected the
time-dependent dipole moment 〈z〉(t ) to present the results
of four different scenarios in Figs. 4 and 5. Since the curves
corresponding to the density-based model potential are very
close to those corresponding to the improved regularized 1D
Coulomb potential, we do not plot the 〈z〉(t ) of this latter
potential in all of our figures.

(a) (b)

FIG. 3. Time dependence of (a) the ground-state population loss g(t ) and (b) the mean velocities 〈vz〉(t ) using different 1D model potentials,
under the influence of the same external field with F = 0.1, NCycle = 3, and T = 100. Results of the corresponding 3D simulation are plotted
in blue.
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(a) (b)

FIG. 4. Time dependence of mean values 〈z〉(t ) using different 1D model potentials, under the influence of the external field with (a)
F = 0.05 and (b) F = 0.15, NCycle = 3, and T = 100. Results of the corresponding 3D simulations are plotted in blue.

In Fig. 4(a) we plot our simulation results for hydrogen,
now with a weaker field of F = 0.05 which is in the tunnel
ionization regime of hydrogen, while Fig. 4(b) corresponds to
a stronger field of F = 0.15. Both of these figures clearly show
that the improved 1D soft-core Coulomb potential provides the
best results. Note that the change of F in the above range results
in a change of more than two orders of magnitude in the peak
value of 〈z〉(t ).

Figure 5(a) shows the results for a Ne atom driven by
a field of F = 0.15. Here we model the 3D neon atom
in the single active electron approximation [17] simply by
setting the Coulomb charge Z

(SAE)
Ne = 1.25929 in order to

match the ionization potential to the experimental value. (For

the improved regularized Coulomb potential V 1D
0,M,C we set

a
(SAE)
Ne ≈ 0.26707525, which yields E0,M,C ≈ −0.792905.)

The accuracy of these 1D results is somewhat lower around
the peak and in the last half-period of the laser pulse than in
the case of hydrogen, and the improved soft-core Coulomb
potential performs considerably better overall than the two
other model potentials. By changing the Coulomb charge Z

within a reasonable range in order to model different noble gas
atoms, we have obtained similarly accurate results.

Figure 5(b) shows 〈z〉(t ) for a hydrogen atom, now driven
by a longer laser pulse of shorter carrier wavelength, corre-
sponding to the parameters T = 80, F = 0.1, and NCycle = 6.
The 1D model potentials work similarly accurately for this

(a) (b)

FIG. 5. Time dependence of mean values 〈z〉(t ) using different 1D model potentials. (a) Single active electron (SAE) model of a neon atom
with Z

(SAE)
Ne = 1.25929, driven by the external field with T = 100, F = 0.15, and NCycle = 3. (b) Hydrogen with Z = 1, driven by the external

field with T = 80, F = 0.1, and NCycle = 6. Results of the corresponding 3D simulations are plotted in blue.
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(a) (b)

FIG. 6. (a) Logarithmic plot of the power spectra vs the harmonic order, i.e., p(nf1) (where f1 = 1/T = 0.01 a.u. is the fundamental
frequency). (b) Phase of the dipole acceleration spectra vs the harmonic order (upshifted by 2π for the 3D case). We plot the results for the
density-based 1D model potential (purple) and for the improved soft-core Coulomb potential (gold) in comparison with the 3D reference (blue).
The parameters F = 0.1, NCycle = 3, T = 100, and Z = 1 are the same as for Figs. 2 and 3.

longer laser pulse as in the case presented in Fig. 2(b), until
the recollisions with the ion core gradually decrease the match
between the 1D and 3D cases in the last two periods of the
pulse.

Our density-based 1D model potential and both of the
improved 1D model potentials exhibit an impressive improve-
ment in the accuracy of the low-frequency response of typical
strong-field processes, in contrast to the two conventional
model potentials. These results are even more convincing if we
take into account that 〈z〉(t ), σz(t ), and g(t ) are very sensitive
to almost any change in the physical parameter values.

B. High-order harmonic spectra

In strong-field physics, the accurate computation of the
high-order harmonic spectrum is especially important, because
this represents the highly nonlinear atomic response to the
strong-field excitation, with well-known characteristic features
[6,45–48]. Besides the high-order harmonic yield, the suitable
phase relations enable one to generate attosecond pulses of
XUV light [1–3,49–52].

In Fig. 6(a), we plot the power spectrum of the dipole
acceleration [see Eq. (A7)] for the parameters corresponding
to Figs. 2 and 3.

(a) (b)

FIG. 7. Logarithmic plots of the scaled power spectra p(nf0)/s(nf0) using the model systems of Fig. 6 with (a) F = 0.10 and (b) F = 0.15,
in comparison with the 3D reference (blue).
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(a) (b)

FIG. 8. Logarithmic plots of the scaled power spectra p(nf0)/s(nf0) obtained using the density-based 1D model potential (purple) and the
improved soft-core Coulomb potential (gold), in comparison with the 3D reference (blue). (a) Single active electron model of a neon atom with
Z

(SAE)
Ne = 1.25929 driven by the external field with T = 100, F = 0.15, and NCycle = 3. (b) Hydrogen with Z = 1, driven by the external field

with T = 80, F = 0.1, and NCycle = 6.

In agreement with the previous section, the power spectra
obtained using the 1D model potentials agree very well with
the 3D reference simulation result up to the fifth harmonic. For
higher frequencies, the 1D spectra gradually deviate and give
values that are one to two orders of magnitude larger than the
3D reference values. The explanation given for the oscillations
of the 〈vz〉(t ) curves in Fig. 3(b) applies also here: 1D simula-
tions exaggerate the effect of the ion core, mainly via rescat-
tering, while the effect of the 3D density oscillations weakens
in the reduced mean values obtained from the 3D simulation.

However, the structure of the spectra in Fig. 6(a) is remark-
ably similar and the match of the spectral phase, shown in
Fig. 6(b), is very good, especially in the higher frequency range,
which is of fundamental importance for isolated attosecond
pulses. These inspired us to create a scaling function which
transforms the spectra obtained with the 1D simulation to
fit the 3D reference spectrum as correctly as possible. Since
the improved soft-core Coulomb potential (22) gives the best
low-frequency results, we focus only on this model potential
in the following.

Examination of the ratio of the magnitudes of the 1D power
spectrum to the 3D power spectrum in our simulations with
different parameters revealed that the scaling function

s(f ) = min(1 + 0.03(100f − 1)2, 1 + |100f − 1|) (29)

transforms the magnitude of the power spectra obtained using
the improved 1D soft-core Coulomb potential to properly fit the
corresponding 3D power spectra. In Fig. 7(a) we plot the scaled
1D power spectrum p(f )/s(f ) which gives a very good match
between the 3D and 1D results in the case of the improved
soft-core Coulomb potential. (Here and in the following figures
we plot the scaled power spectrum of the density-based 1D
model potential for completeness only.) In Figs. 7(b), 8(a),
and 8(b) we present this comparison for three other scenarios,
corresponding to the parameters of Figs. 4(b), 5(a), and 5(b),

respectively. These plots clearly show that the scaling function
(29) works very well also in these cases.

VI. DISCUSSION AND CONCLUSIONS

The results presented in the previous section demonstrate
that it is possible to quantitatively model the true 3D quantum
dynamics with the help of the density-based 1D model potential
Ṽ 1D

0,M(zj ) and the accordingly improved soft-core Coulomb
potential V 1D

0,M,Sc(z). The best results are obtained with the
improved soft-core Coulomb potential (22), which is also very
easy to use numerically. This means that we can perform
quantum simulations of a single active electron atom driven
by a strong linearly polarized laser pulse during a couple of
minutes and obtain a fairly accurate low-frequency response
and a reliable high-order harmonic generation (HHG) spectrum
with the help of the scaling function (29). The simple form
of this scaling is based on the good agreement between the
structure and phase of the 1D and the 3D HHG spectra.

In achieving these results, the physical requirement about
the 1D and 3D ground-state densities was the important starting
idea. This led to the construction of the density-based 1D model
potential, which then inspired the improved parametrization of
the 1D soft-core Coulomb potential with effective charge 1

2Z.
Both of these have the same asymptotic tail which ensures that
their ground-state energy is identical to that of the 3D system.
The discretization of the density-based 1D model potential
gave important lessons also about the numerical aspects of
nondifferentiable 1D Coulomb-like potentials and the 1D delta
potential.

Considering the obvious differences between the 1D and
the 3D quantum dynamics and their effects, discussed already
in connection with Figs. 3(b) and 6(a), it is not surprising that
the high-frequency response of these 1D simulations is much
stronger than that of the corresponding 3D case. The fact that
the scaling function (29) has different frequency dependence

023401-8



IMPROVED ONE-DIMENSIONAL MODEL POTENTIALS FOR … PHYSICAL REVIEW A 98, 023401 (2018)

in the lower frequency domain than in the higher frequency
domain, and that this seems to be independent of the other
physical parameters, may hint at a deeper connection between
the true 3D quantum dynamics and its best 1D model given by
the improved soft-core Coulomb potential (22).

We expect that this improved soft-core Coulomb potential
can be successfully used as a building block also in the 1D
model of somewhat larger atomic systems, like a He atom,
driven by a strong linearly polarized laser pulse. The method of
construction of the reduced density-based 1D model potential
could be used as well to create proper 1D model potentials for
strong-field simulation of simple molecules, like H2

+ or H2.
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APPENDIX A: COMPARABLE PHYSICAL QUANTITIES
IN ONE DIMENSION

For completeness, we list here the physical quantities that
we use for characterizing the strong-field process, both in one
and three dimensions.

From the 3D wave function we can calculate the 1D reduced
density as

�3D
z (z, t ) = 2π

∫ ∞

0
|�3D(z, ρ, t )|2ρ dρ. (A1)

In one dimension this is

�1D
z (z, t ) = |�1D(z, t )|2. (A2)

We calculate the mean value of z as

〈z〉(t ) =
∫ ∞

−∞
z�z(z, t ) dz, (A3)

the standard deviation of z as

σz(t ) =
√

〈z2〉(t ) − 〈z〉2(t ), (A4)

and the mean value of the z velocity and the z acceleration
using the Ehrenfest theorems as

〈vz〉(t ) = ∂〈z〉
∂t

, 〈az〉(t ) = ∂〈vz〉
∂t

, (A5)

in both the 3D and the 1D case. It is also interesting to determine
the ground-state population loss

g(t ) = 1 − |〈�(0)|�(t )〉|2, (A6)

even though this refers to the population losses of two com-
pletely different states in one dimensions and three dimensions.

We calculate the spectrum from the dipole acceleration 〈az〉,
and then the power spectrum as

p(f ) = |F[〈az〉](f )|2, (A7)

where F denotes the Fourier transform and f is its frequency
variable.

APPENDIX B: ACCURACY OF THE NUMERICAL
INVERSION

1. Density-based 1D model potential

We stated previously that the numerical construction (26)
yields the exact numerical eigensystem of that potential, but
that does not give us the whole picture about how numerically
accurate the construction really is. If we look at the eigenenergy
of its respective first excited state calculated with �z = 0.2 we
see that it is accurate to four or five digits, but that alone does
not determine the usefulness in strong-field simulations. To get
the whole picture, we performed some numerical simulations
using the atomic potential (26) and a three-cycle laser pulse
of form (28) with F = 0.1 with different �z parameters. We
subtracted from them the results of a very accurate reference
numerical solution using the analytic potential (21) with �z =
0.0001, which gave us information about the (approximate)
numerical errors of the construction.

The results can be seen in Fig. 9, where we plotted the errors
of mean values 〈z〉(t ) and the ground-state population losses
g(t ) compared to reference versus time. We can see that if
we decrease the spatial step �z of the inversion (26) from 0.4
(orange) to 0.2 (purple) the error decreases approximately by
a factor of 16, in the cases of both 〈z〉(t ) and g(t ). We verified
this using also other integrated quantities: we can clearly assert
that the numerical inversion (26) is around �z4 accurate;
i.e., it shows high-order accuracy (required that the kinetic
energy operator is also at least �z4 accurate). To illustrate what
this means, we also plotted the results obtained by the usual
three-point finite difference Crank-Nicolson method (CN3)
using the analytic potential (21) as the atomic potential, which
is known to be �z2 accurate. We briefly note that we tested
the direct use of Eq. (21) with our 11-point finite difference
scheme but it was not any better—also �z2 accurate (since the
potential is not differentiable)—so we only plotted the results
of the CN3 scheme in Fig. 9 with green lines. The accuracy
of this method using �z = 0.2 is around 320 times better
than the direct use of the analytic nondifferentiable potential
with �z = 0.05. So in other words it requires 26 more spa-
tial grid points (�z ≈ 0.003) than the numerical inversion.
Using formula (26) to numerically represent the (nonsingu-
lar) model potentials is very efficient and shows high-order
convergence.

2. Delta potential

In the following, we discuss the accuracy tests of the
numerically constructed potential (27) using strong-field sim-
ulations with the same three-cycle laser pulse of form (28)
with F = 0.1 and different �z parameters. For comparison
we use a properly implemented method from [30] that uses the
proper Robin boundary condition at z = 0, which overrides
the Crank-Nicolson equations at that grid point. Its results
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(a) (b)

FIG. 9. Time dependence of (a) the numerical mean value errors |〈z〉(t ) − 〈z〉num,ref(t )| and (b) the ground-state population loss errors
|g(t ) − gnum,ref(t )| using different realizations of the density-based model potentials, under the influence of the same external field with F = 0.1,
NCycle = 3. We plotted in purple and orange the results using the potential Ṽ 1D

0,M from numerical inversion formula (26) with �z = 0.2 and
�z = 0.4, respectively. Note that the values of these two curves are magnified by factors of 320 and 20, as indicated. For comparison, we
plotted in green the results directly using the analytic formula (21) as the atomic potential in an usual Crank-Nicolson solution.

are at least �z2 accurate. We calculate the errors of the
mean values 〈z〉(t ) and the ground-state population losses g(t )
compared to a very accurate reference solution obtained by
this correct method (uses �z = 0.001). We can see the results
in Fig. 10. Surprisingly, we can observe that the errors of
Eq. (27) with �z = 0.2 are actually not far from the errors
of results obtained by the �z2 accurate proper method at
�z = 0.05. If we decrease the �z step from 0.4 (orange) to
0.2 (dark blue) we see a factor-of-4 error decrease: We can
conclude that the nonsingular construction (27) is actually

correct numerical representation, and converges with �z2

even for the singular delta potential. It is also of importance
because of the following: We can run simulations with singular
potentials using nonsingular Hamiltonians, and the point of
singularity does not have to be on the spatial grid; it can even
move. It has even more interesting consequences in two or
more dimensions, since there is no reason not to work with the
true singular Coulomb potentials.

In conclusion, it is a valid choice to define a potential using
numerical inversion from its ground state. It can provide a

(a) (b)

FIG. 10. Time dependence of (a) the numerical mean value errors |〈z〉(t ) − 〈z〉num,ref(t )| and (b) the ground-state population loss errors
|g(t ) − gnum,ref(t )| using different implementations of the Dirac delta model potential, under the influence of the same external field with
F = 0.1, NCycle = 3. We plotted in dark blue and orange the results using the potential Ṽ 1D

0,DD from numerical inversion formula (27) with
�z = 0.2 and �z = 0.4, respectively. For comparison, we plotted in green the results using the implementation in [30] that uses the proper
Robin boundary condition to represent the singularity of Eq. (11).

023401-10



IMPROVED ONE-DIMENSIONAL MODEL POTENTIALS FOR … PHYSICAL REVIEW A 98, 023401 (2018)

consistent and accurate method with high-order finite differ-
ences to represent our Eq. (21) nonsingular and nondifferen-
tiable atomic potential in one dimension, and even achieve

�z4 convergence. The method is robust enough to provide �z2

convergence for the case of the singular 1D delta potential using
Eq. (27).
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