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Anisotropy in excitation-ionization double-differential cross sections
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Simultaneous ionization and excitation of helium by electron impact is studied through ejected electron angle
integrated double-differential cross sections (DDCSs) as a function of ionized electron energy using the four-body
distorted wave model. Results are presented for different alignments of the 2p0 magnetic substate of the He+ ion,
and alignment effects observed in fully differential cross sections are shown to persist in the DDCS. Examination
of the DDCS for different orientations leads to a determination of anisotropy parameters and phase angles between
substate amplitudes as a function of ejected electron energy.
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I. INTRODUCTION

The study of ionizing collisions involving oriented targets
has become more prevalent in recent years with improvements
in experimental technology and computational power [1–8].
These studies can provide valuable information about charge
cloud structure and angular momentum transfer during the
collision. Most of the studies focusing on alignment and
orientation effects fall into one of two groups: excitation
collisions or molecular collisions. In the case of excitation
collisions, a typically neutral ground-state atom is excited by
electron, photon, or heavy particle impact, leaving the final-
state atom in a nonisotropic excited state. Electronic decay of
the atom to the ground state can result in photon emission,
and measurement of the angular distribution or polarization
of these photons results in the determination of alignment and
orientation parameters that can then be related back to atomic
charge cloud information. Excitation collisions have been well
studied for several decades, and reviews can be found in [9–13].
In a few instances, the target atom has been prepared in an
oriented excited state, and ionization cross sections are then
measured [1]. This type of oriented initial-state collision is
less studied, but recent results have produced new information
regarding alignment effects.

For molecular collisions, alignment is typically achieved
through the nuclear arrangement of the molecule, which is
naturally anisotropic. Although some symmetry may exist,
the electronic structure of the target is also anisotropic.
The complexity of targets other than the simplest diatomic
molecules makes molecular collisions difficult to study, both
experimentally and theoretically. However, both ionization and
excitation collisions have been used to examine alignment and
orientation effects in molecular collisions, and some examples
can be found in [4–7] and references therein.

In this paper, we choose a simple atomic system in which
simultaneous excitation and ionization (EI) leads to an oriented
final-state ion, allowing for the study of alignment effects.
Electron impact simultaneous EI of helium is a well-studied
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collision process, but continues to provide challenges due to
effects such as electron correlation, postcollision interaction,
and the four-body nature of the collision. Ground breaking
coincidence measurements of all final-state particles, including
the emitted photon [called (e, γ 2e)], were presented in [14],
but no additional such measurements are available due to
their inherent difficulty. Aside from (e, γ 2e) studies, a much
broader body of work is available for EI collisions in which
the momenta of both final-state electrons are measured, but no
information about the photon is known. These fully differential
cross sections (FDCSs) typically provide energy resolved data
that indicate the principle quantum number of the final-state
bound electron, but not its angular momentum or magnetic
quantum number [15–18].

A series of results were published in the 1990s and 2000s
that provided differential cross sections for EI leading to de-
termination of various alignment parameters, electron-photon
correlations, and Stokes parameters [19–26]. These joint exper-
imental and theoretical studies typically examined scattering
angle integrated cross sections, total cross sections, or photon
polarization or angular distributions. Here we present both FD-
CSs and ionized electron angle integrated double-differential
cross sections (DDCSs) for electron impact simultaneous EI
of helium for the 2p0 magnetic sublevel of the final-state ion.
The EI process provides a challenging system in which to study
alignment effects. Target electron correlation effects are known
to be important, and sophisticated atomic wave functions are
required for adequate theoretical treatment. Experimentally,
the EI process is very challenging due to small cross sections.
Prior work using our four-body distorted wave (4DW) model
has shown clear orientation effects in FDCSs for the EI process,
with some of the structures being traced to specific angular
momentum components of the ejected electron and the target
atom wave function [27–28].

By focusing on the ml = 0 magnetic substate, and using the
4DW model to calculate both FDCS and DDCS, we identify
specific orientation effects that persist, despite integration over
ionized electron angle. Unlike prior work, which presented
results as a function of scattering angle or electron energy
with integration over scattering angle, we present results for
fixed scattering angle as a function of electron energy. The
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ejected electron angle integrated DDCSs are then used to
calculate anisotropy and phase angle parameters. We calculate
these parameters as a function of ionized electron energy, and
we show their relationship to the magnetic sublevel DDCS.
Our calculations are also compared to the experimental data of
Hayes and Williams [20] and Dogan et al. [21]. Atomic units
are used throughout unless otherwise noted.

II. THEORY

The details of the 4DW model have been presented in [29],
and only the necessary details are described here. In the 4DW
model, the target helium atom is treated using a 20-parameter
Hylleraas wave function [30]. Also, all continuum electrons
are treated as distorted waves, and the postcollision Coulomb
interaction between the final-state continuum electrons is
included. The FDCS can be written in terms of the transition
matrix Tf i :

d3σ

d�1d�2dE2
= μ2

paμie

kf ke

ki

|Tf i |2 (1)

where

Tf i = 〈�f |V |�i〉. (2)

The momenta of the scattered projectile, ionized electron, and
incident projectile are

−→
kf ,

−→
ke, and

−→
ki , respectively, and μpa

and μie are the reduced masses of the projectile and target atom
and the final-state ion and the ionized electron, respectively.

The initial and final-state wave functions are written as
products of the bound electron and continuum particle wave
functions. Specifically, the initial-state wave function is given
by

�i = χ−→
ki

(−→r1 )�i (
−→
r2 ,

−→
r3 ) , (3)

and the final-state wave function is given by

�f = χ−→
kf

(−→r1 )χ−→
ke

(−→r2 )ϕnlm(−→r3 )C(−→r12). (4)

In Eqs. (3) and (4), χ−→
ki

(−→r1 ) and χ−→
kf

(−→r1 ) are the incident and

scattered projectile wave functions, �i (
−→
r2 ,

−→
r3 ) is the target

helium atom wave function, χ−→
ke

(−→r2 ) is the ionized electron

wave function, ϕnlm(−→r3 ) is the He+ ion wave function, and
C(−→r12) is the postcollision interaction. The perturbation is V =
(Vi − Ui ), with Vi being the Coulomb interaction between
the projectile electron and target atom and Ui a spherically
symmetric distorting potential for the target atom.

The coordinate system used here has the incident projectile
momentum along the positive z axis, with the projectile
scattering at an angle θs toward the positive x axis. The
quantization axis of the final-state ion’s angular momentum
is located at an angle γ measured counterclockwise from the z

axis. This is the ion orientation direction for the 2p0 substate.
Figure 1 depicts the coordinate system with the quantization
axis and momentum transfer directions shown.

The results presented below are for an entirely copla-
nar geometry in which the incident and scattered projectile

FIG. 1. Coordinate system for the collision scattering plane. The
incident projectile momentum (not shown) is along the z axis and the
scattered projectile momentum (not shown) is oriented at an angle θs

counterclockwise from the z axis. The solid blue arrow indicates the
quantization axis of the He+(2p) ion and the dashed arrow indicates
the momentum transfer direction.

momenta, as well as the ionized electron momentum, lie in
a plane. In addition, the orientation of the final-state ion is
restricted to this same plane (the x-z plane of Fig. 1). DDCSs
can be obtained from the FDCS of Eq. (1) by integrating
over the ionized electron angle for fixed scattering angle and
incident projectile energy. The transition matrix for coplanar
geometry and different orientations of the residual ion in the
scattering plane for the 2p0 magnetic substate can be found
from [28]

T R
0 = sin γ√

2
(T−1 − T1) + cos γ T0. (5)

This can be rewritten in terms of the real orbitals 2px and 2pz

as
T R

0 = T R
z = sin γ Tx + cos γ Tz (6)

where T0, T1, and T−1 are the 2p0, 2p1, and 2p−1 transition
matrices with quantization along the z axis (γ = 0). The
transition matrices Tx and Tz are for excitation to the 2px

and 2pz states. Note that γ = 0 does not imply that any of
the magnetic sublevel T matrices are zero; rather it results in
the T matrix for excitation to a sublevel with the quantization
axis along the incident beam direction. In coplanar geometry,
T−1 = −T1 and Eq. (5) becomes

T R
0 = −

√
2 sin γ T1 + cos γ T0. (7)

From Eqs. (6) and (7), it is evident that the distribution of
ion orientations is determined by the magnitude and relative
phase of the amplitudes. Thus, examining the cross sections as
a function of orientation angle γ provides information about
the relative distribution of ions.

III. RESULTS

A. FDCS

Using our 4DW model, we have calculated FDCS and
DDCS for coplanar simultaneous excitation and ionization of
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FIG. 2. FDCS for excitation and ionization of helium by electron impact as a function of ionized electron momentum components. Four
different alignments of the He+(2p0) ion (labeled columns in figure) and three different sets of kinematic conditions (rows) are shown.
Specifics for the kinematics are described in Sec. III A. The white arrow indicates the momentum transfer direction. The magnitude of the FDCS
is represented by the color bar in atomic units.

helium. In Fig. 2, we present the 2p0 FDCS as a function of
ionized electron momentum components for several different
ion orientations. The parallel and perpendicular momentum
components are chosen relative to the beam direction and in
the scattering plane. The radial distance from the center is
equal to the magnitude of the ejected electron momentum, and
higher-energy ejected electrons are shown in the outer rings
of the plots. Calculations were performed for ejected electron
energies between 1 and 30 eV, and the hole in the center of
each plot is for ejected electron energies below 1 eV. Due to
having data for only discrete ejected electron energies, the color
plots of Fig. 2 show sharp changes at the boundary of each
energy ring. This boundary is an artifact of the plots and has
no physical significance.

Three sets of kinematic conditions are shown. In the top
row of Fig. 2, the scattered electron energy is fixed at 60 eV
with a scattering angle of 8◦. In the middle row, the scattered
electron energy is fixed at 130 eV with a scattering angle of
8◦. In the bottom row, the incident electron energy is fixed
at 200 eV and the scattering angle is 5◦. These results show a
clear dependence of FDCS on orientation of the ion, consistent
with previous work [27,28]. In the case of orientation along
the beam direction or along the momentum transfer direction,
almost no forward ejection is observed, but a strong backward
recoil peak is seen. This feature has previously been traced
to the postcollision interaction between the outgoing electron
and scattered projectile, as well as projectile-ion interactions
[31]. For orientation perpendicular to the beam direction or
perpendicular to the momentum transfer direction, a broader

distribution of ejected electrons is observed, although the
magnitude of the FDCS for these orientations is five to ten
times smaller than orientations along the beam or momentum
transfer directions.

Figure 2 also shows that, as the ionized electron energy
increases, the magnitude of the FDCS decreases, indicating
that the collision process produces more low-energy ejected
electrons. These features hold, regardless of whether the
incident projectile energy or scattered projectile energy is
held fixed. One notable difference between the results for the
different kinematical conditions can be seen in the FDCS for
all alignments. In this case, the FDCS is larger by up to a factor
of 2 for faster projectiles (Ei = 200 eV and Ef = 130 eV)
compared to the slower projectile case (Ef = 60 eV). This is
consistent with total cross-section values for the excitation-
ionization process, which have a maximum around Ei =
200 eV [20].

B. DDCS

By integrating the FDCS over ionized electron angles in
the scattering plane, a DDCS can be obtained. We present
the DDCS for fixed scattering angle as a function of ejected
electron energy, but undetermined ejected electron angle in
Fig. 3. In column 1 of Fig. 3, the DDCS as a function of
ejected electron energy is compared to the experimental data
of [20,21]. In order to compare with experiment, the substate
cross sections must be summed (2p0 + 2p1 + 2p−1) because
the magnetic substate of the ion is unknown. The experimental
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FIG. 3. DDCS for EI of helium to the 2p0 state by electron
impact as a function of ejected electron energy (left-hand column)
and orientation angle (right-hand column). The kinematics are the
same as in Fig 2. In column 1, the 4DW results are shown for
He+ orientations along the beam direction (dashed red line), the
momentum transfer direction (dash-dotted purple line), perpendicular
to the beam direction (dash-dotted blue line), and perpendicular to
the momentum transfer (dotted green line). The experimental data
of [20,21] are depicted as crosses. The sum of the substate DDCS
is the solid black line in column 1, but is not shown in column 2
because it is constant with respect to γ . The dashed curves in column
2 decrease in magnitude with ejected electron energy. The largest
DDCS corresponds to an ejected electron energy of 1 eV (dashed
black line), and those below are in descending order of 5, 10, 15, 20,
25, and 30 eV.

data are cross-normalized to the 4DW 2p sum for Ef = 60
and 130 eV by normalizing the experimental cross section
for Ee = 1 eV and Ef = 130 eV to the 4DW 2p sum for
this case. This value was then used to normalize the Ef =
60 eV data. Because the Ei = 200 eV data are from a different
experiment, they were normalized independently by scaling the
experimental cross section to the 4DW DDCS at Ee = 1 eV.

In general, the experimental data and 4DW theory show the
same overall trend of nearly exponential decrease in the cross
section as ionized electron energy increases. However, exper-
iment shows a double peak structure at lower ionized electron
energies, while no evidence of a peak structure is observed in
any of the 4DW calculations. This peak structure is most likely
due to interference with the doubly excited 3l3l′ states [24].
Because the 4DW calculations include only the amplitudes for
the excitation-ionization process, no interference between the
two processes can occur and the peak structure is not present
in the 4DW results.

In addition to the DDCS sum, which is independent of ion
orientation, we also show in column 1 of Fig. 3 the DDCS
for the magnetic substates of the ion for the four orientations
of Fig. 2. The orientation dependence of the FDCS is carried
through to the DDCS, although integration over the ejected
electron angle naturally washes out any structure that would
show binary to recoil peak ratios. Consistent with the FDCS
results of Fig. 2, the DDCSs as a function of ejected electron
energy for orientation along the beam or momentum transfer
direction are very similar and nearly an order of magnitude

larger than the DDCSs for orientations perpendicular to the
beam or momentum transfer directions. Column 2 of Fig. 3
shows a clear oscillatory structure to the DDCS as a function of
orientation direction. The 2p0 DDCS is largest for orientations
near the beam direction (γ = 0 or 180◦) and smallest for
orientations perpendicular to the beam direction (γ = 90 or
270◦). This is easily predicted from Eq. (7), where if |T1| �
|T0| the ion is oriented near the beam direction. However,
when |T0| and |T1| are of similar magnitude, the relative phase
between the two amplitudes becomes important.

The relative magnitudes and phase between the 2p0 and
2p1 DDCS can be studied by fitting the data in column 2 of
Fig. 3 with a function of the form

DDCS = A{1 − B cos[2(γ − κ )]} (8)

where A is a normalization constant, B is defined as the
anisotropy parameter, and κ is the DDCS phase shift. These
parameters can be written in terms of the 2p0 (σ0) and 2p1
(σ1) DDCS for the quantization axis along the beam direction
by

A = 1
2 (2σ1 + σ0), (9)

B =
√

σ 2
1 + σ 2

0
4 + σ0σ1 cos(2δ)

A
, (10)

tan (2κ ) = 2
√

2
√

σ0σ1 cos δ

2σ1 − σ0
, (11)

where δ is the relative phase between the substate amplitudesT0

and T1. A detailed derivation of these expressions is contained
in the Appendix.

The anisotropy parameter B is a measure of the sensitivity of
the DDCS to the orientation of the ion and has a value between
zero and one. B is zero when the amplitudes are exactly out
of phase (δ = π/2 or 3π/2) and σ0 = 2σ1. In this case, as B

approaches zero, the DDCS as a function of alignment angle
becomes more uniform, and is perfectly isotropic when the 2p0
and 2p1 amplitudes are exactly out of phase and σ0 = 2σ1. B

is 1 when the amplitudes are exactly in phase (δ = 0 or π ).
Larger values of B result in greater variation of the DDCS as
a function of alignment angle.

Because the relative phase between substate amplitudes is
related to the DDCS phase shift κ by Eq. (11), we can find
its value as a function of ejected electron energy. Recall that
to calculate the DDCS the FDCS is integrated over ejected
electron angle. Because the FDCS is calculated from the square
of the transition matrix amplitude, phase information for the
DDCS amplitudes cannot be found directly from the 4DW
cross sections. Figure 4 shows κ , δ, A, and B as functions
of ejected electron energy, along with plots of the momentum
transfer magnitude and momentum transfer angle.

Because parameter A is simply half of the 2p DDCS sum,
it exhibits the same nearly exponential decay as the results
shown in Fig. 3. The relative phase δ between the 2p0 and
2p1 amplitudes increases with increasing ejected electron
energy. The anisotropy parameter B is greatest for the lowest-
energy projectile. This indicates that these DDCSs are less
uniform than those for a higher-energy projectile, consistent
with the results of Fig. 3. None of the parameters A, B, or δ
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FIG. 4. Normalization (A), anisotropy (B), phase angle (δ), and
DDCS phase shift (κ) as a function of ejected electron energy for EI
of helium. Also shown are the momentum transfer magnitude (q) and
angle (θq ) as a function of ejected electron energy.

appear to be correlated with the momentum transfer vector
magnitude or direction. The DDCS phase shift κ exhibits
interesting behavior at larger ionized electron energy. For the
two largest projectile energies, κ decreases with increasing
ejected electron energy, while for the lowest projectile energy
it increases. This is likely indicative of the relationship between
the 2p0 and 2p1 DDCS since all projectile energies show
similar behavior of the relative phase with increasing ejected
electron energy and have nearly identical values of the phase
at Ee = 30 eV.

In addition to the parameters described above, the
anisotropy parameter B can be used to define a relative length
and width of the DDCS:

l = 1
2 (1 + B ), (12)

w = 1
2 (1 − B ). (13)

Figure 5 shows the ratio l/w as a function of ejected electron
energy. As B goes to zero, the relative length and width become
equal and the DDCS is perfectly isotropic. This is exactly what
is observed in Figs. 3–5; as ionized electron energy increases,
B tends to zero and the DDCS as a function of alignment
angle becomes more isotropic. The change in shape happens
quite rapidly with increasing ionized electron energy, as seen
by the rapid decay in the l/w ratio in Fig. 5. Based on the
trend shown in Fig. 5, we might expect that DDCS for ejected
electron energies greater than 30 eV will be nearly isotropic.
However, further study is needed to confirm this. It is tempting
to assume that the DDCS become more isotropic for larger
ejected electron energy because faster outgoing electrons are
less influenced by the He+ ion charge distribution. However,
this cannot be the case for the 4DW model because the
ejected electron distorted wave is calculated using a spherically
symmetric distorting potential that does not change with ion
orientation. The quantization axis of the ion is only included
in the calculation in the He+ wave function. Therefore, the
change in anisotropy with increasing ejected electron energy
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FIG. 5. Ratio of relative length to width of the DDCS as a function
of ejected electron energy. Results are derived from Eqs. (12) and (13)
for the kinematics of Fig. 2.

is likely due to the relative magnitude and/or phase between
the 2p0 and 2p1 amplitudes.

IV. CONCLUSION

We have presented fully differential cross sections and
ionized electron angle integrated double-differential cross
sections for simultaneous excitation and ionization of helium
by electron impact using the 4DW model. In particular, we
focused on alignment effects and showed that the shape of the
FDCS varies significantly with ion alignment. By examining
the 2p0 magnetic substate of the He+ ion, we were able to
show that alignment effects persist from the FDCS through to
the DDCS. Comparison of the DDCS with experiment showed
a similar behavior between experiment and theory as a function
of ejected electron energy, although no resonance peaks were
observed in the 4DW results, as was expected. The DDCS
as a function of alignment angle was shown to fit a function
that yielded normalization, anisotropy, and relative phase
information. These values showed that the DDCS becomes
more isotropic with increasing ionized electron energy. From
the anisotropy parameter, relative lengths and widths of the
DDCS were calculated. Experiments corresponding to these
types of calculations are quite difficult, but some limited results
are available and we hope this paper encourages further study
of alignment effects in the excitation-ionization process.
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APPENDIX

We show here the derivation of the parameters used in
Eq. (8). We begin by taking the magnitude squared of Eq. (7):

∣∣T R
0

∣∣2 = |−
√

2 sin γ T1 + cos γ T0|2. (A1)
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Expanding this equation yields

∣∣T R
0

∣∣2 = 2sin2γ |T1|2 + cos2γ |T0|2

− 2
√

2 sin γ cos γ Re(T ∗
0 T1). (A2)

Grouping terms and simplifying leads to

∣∣T R
0

∣∣2 = cos(2γ )

[ |T0|2
2

− |T1|2
]

+
[ |T0|2

2
+ |T1|2

]

−
√

2 sin(2γ ) Re(T ∗
0 T1). (A3)

Let A = 1
2 [|T0|2 + 2|T1|2] = 1

2 [σ0 + 2σ1], as in Eq. (9).
Note that we have used the definition σ0 = |T0|2 and σ1 =
|T1|2. Then, Eq. (A3) becomes

∣∣T R
0

∣∣2 = A

{
1 + cos 2γ [σ0 − 2σ1]

2A
−

√
2 sin 2γ Re(T ∗

0 T1)

A

}
.

(A4)

Next, let C = 2σ1 − σ0 and factor this term out from the
last two terms to get

∣∣T R
0

∣∣2 = A

{
1 − C

2A

[
cos (2γ ) + 2

√
2 sin (2γ )Re(T ∗

0 T1)

C

] }
.

(A5)

Define tan(2κ ) = 2
√

2 Re(T ∗
0 T1 )

C
. Then, using some trigono-

metric identities∣∣T R
0

∣∣2 = A

{
1 − C cos[2(γ − κ )]

2A cos (2κ )

}
. (A6)

We can then identify B = C
2A cos(2κ ) . The parameter B can

be rewritten using the trigonometric identity cos(tan−1x) =
1√

x2+1
such that

B = C

√
8[Re(T ∗

0 T1 )]2

C2 + 1

2A

= C

2A

√
[8σ0σ1cos2(θ0 − θ1) + C2]

C2
(A7)

or

B = 1

A

√
σ 2

0

4
+ σ 2

1 + σ0σ1 cos [2(θ0 − θ1)], (A8)

which is Eq. (10). Note that θ0 and θ1 come from writing T0 and
T1 in polar form, i.e., T0 = |T0|eiθ0 and T1 = |T1|eiθ1 . Then, we
define the relative phase between the 2p0 and 2p1 amplitudes
as δ = θ0 − θ1. Finally, we arrive at Eq. (8) with the parameters
A, B, and κ defined as in Eqs. (9)–(11).

DDCS ∝ ∣∣T R
0

∣∣2 = A{1 − B cos[2(γ − κ )]}. (A9)

Note that both B and the DDCS phase shift κ depend on
the relative phase δ, and therefore can be used to calculate δ:

cos δ = (2σ1 − σ0) tan 2κ

2
√

2σ0σ1
. (A10)
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