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Atomic or molecular assemblies irradiated with intense hard x-ray pulses, such as those emitted from x-ray
free-electron lasers (XFELs), are subject to a strong ionization, which also releases electrons from atomic inner
shells. The resulting core-hole states relax via various channels, including fluorescence and Auger decay. The
latter is the predominant relaxation channel for light elements and typically occurs on a time scale of 1–10 fs.
In dense samples, the core-hole ions may already undergo electron-impact ionizations during this time due to
the abundance of highly energetic photoelectrons and Auger electrons. In this study we perform an ab initio
calculation of the electron-impact-ionization cross sections of ions with an arbitrary electronic configuration at
zero temperature. This allows us to evaluate and compare impact-ionization cross sections for ions in ground and
“exotic” electronic states (e.g., with a few core holes), which may be formed during their interaction with intense
x-ray pulses. We show that the impact-ionization cross sections for ions of the same charge, but with varying
electronic configurations, may significantly differ. This finding has to be taken into account in any modeling tool
treating the relaxation of atoms after high-energy-impact collision, e.g., simulations dedicated for coherent x-ray
diffraction imaging of nanocrystals and single biological macromolecules, or laser-created plasma studies. Our
computationally efficient ab initio calculation scheme can be easily incorporated in such simulation schemes.
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I. INTRODUCTION

Within the last decade, the advent of x-ray free-electron
lasers (XFELs) [1–5] has provided novel insights for the
study of x-ray–matter interactions. Applications of this knowl-
edge range over various different scientific fields, including
atomic and molecular physics [6–9], astrophysics [10], plasma
physics [11], and structural biology [12–16].

In particular, XFELs provide ultrashort and ultraintense
pulses of x rays, shaping new avenues in x-ray crystallogra-
phy [17,18]. Three-dimensional determination of biomolecular
structures is vital for studying biological functions of these
macromolecules. Molecular structures of biomolecules are
reconstructed from x-ray scattering patterns. In order to ensure
a sufficiently strong scattering signal, the patterns are typically
obtained from coherent diffraction on a crystal formed from the
macromolecule. However, growing the high-quality crystals is
a difficult and sometimes even an impossible task [19]. Instead,
the high fluence from the XFEL can be exploited in order to
generate a sufficiently strong scattering signal from nanocrys-
tals [13] and single bioparticles [14]. At the same time, such
a high fluence induces a rapidly progressing damage of the
sample. In order to overcome this issue, the XFEL pulse dura-
tion should be sufficiently short (�10 fs) to outrun the nuclear
damage. This scheme is called “diffraction before destruction.”
However, currently available XFEL pulses are not short enough
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to elude electronic motion and the subsequently induced
electronic damage [20]. Therefore, quantitative understanding
of the radiation damage mechanisms, as well as their proper
treatment and incorporation into simulations, is vital for the
accuracy of the structure determination from experimental
data [20–25]. Such incorporation of radiation damage into
photon-matter interaction studies has been done, e.g., with
the molecular dynamics code XMDYN [26,27]. Based on a
combination of atomistic calculation and classical molecular
dynamics, XMDYN provides microscopic simulations of x-
ray-induced dynamics of clusters [28], nanocrystals [24], and
solid-density matter [29] in connection with x-ray molecular
imaging [30].

While interacting with the imaged sample, hard x rays
predominantly excite inner-shell electrons. The resulting core-
hole states can decay via various paths, including fluorescence
and Auger decay. The latter is the predominant relaxation
channel for light elements, and typically takes place within
1–10 fs [25,31] after a photoionizing event. At this timescale,
in materials dense enough, the core-hole ions may also undergo
electron-impact ionization, due to the abundance of highly
energetic photoelectrons and Auger electrons.

The importance of impact ionization in radiation damage
has been demonstrated not only in connection with x-ray imag-
ing [20,32], but also for electron diffraction [33,34] and plasma
studies [11,35]. This ionization process has been extensively
studied over many years [36–39]. The accuracy of theoretical
methods used for the determination of the electron-impact-
ionization cross sections depends both on the wave-function
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description used to describe the incoming and outgoing elec-
trons, as well as on the collision theory employed. A concise
overview can be found in Refs. [40] and [41]. Semiempirical
approaches and simplified formulas are also frequently used
to determine electron-impact-ionization cross sections, such
as the semiempirical formula by Lotz [42–45] and the binary-
encounter-Bethe (BEB) formula [46]. The latter method has
also been extended to the relativistic regime [47,48].

Here, we intend to describe electron-impact ionization of
an ion with any excited electronic configuration which may
occur as the result of its exposure to high-intensity x rays.
Such cases are not accounted for accurately in semiempirical
formulas due to the lack of experimental data on the electron-
impact ionization of excited ions. In this paper, we provide
an ab initio calculation of the electron-impact-ionization cross
sections for such ions at zero temperature. In our framework,
the impact electron before and after the scattering process is
modeled as a plane wave. The target ion, as well as the ejected
electron after the scattering process, is treated within a Hartree-
Fock-Slater framework, with free states approximated by a
discrete pseudocontinuum. With this approach, it is assumed
that the outgoing scattered electron and the ejected electron are
distinguishable.

The paper is structured as follows: In Sec. II we extend
the electronic structure calculation code, XATOM [25,26,49], in
order to implement the doubly differential electron-impact-
ionization cross section (DDCS) within this scheme. From
the DDCS, singly differential (DCS) and total cross sections
(CS) are obtained. In Sec. III we calculate the DDCS for
an incoming electron of 1 keV energy interacting with a
double core-hole (1s−2) carbon (+2) ion, as well as the angle-
and energy-resolved DCS for the same system. For the total
cross-section studies, we consider various electronic config-
urations of carbon (+), carbon (+2), and sulfur (+8) ions,
including their ground states. The results are compared with
the available experimental data and other theory models (Lotz
and BEB schemes). The section is concluded with a discussion.
Section IV provides a conclusion and an outlook.

II. THEORETICAL AND NUMERICAL FRAMEWORK

We start with a clarification of terminology. While dis-
cussing the process of electron-impact ionization, we consider
the incoming electron, which, after the scattering process,
becomes the outgoing (scattered) electron, and the electron
ejected from the system.

Throughout this paper, atomic units are employed, i.e.,
me = e = h̄ = 4πε0 = 1, unless specified otherwise.

A. XATOM toolkit

In order to calculate electron-impact-ionization cross sec-
tions, we build our implementation on the preexisting XATOM

toolkit [25,26,49]. This toolkit treats x-ray–atom interactions
in an ab initio framework, employing nonrelativistic quantum
electrodynamics and perturbation theory. XATOM is capable of
calculating rates and cross sections of x-ray-induced processes,
including photoionization, Auger decay, x-ray fluorescence,
elastic x-ray scattering, and Compton scattering [50,51]. It
incorporates a Hartree-Fock-Slater (HFS) description of the

many-electron system, which is an independent-particle ap-
proximation with a mean-field Hamiltonian:

ĤHFS = −1

2
∇2 − Z

|x| +
∫

d3x ′ n(x′)
|x − x′| + Vexc(x), (1)

where the exchange potential Vexc(x) at zero temperature is of
the form [52]

Vexc(x) = −3

2

[
3

π
n(x)

]1/3

, (2)

and n(x) = ∑occ
i ϕ

†
i (x)ϕi (x) is the electron density, with ϕi (x)

denoting a single-particle spin-orbital wave function. Further-
more, the Latter tail correction is applied to this potential to
ensure proper fall-off asymptotics [53]. Finally, the central-
field approximation is made, imposing spherical symmetry.
This enables us to write the solution of the Schrödinger
equation in the form

ϕnlms (x) = unl (r )

r
Ylm(�x)

(
δs,+1/2

δs,−1/2

)
, (3)

with n, l, m, and s the principal, azimuthal, magnetic, and
spin quantum number of the electron with the associated wave
function ϕnlms (x), respectively. Using this ansatz, XATOM sub-
sequently solves the Schrödinger equation in a self-consistent
way.

XATOM calculations involve numerous computational input
parameters. In particular, the radial coordinate r in Eq. (3)
is defined with the generalized pseudospectral method on a
nonuniform grid [54], with the number of radial grid points
N , the maximum radius Rmax, and the mapping parameter
L, which determines the density distribution of radial grid
points [54]. The larger L becomes, the more radial grid points
are pushed towards higher values of r . There is also a cutoff
parameter imposed on the azimuthal quantum number l, called
lmax. We used N = 200, L = 10 a.u., Rmax = 80 a.u., and
lmax = 35 for all computations, unless specified otherwise.

B. Doubly differential electron-impact-ionization cross section

The expression for the doubly differential cross section
(DDCS) for the inelastic scattering of an electron with a
many-electron system is derived in Ref. [55]. The derivation is
performed using the Born approximation, which assumes that
both the incoming electron and the outgoing scattered electron
have a high enough energy to be described by a plane wave. It
takes on the form

d2σ

d�qoutdEout
= 4

Q4

qout

qin

∑
I,F

PI

∣∣∣∣
∫

d3x 〈F |n̂(x)|I 〉eiQ·x
∣∣∣∣
2

× δ(EI − EF + ω)

= 4

Q4

qout

qin

∑
I,F

PI

∣∣〈F |n̂†(Q)|I 〉∣∣2
δ(EI−EF + ω),

(4)

where n̂(x) = ψ̂†(x)ψ̂ (x) is the electron density operator, with
ψ̂ (x) being a fermionic field operator. The initial and final
momenta of the incoming electron are denoted by qin and qout,
Q is their respective difference, Q = qin − qout, qin = |qin|,
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qout = |qout|, and Q = |Q|. The energies of the incoming and
scattered electron are denoted as Ein and Eout, respectively. |I 〉
and |F 〉 represent the initial and final wave functions of the
target system under consideration, and EI and EF denote their
respective energies. Furthermore, PI refers to the probability of
finding the system in state |I 〉 before the scattering. Finally, ω

denotes the energy transfer Ein − Eout from the incoming elec-
tron. The 1/Q4 dependence is a consequence of the Coulomb
interaction between the projectile and the target, and exhibits
an angular dependence, Q4 = [q2

in + q2
out − 2qinqout cos(θ )]

2
,

where θ denotes the angle between the direction of the in-
coming and scattered electron. Azimuthal symmetry is always
assumed.

In order to implement Eq. (4) into the HFS framework of
XATOM, we introduce a complete orthonormal basis set of
spin orbitals |ϕp〉 of the target, with orbital energy εp and
associated fermionic creation and annihilation operators ĉ

†
p

and ĉp, respectively. The index p contains both spatial and
spin quantum numbers. The field operator is expanded in this
basis as ψ̂ (x) = ∑

p ϕp(x) ĉp. Within an independent-electron
model, we approximate our initial state |I 〉 as a single Fock
state composed of the aforementioned spin orbitals:

|I 〉 ≈ |{Nel}〉 ≡
Nel∏
p=1

ĉ†p|0〉, (5)

where Nel denotes the number of electrons present in the initial
state, and |0〉 is the vacuum state. Furthermore, we neglect all
correlations between an electron eventually ejected during the
collision and the electrons yet present in the parent ion. Within
this approximation, we can write our final state as

|F 〉 ≈ ĉ
†
f ĉi |{Nel}〉. (6)

After invoking these relations, we use the Condon rules [31],
which allow for matrix elements with respect to Fock states to
be reduced to matrix elements with respect to the spin orbitals.
This enables us to transform Eq. (4) into the following form:

d2σ

d�qoutdEout
= 4

Q4

qout

qin

∑
{Nel}

P{Nel}
∑
i,f

n
{Nel}
i

(
1 − n

{Nel}
f

)

× |〈ϕf |eiQ·x|ϕi〉|2δ(εi − εf + ω)

= 4

Q4

qout

qin

∑
i,f

n̄i (1 − n̄f )

×
∣∣∣∣
∫

d3x ϕ
†
f (x) eiQ·x ϕi (x)

∣∣∣∣
2

δ(εi − εf + ω),

(7)

where n
{Nel}
i is the eigenvalue of the number operator n̂i = ĉ

†
i ĉi ,

which is equal to 0 or 1 due to its fermionic nature. The
superscript refers to the state on which the operator is acting
on (in this case |{Nel}〉). The matrix element is calculated with
respect to the spin orbitalsϕi,f (x), with the orbital energies εi,f .
Furthermore, we use the fact that

∑
{Nel} P{Nel}n

{Nel}
i represents

the average number of particles in the orbital ϕi and is thus
denoted by n̄i . At zero temperature (T = 0), we have n̄i =
Nni,li /{2(2li + 1)}, with Nni,li denoting the number of elec-
trons in subshell (ni, li ). Likewise, n̄f = Nnf ,lf /{2(2lf + 1)}.

For bound final states, Nnf ,lf is the number of electrons in the
final state characterized by the quantum numbers (nf , lf ).

In what follows we will apply Eq. (7) only to describe
direct electron-impact ionization, i.e., a bound-to-free tran-
sition that ends up with the ejection of a bound electron
into the continuum. We will not consider here the indirect
excitation-autoionization channel—when an electron excita-
tion is followed by a relaxation of the excited atom by ejecting
an electron.

We proceed by implementing the ansatz from Eq. (3) for the
spin orbitals ϕi,f (x), which gives the following final expression
for the DDCS,

d2σ

d�qoutdEout
= 4

Q4

qout

qin

free∑
nf ,lf

occ.∑
ni ,li

δ(Eout − Ein − εni ,li + εf )

×Nni,li

[
1 − Nnf ,lf

2(2lf + 1)

] li+lf∑
L=0

(2L + 1)

× ∣∣RL
nf ,lf ,ni ,li

(Q)C
lf 0
li0L0

∣∣2
, (8)

where we explicitly denoted the orbital energy of the subshell
(ni, li ) as εni ,li , and where

RL
nf ,lf ,ni ,li

(Q) =
∫ Rmax

0
dr unf lf (r )jL(Qr )uni li (r ). (9)

Here, jL(Qr ) is a spherical Bessel function, and C
lf 0
li0L0 is

a Clebsch-Gordan coefficient, which, due to the fact that
mi = mf = M = 0, has the property that li + lf + L is an
even integer in order to give a nonzero contribution. As we
consider only ionization processes at zero temperature, we can
set Nnf ,lf = 0. Note that the sum

∑free
nf ,lf

only accounts for the
situation when the ejected electron is free after the scattering
process, i.e., when the system becomes ionized.

Let us consider the sum over the unoccupied final states.
According to Eq. (8), these final states can be labeled with
quantum numbers nf and lf . However, since we are con-
sidering bound-to-free transitions, the final states lie in the
continuous part of the energy spectrum and cannot be labeled
by the discrete number nf . Instead, this label is replaced by
the continuous parameter εf . The term

∑free
nf ,lf

should thus be

read as
∑

lf

∫
dεf ρlf (εf ), where ρlf (εf ) denotes the density

of final states in between εf and εf + dεf , for a single discrete
value of lf . For energy-normalized wave functions ρlf (εf )
reduces to unity, so we will omit it henceforth.

Conventionally, XATOM calculates the discrete bound states
unl (r ) and the continuous free states uεl (r ) in two different
ways. The bound states are calculated with the generalized
pseudospectral method on a nonuniform radial grid [54],
whereas the free states are determined by numerically solv-
ing the radial Schrödinger equation for a given ε using a
fourth-order Runge-Kutta method on a uniform grid [56].
However, due to the implementation of both a uniform and
a nonuniform grid, transitions from initial bound states to final
free states require an interpolation between the two grids. This
interpolation has to occur for every ε in the wide range of the
energy spectrum and is, therefore, computationally expensive.
As we are exclusively interested in bound-to-free transitions
for impact ionization, we overcome this difficulty by working
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only with the nonuniform grid and by approximating free states
with a discrete nonuniform continuum: a pseudocontinuum.
The latter step will be discussed in detail in the next section.

C. Implementation of pseudocontinuum for DDCS calculation

Recall that the DDCS in the HFS framework of XATOM takes
on the following form in Eq. (8):

d2σ

d�qoutdEout

= 4

Q4

qout

qin

occ.∑
ni ,li

∑
lf

∫
dεf δ

(
εf − εni ,li + Eout − Ein

)

×Nni,li

li+lf∑
L=0

(2L + 1)
∣∣RL

εf ,lf ,ni ,li
(Q)C

lf 0
li0L0

∣∣2

≡ 4

Q4

qout

qin

occ.∑
ni ,li

∑
lf

∫
dεf f

(ni ,li )
εf ,lf

δ(εf − �E(ni ,li ) ), (10)

where we have defined �E(ni ,li ) = Ein − Eout + εni ,li , and

f
(ni ,li )
εf ,lf

=Nni,li

li+lf∑
L=0

(2L + 1)
∣∣RL

εf ,lf ,ni ,li
(Q)C

lf 0
li0L0

∣∣2
. (11)

In order to calculate the DDCS, we need to evaluate εf and
f

(ni ,li )
εf ,lf

. As previously discussed, we calculate only discrete val-
ues of these quantities, which then define the pseudospectrum
εnf

and f
(ni ,li )
nf ,lf

, with nf denoting a discrete index, running from
1 to a certain finite integer number N . The question then arises
as to how one can impose the proper energy normalization
on the wave functions that comprise the obtained spectrum. To
solve this issue, we assume that the calculated pseudospectrum
is dense enough so that we can use local information on wave
functions unf ,lf and unf +1,lf , which have the corresponding
energies εnf

and εnf +1 satisfying εnf
� εf < εnf +1, similar to

what was done in Refs. [57] and [58].
Our task is then to calculate an expression of the form

f
(ni ,li )
lf

(�E(ni ,li ) ) = ∫
dεf δ(εf − �E(ni ,li ) )f (ni ,li )

εf ,lf
by using a

discrete pseudospectrum consisting of εnf
and f

(ni ,li )
nf ,lf

. Let us

first integrate the function f
(ni ,li )
εf ,lf

up to a cutoff value �E(ni ,li ).
The reason for this action will become apparent at the end of the
explanation. Using our pseudospectrum, we can approximate
this integral by the sum

∫ �E(ni ,li )

dεf f
(ni ,li )
εf ,lf

≈
m∑

nf =1

f
(ni ,li )
nf ,lf

≡ F̃lf (�E(ni ,li ) ), (12)

where εm � �E(ni ,li ) < εm+1. F̃lf (�E(ni ,li ) ) is a histogram,
where each value represents a partial, cumulative sum of
f

(ni ,li )
nf ,lf

. The derivative of F̃lf (�E(ni ,li ) ) with respect to

�E(ni ,li ), given by

F̃ ′
lf

(�E(ni ,li ) ) ≡
m∑

nf =1

f
(ni ,li )
nf ,lf

δ(εnf
− �E(ni ,li ) ), (13)

provides a discretized approximation of the quantity
f

(ni ,li )
lf

(�E(ni ,li ) ) = ∫
dεf δ(εf − �E(ni ,li ) )f (ni ,li )

εf ,lf
. However,

F̃ ′
lf

(�E(ni ,li ) ) suffers from the same δ-singularity problem. In
order to overcome this issue, we connect the neighboring mid-
points of the histogram values of F̃lf (�E(ni ,li ) ), constructing a
piecewise linear function Flf (�E(ni ,li ) ). The derivative of this
function, F ′

lf
(�E(ni ,li ) ), will be a histogram and contains no

δ functions. It can be shown [57,58] that, with the increasing
N , the function F ′

lf
(�E(ni ,li ) ) converges to the correct value

of f
(ni ,li )
lf

(�E(ni ,li ) ) = ∫
dεf δ(εf − �E(ni ,li ) )f (ni ,li )

εf ,lf
.

Using the method above, the DDCS is calculated by

d2σ

d�qoutdEout
= 4

Q4

qout

qin

occ.∑
ni ,li

lmax∑
lf =0

m∑
nf =1

f
(ni ,li )
nf ,lf

, (14)

where m is defined so as to uphold the relation εm �
�E(ni ,li ) < εm+1, and

f
(ni ,li )
nf ,lf

=Nni,li

li+lf∑
L=0

(2L + 1)
∣∣RL

nf ,lf ,ni ,li
(Q)C

lf 0
li0L0

∣∣2
. (15)

With the calculated DDCS, we also have access to the singly
differential cross sections, both angle- and energy-resolved, as
well as to the total cross section (CS). In what follows we shall
call the energy-resolved cross section DCSE , whereas we de-
fine the DCSθ to be the angle-resolved cross section, integrated
over the azimuthal angle φ, i.e., DCSθ = ∫ 2π

0 dφ (dσ/d�qout ).
This integration can be immediately evaluated as the DDCS
exhibits no dependence on φ. The upper limit of the energy
integral, needed for the CS and DCSθ , is chosen such that for
each channel (ni, li ), only ionization is considered. These cal-
culations that involve an energy integral can also be evaluated
immediately due to the presence of the δ function, negating the
need for the machinery outlined above. Otherwise, when an
explicit integral evaluation is needed, we employ nonuniform
Gaussian quadrature.

D. BEB and Lotz models

Here we provide a short description of the BEB [46] and
Lotz [45] models, as they will be compared to our results in
Sec. III. The binary-encounter-Bethe method [46] provides a
simplified formula based on a binary collision theory for direct
electron-impact ionization. The BEB cross section (σBEB) is
orbital specific. It depends on the orbital binding energy B,
the orbital kinetic energy U , the electron occupation number
N , and the dipole constant Q. The BEB cross section for each
orbital is given by the following expression [59]:

σBEB = S

t + (u + 1)/n

[
Q ln t

2

(
1 − 1

t2

)

+ (2 − Q)

(
1 − 1

t
− ln t

t + 1

)]
, (16)

where T is the energy of the incoming electron, t = T/B, u =
U/B, S = 4πa2

0N (R/B )2, a0 = 0.52918 Å, R = 13.6057 eV,
and n is the principal quantum number of the orbital. In an ad
hoc fashion, n is set to be 1 if n < 3. The dipole constant Q

is defined in terms of the continuum dipole oscillator strength
and the kinetic energy of the ejected electron. In most cases,
Q is set to be equal to 1. The total cross section is a sum of
these orbital contributions.
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For some neutral atoms and ground-state ions, the orbital
parameter B, required for evaluating Eq. (16), is available
in the NIST database [59]. However, for most elements, the
experimental data required for the input of the BEB formula
are scarce, and in the case of exotic core-hole configurations
of ions, they are mostly absent. In the former case, it is
advised to use theoretically computed values instead [59],
and we adopted this to the latter case as well. Therefore,
we use B and U , which is a purely theoretical quantity, as
obtained from the Hartree-Fock-Slater calculation performed
with XATOM. Note that this implementation of the BEB formula
using XATOM-evaluated atomic parameters has been used in
XMDYN simulations [26,60]. Note further that the BEB formula
makes no mention of the wave functions of the electrons within
the target. Any contribution arising from a transition matrix
element is therefore not accounted for. An incoming electron
will distinguish two different systems with the same number
of bound electrons only through a difference in the parameters
B and U . How well this captures the difference in impact
ionization for two ions with the same charge but of different
electronic configuration is unknown.

The semiempirical formula provided by Lotz [45] for
the total electron-impact-ionization cross section takes the
following form:

σLotz =
N∑

i=1

aiqi

ln (E/Pi )

EPi

(1 − bi exp [−ci (E/Pi − 1)]),

for E � Pi, (17)

where the sum over i runs over all N subshells, E is the
energy of the incoming electron, Pi denotes the absolute
value of the orbital energy of the ith subshell, and qi is
the equivalent number of electrons present per subshell. The
constants ai , bi , and ci are orbital specific. Their values are
listed in Ref. [45]. For the exotic electronic configurations, we
used orbital energy values obtained from XATOM calculations.
We also note that a formula similar to Eq. (17), taking into
account inner-shell excitations and autoionization, has been
obtained in Ref. [61]. The Lotz formula in Eq. (17) is the
result of a best-fit approximation using all single-electron
impact-ionization cross-section data available at the time it
was proposed [42–45]. As these data were obtained from
ground-state ions and atoms, one cannot expect Eq. (17) to
yield well-established results for ions with exotic electronic
configurations.

We would like to emphasize that the use of the BEB and
Lotz formulas for ions with exotic electronic configurations
is not standard practice, as neither of them was designed to
handle these cases. However, it is still done, in part, because
both the BEB and Lotz formulas are computationally efficient.
In Sec. III B, we test these formulas with exotic electronic
configurations by comparing their predictions with our ab
initio calculations.

III. RESULTS

Below we show electron-impact-ionization cross sections
obtained for several electronic configurations of carbon and
sulfur ions. These specific elements were selected due to
their abundance in proteins and in biomolecules. In particular,

we considered C+, and C2+ ions with different electronic
configurations: (i) with the hole(s) in the innermost shell
(1s1 2s2 2p2 and 1s0 2s2 2p2) and (ii) with the hole(s) in the
outermost valence shell (1s2 2s2 2p1 and 1s2 2s2 2p0). For
the sulfur ion, we removed eight electrons in order to show
that the difference in cross sections obtained for two different
electronic configurations of the same net charge is amplified
for higher charge states. We considered either all holes in
inner shells, or in valence shells (1s0 2s0 2p2 3s2 3p4 and
1s2 2s2 2p4 3s0 3p0).

A. Doubly and singly differential electron-impact-ionization
cross section

In Fig. 1 we show a contour plot of the DDCS (Mb
eV−1deg−1 in a logarithmic scale) of a double core-hole (1s−2)
C2+ ion colliding with a 1-keV electron. The x and y axes
show the scattering angle and the outgoing energy of the
scattered electron, respectively. On the left panel, the DCSE

is plotted after the numerical integration over θ . To obtain
converged results, this angular integration requires 50 angular
grid points. The DCSθ is plotted on the bottom panel. For
the scattering-angle-resolved cross section, we only show the
range from 0◦ to 60◦, as the DDCS is almost negligible for
θ � 60◦. For the outgoing energy, we show the range from
800 to 1000 eV, in which the cross section is the largest. In
total, about 12 200 data points were calculated, which took
∼31 min on one Intel Xeon E5-1620 CPU, corresponding on
average to about 6.4 data points calculated per second. We note
that DCSθ calculations were much faster (∼49 s for the whole
range) because there was no need to numerically evaluate the
energy integral. We used N = 400 for the number of radial
grid points for all plots in Fig. 1. The DDCS plotted in Fig. 1
was multiplied by a factor of 2π , stemming from an integration
over the azimuthal angle φ.

Figure 1 shows the presence of the ionization thresholds in
the double core-hole C2+ ion, both in the DDCS and in the
DCSE (calculated to be at 50.7 and 56.5 eV for the 2p and
2s edge, respectively). The DDCS and DCSθ reveal a high
preference for low scattering angles, which is a consequence
of the Coulomb factor 1/Q4 in Eq. (8).

B. Total electron-impact-ionization cross section

In this section, we consider the total electron-impact-
ionization cross sections for C+, C2+, and S8+, and compare
our ab initio calculations for the ground-state ions to the
experimental predictions [62–65], as well as to the Lotz [45]
and BEB models [46]. The experimental data in Ref. [62]
were provided with error bars, shown as a shaded orange
area in the following figures. Additionally, for the carbon
ions, a more recent review [63] was available, providing
an additional set of recommended data. Figure 2 shows the
electron-impact-ionization cross section for C+: (a) when the
hole is in the valence shell and (b) when it is in the core shell.
Figure 2(a) shows that our ab initio calculation (XATOM) is
comparable to the results obtained from the Lotz and BEB
models. In comparison with the experimental data, our result
follows the quantitative trend of the data adequately. Both the
initial rise at low incoming energies and the later decrease
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FIG. 1. A contour plot depicting the doubly differential electron-impact-ionization cross section [Mb eV−1 deg−1] of a double core-hole
C2+ ion, on a log10 scale. The incident energy of the electron is 1 keV. The x axis shows the scattering angle θ from 0◦ to 60◦, and the y axis
shows the energy of the scattered electron Eout from 800 to 1000 eV. The DCSθ is plotted in blue and has units of Mb deg−1. The DCSE is
plotted in red and has units of Mb eV−1. The white area on the top indicates the region of zero cross section below the 2p edge (50.7 eV).

at higher incoming energies are captured quite well by the
XATOM result. Only in the intermediate region, where the
peak is located, our result overestimates the cross section
with respect to the experimental values before falling back
into the proper range of values. Of course, improved results
are expected for higher incoming electron energies due to
the plane-wave formalism employed in the description of the
incoming electron. Comparing with Fig. 2(b), we can observe
that both Lotz and BEB results differ slightly for both the core-
hole and the valence-hole cases, similarly as the XATOM results.
The CPU runtime for a single total cross-section calculation

with XATOM is dependent on the incoming electron energy; it
was 10.5 s on average.

Figure 3 shows the total electron-impact-ionization cross
section for C2+ with (a) two valence holes and (b) two core
holes. Figures 3(a) and 3(b) demonstrate that for higher ion
charges the difference in cross sections calculated for the
distinct electronic configurations becomes more pronounced.
In particular, Fig. 3(a) shows a similar trend as in Fig. 2(a),
where the XATOM result was comparable to both Lotz and BEB
models. Also, the XATOM result shows a similar kind of relation
with the experimental data: the initial rise and later decrease of

FIG. 2. Total electron-impact-ionization cross section as a function of incoming electron energy in eV for C+ with (a) one valence hole
(2p−1) and (b) one core hole (1s−1). The XATOM label denotes the present ab initio calculations, in comparison with the BEB method [46] and
the Lotz method [45]. For the ground-state C+ ion, the predictions are also compared with experimental data (Aitken et al., 1971 [64], Lennon
et al., 1988 [62], and Suno and Kato, 2006 [63]).
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FIG. 3. Total electron-impact-ionization cross section as a function of incoming electron energy in eV for C2+ with (a) two valence holes
(2p−2) and (b) two core holes (1s−2). For the ground-state configuration (a), three experimental data sets (Woodruff et al., 1978 [65], Lennon
et al., 1988 [62], and Suno and Kato, 2006 [63]) are compared with theory predictions.

the data are reproduced quite accurately by XATOM, whereas it
overestimates the values around the peak. Similarly, Fig. 3(b)
again shows that both Lotz and BEB results differ slightly for
the core-hole and the valence-hole cases. However, the XATOM

result predicts a relatively large difference in cross sections for
these cases.

Figure 4 shows the S8+ case: (a) with eight outer
holes (2p−23s−23p−4) and (b) with eight inner holes
(1s−22s−22p−4). For the ground-state configuration in
Fig. 4(a), a trend similar to the carbon cases can be identified.
By comparing Figs. 4(a) and 4(b), a large difference between
total cross section for distinct electronic configurations be-
comes visible. We note that the positions of the maximum
of the total cross section predicted with XATOM resemble the
experimental ones more closely than those predicted with the
Lotz and BEB models for all three cases considered. We have
restricted the incoming electron energy to a maximum of 10
keV. At higher electron energies, relativistic effects [47,48]
become increasingly important. These are currently not incor-
porated in our approach.

We conclude this section with an error estimate of our
approach. As mentioned in Sec. II B, the incoming electron is
described in a plane-wave formalism, which is an increasingly
accurate description for higher incoming electron energies.
Therefore, we will perform our error estimate as follows:
We choose two values of the incoming energy, one for the
representation of low incoming energies and the other for high
energies. We chose 100 eV and 1 keV, respectively, for C+ and
C2+, whereas for S8+ we chose 1 and 10 keV for the low and
high incoming energy regime, respectively. At these points,
we compare the values of the impact-ionization cross section
for the ground-state ions between XATOM and the experimental
dataset of Lennon et al. [62] in order to obtain an upper limit for
the percentage error estimate for the XATOM result. We chose
this dataset to have a consistent comparison for all systems.
At 100 eV, the error estimates for C+ and C2+ are 18% and
24%, respectively, whereas at 1 keV they are 6.2% and 1.2%,
respectively. The error estimates for S8+ are 25% at 1 keV and
14% at 10 keV. We argue that, since XATOM treats ground-state
ions and exotic ions within a consistent ab initio framework,

we expect at most the same percentage errors for the core-hole
ions as for the ground-state ones.

C. Discussion

Below we discuss the observed trends in impact-ionization
cross sections when comparing ground-state ions to their
core-hole variants. Figures 2, 3, and 4 show that the impact-
ionization cross section calculated by XATOM is larger for the
core-hole configurations than for the ground-state ions. The
magnitude of the difference depends on both the ion charge and
the energy of the incoming electron. The Lotz result does not
follow this trend generally. As observed in Figs. 2(a) and 2(b),
the Lotz result shows that the core-hole ion has a smaller cross
section than the ground-state ion. We attribute this to the inap-
plicability of the Lotz formula for ions with exotic electronic
configurations, as already discussed in Sec. II D. On the other
hand, the BEB result does follow the trend of the XATOM result
in all cases considered, albeit to a smaller extent. We argue that
the physical reason behind this trend is a combination of two
mutually competing factors in the core-hole ions. On the one
hand, there are more valence electrons to interact with, which
increases the cross sections. On the other hand, this effect is
partly compensated by the change in orbital size due to the
increased positive charge seen by valence electrons and results
in a slight decrease of the cross sections. We will first make
our arguments for the XATOM calculations, after which we will
show why the BEB result follows the same trend.

The contribution to the total impact-ionization cross section
from core-shell electrons calculated by XATOM was observed
to be very small as compared to the contribution from valence-
shell electrons, which is consistent with previous works [46].
For the purposes of this discussion, the contribution of core
shells can be neglected. Now consider the example of C2+.
The ground-state ion has two electrons left in the 2s valence
shell. In contrast, its double core-hole variant has four valence
electrons which will contribute to the impact-ionization cross
section, and so we would expect to see the cross section for
the double core-hole case to be approximately double the one
for the ground-state ion. This is indeed the case for incoming
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FIG. 4. Total electron-impact-ionization cross section as a function of incoming electron energy in eV for S8+ with (a) eight outer holes
(2p−2 3s−2 3p−4) and (b) eight inner holes (1s−2 2s−2 2p−4). For the ground-state configuration (a), the experimental data set from [62] is
shown.

energies above 1 keV, as shown in Fig. 3. A similar conclusion
can be drawn for C+, only now the cross section for the single
valence-hole and single core-hole ions should not differ by a
factor of 2 but by a factor of 4/3, since we move from a case
with three valence electrons to one with four. This is again
observed in Fig. 2 for the energies beyond 1 keV. As for S8+,
the eight-core-hole ion has six more valence electrons than
its eight-valence-hole variant. The cross sections for the two
S8+ variants never differ by as much as a factor of 6 for the
incoming energies considered, as is seen in Fig. 4. Instead, a
factor of 3.5 can be deduced at most.

This leaves us to find some features of the core-hole variants
of S8+, C2+, and C+, which compensate the effect of the
increase in cross section due to the presence of more valence
electrons, and which manifest themselves more for lower
energies in the case of the carbon ions. To this end, note that
the argument based on counting valence electrons assumes that
the contributions to the cross section of the valence shells in
the core-hole variants are roughly the same. However, for both
C+ and C2+, we observed that the contribution from the 2s

shell is smaller for the core-hole ion variant as compared to
the ground-state ion, the difference of which diminishes for
higher incoming energies. Since the configurations of S8+ we
considered have no orbitals which contain the same amount of
electrons, such a comparison is less meaningful for S8+. We
attribute this to the decreased size of the valence orbitals in
the core-hole variants caused by the increased positive charge
they experience from the nucleus, as there is no screening
effect from core electrons. To understand why a smaller orbital
leads to a diminished contribution in the cross section, let us
consider the transition matrix element in the expression for
the impact-ionization cross section in Eq. (7). Also, we will
separately consider low incoming energies (of the order of 100
eV) and high ones (1 keV or higher) in what follows.

Let us start with the regime of low incoming electron
energies (take Ein = 100 eV) and consider the matrix element
〈ϕf |eiQ·x|ϕi〉. For an electron of 100 eV, the de Broglie
wavelength is of the order of 1 Å. Since the ejected electron
energy is less than the incoming electron energy, the de Broglie

wavelength of the ejected electron will be larger than 1 Å.
However, this is much larger than the spatial extent of the initial
orbitals we are considering. Therefore, when performing the
integration of 〈ϕf |eiQ·x|ϕi〉, we can largely consider 〈ϕf | to
be a constant. What remains is an integration over eiQ·xϕi (x),
which is simply the Fourier component of the initial orbital
associated with Q, denoting the momentum transfer from
the incoming electron. Effectively, we are considering the
momentum distribution of the initial orbital |ϕi〉, evaluated
at the momentum transfer Q. However, not all values of Q
are considered. Since Q = qin − qout, and, for our incoming
electron, qin is of the order of

√
2Ein, Q will not sample

many points in the momentum distribution of |ϕi〉 for low
energies. Combining this with the fact that smaller initial
orbitals will have a more spread out momentum distribution
leads to a smaller transition matrix element, thus diminishing
the contribution to the impact-ionization cross section.

At higher energies (for example, Ein = 1 keV), the energy
transfer from the incoming electron may be substantial, so we
cannot assume the de Broglie wavelength of the ejected elec-
tron to be constant when performing integration of the matrix
element 〈ϕf |eiQ·x|ϕi〉. However, in such cases, Q will include
a much larger range of values to sample over. Additionally,
we can argue that the highly energetic ejected electron could
equally well be described as a plane wave with an associated
momentum qejec. Then the transition matrix element will be an
integral over ei(Q−qejec )·xϕi (x). From here on, we can reuse the
Fourier analysis argument from the low-energy case. Again,
a smaller initial orbital will lead to a spread in its momentum
distribution, but since Q will include a much larger range of
values for sampling, we can argue that the diminishing effect
to the cross-section contribution will be less present for higher
energies. This last effect is not seen in the S8+ case, because
the much stronger Coulomb interaction experienced by the
incoming electron, as compared to the C+ and C2+ cases,
pushes the validity of the plane-wave framework to higher
energies than those that were considered.

These two factors which we have discussed above are also
captured, to a different extent, by the BEB formula. First,
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TABLE I. The orbital kinetic energies in [eV] as calculated by
XATOM for all systems considered and used for the calculation of the
BEB cross sections.

Orbital kinetic energies U [eV]
1s 2s 2p 3s 3p

C+ (1s−1) 478.9 67.6 63.8 - -
C+ (2p−1) 447.0 54.1 45.5 - -
C2+ (1s−2) 495.8 89.6 91.0 - -
C2+ (2p−2) 448.6 60.9 54.1 - -
S8+ (1s−2 2s−2 2p−4) 3469.5 801.1 810.5 271.5 268.6
S8+ (2p−2 3s−2 3p−4) 3332.4 582.7 567.1 179.9 169.3

the overall factor of N , denoting the number of electrons
present in the orbital considered, is contained in Eq. (16).
Second, the diminishing factor from the decreased orbital size
is captured by the orbital kinetic energy U in the denominator
of Eq. (16). We can relate the size of an orbital to the orbital
kinetic energy as follows. The orbital kinetic energy is related
to the momentum distribution of the target electron through
U = 〈p̂2〉/2, with p̂ the momentum operator of an electron
in a certain subshell. This means U is associated to the
second moment of the momentum distribution, i.e., its width.
As an orbital becomes smaller and thus more localized, its
momentum distribution will spread, causing U to become
larger and therefore decreasing the BEB cross section. In order
to justify the observed trend in Figs. 2 and 3, this would imply
that the orbital kinetic energies U of the core-hole variants
should be larger than those of the ground-state ions. Table I
shows the values of U for each shell of each system considered,
as calculated by XATOM. It shows, without exception, that
the orbital kinetic energies U of the core-hole variants are
indeed larger than those of the ground-state ions. Therefore,
the qualitative behavior of the BEB result follows that of our
ab initio calculations.

IV. CONCLUSION AND OUTLOOK

To sum up, we have developed a versatile ab initio scheme
for calculation of direct electron-impact ionization of ions in
any electronic configuration at zero temperature within the
Hartree-Fock-Slater (HFS) framework. In particular, we have
incorporated the known formula for the doubly differential
electron-impact-ionization cross section (DDCS) derived in
Ref. [55] into the HFS-based XATOM toolkit. Within the
scheme, the incoming electron and the scattered electron are
treated using plane waves, the atomic system under con-
sideration with a HFS approach, and the final state of the
ejected electron with a pseudocontinuum description. From the
DDCS obtained, we have calculated singly differential cross
sections, both angle and energy resolved, as well as the total
electron-impact-ionization cross section.

Our approach, derived in the first Born approximation,
should work accurately not only for the description of electron-
impact ionization of cold ions, but also for more complex
systems like molecules, solids, and plasmas, provided that the

assumption of a weak scattering potential seen by the impact
electron is reliable, i.e., the average interaction energy between
the impact electron and the scatterer(s) is much lower than the
kinetic energy of the impact electron. Following this criterion,
we expect that especially in the condensed-matter systems,
where the screening of ions diminishes the effect of long-
range Coulomb interaction between the incoming electron
and constituent ions, also the regime of lower electron-impact
energies will be accessible for the impact-ionization cross
sections calculated with this method.

The ab initio calculations can be easily incorporated in
x-ray-induced dynamics simulations treating the relaxation of
atoms after high-energy-impact collision and provide impact-
ionization cross sections for any exotic (multihole) configura-
tion.

On the examples of ground-state carbon and sulfur ions, we
have shown that the results of our ab initio scheme for total
electron-impact-ionization cross section manage to reproduce
the experimental data at high energies of the incoming electron
to a satisfactory degree, while resembling the overall trend
of the data sets for all incoming energies considered. For
the exotic configurations, for which no experimental data are
available, our ab initio method enables us to perform cross-
section calculations without any difficulties. Our results indi-
cate that there are significant differences in impact-ionization
cross sections between the core-hole (exotic) and valence-hole
(ground-state) configurations in ions of the same charge, which
increase with an increasing charge of the ions. Also, our
results are, in general, comparable to those obtained with the
BEB and Lotz models for core-hole configurations, using the
input parameters calculated with XATOM. However, our method
indicates stronger differences between the impact-ionization
cross sections for core- and valence-hole configurations than
the BEB and Lotz models. The discrepancies observed increase
with increasing charge of the ions.

We expect that this finding can have a significant impact
on any quantitative modeling studies treating the relaxation
of atoms after high-energy-impact collision, e.g., simulations
for coherent x-ray diffraction imaging of nanocrystals and
single biological macromolecules, or studies of laser-created
plasmas. While we advocate the use of an ab initio method,
the need for repeated cross-section calculations in simulations
of x-ray-driven complex systems requires striking a balance
between numerical accuracy and computational efficiency. We
believe that our implementation within XATOM satisfies these
requirements. For quantitative checks, further studies are re-
quired in specific contexts. In particular, for dense samples, the
inclusion of finite temperature and treatment of the ion’s envi-
ronment are necessary. This development is already underway.
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