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In this study, we present a statistical analysis of the level structures of four highly charged actinide ions: Bk
XII, Cf XII, No XIII, and Md XIV. In these ions, 5f wave-function contraction gives rise to a manifold of levels
arising from configurations with partially filled 5f and 6p subshells. The cumulative effects of configuration
interaction (CI) between these configurations results in a complete breakdown of the independent particle model
used in the labeling of the states and leads to the formation of so-called “compound” states. Properties of the
calculated level structures have been analyzed using the techniques of random-matrix theory (RMT). Standard
statistical measures, such as the repulsion parameter q, the covariance of adjacent spacings cov(si , si+1), and
the Dyson-Mehta statistic �3(L), have been computed for specific J π interacting sets belonging to the four
aforementioned ion stages. In the majority of cases, these calculations are found to be in very good agreement
with the RMT-predicted values for these quantities. This study therefore extends previous identifications of
RMT-like level fluctuations in the level spectra of lanthanide ions to high-Z, moderately charged actinide ions.
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I. INTRODUCTION

Perhaps the most profound characteristic of Wigner’s ran-
dom matrix theory (RMT), aside from its mathematical ele-
gance, is the powerful predictive capabilities of the theory in
many seemingly unrelated fields of inquiry. Indeed, to date,
RMT has found application in many diverse research topics.
For example, in the field of mathematical finance, the tools
of RMT have been utilized to quantify cross correlations be-
tween price fluctuations of stocks [1]. Another example arises
in the field of acoustics, whereby the spectral statistics of
acoustic resonances in aluminium and quartz blocks have been
shown to be accurately described using RMT [2,3]. The ability
of RMT to capture the universal features of these systems
without knowledge of the underlying interactions is clearly
quite remarkable, and this is what makes it an incredibly
powerful tool. In the present study, the predicative capabilities
of RMT in describing gross features of the level structures of
highly charged actinide ions are studied. We wish to extend
previous works on the level structure of the lanthanide ion Sm
IX [4] to high-Z actinides ions.

RMT can trace its origins back to Eugene Wigner’s work
on the interpretation of nuclear spectra in the early 1950s [5].
The problem facing the nuclear community was to provide
a quantitative understanding of the resonances observed in
low-energy neutron scattering experiments from heavy nuclei
(e.g., see Fig. 3 of [6]). In such systems, the incident neutron
is captured by the nucleus, and its energy is shared among the
constituent nucleons. Unfortunately, an accurate description
of the excited states of these systems proved impossible using
conventional nuclear theory of the time. Indeed, with increas-
ing energy, the exponential increase in level density results in
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complicated level mixings and a complete breakdown in any
approximate quantum numbers used in the description of the
level structures. Because of these difficulties, accurate models
of the underlying Hamiltonian proved impossible to construct.

The complicated, many-body nature of these interactions
led Wigner to develop a statistical approach to the problem.
In this method, one approximates a nuclear Hamiltonian by
performing an averaging process over an ensemble of “model”
Hamiltonian matrices, each of which share common symme-
try properties. Importantly, to reflect the complicated nature
of the interactions, each model Hamiltonian is populated with
random variables drawn from some probability distribution.
By performing the averaging process over a large ensemble
of matrices, it is expected that the ensemble average should
not deviate substantially from a true Hamiltonian [7,8]. It was
surmised that the fluctuation properties of the eigenvalues of
this Hamiltonian and those of the experimental level energies
with equivalent “good” quantum numbers would be identical,
and, furthermore, that the probability distribution of nearest-
neighbor spacings (NNSs) s would be of the form

P (s) = πs

2
exp

(−πs2

4

)
. (1)

Remarkably, this distribution was found to reproduce ex-
perimental nuclear data magnificently, examples of which can
be seen in [9]. In the years following this discovery, formal
development of the mathematical underpinnings of the theory
took hold. Dyson, for example, using group-theoretical results
of Wigner, demonstrated the existence of three generic ensem-
bles of random matrices: the Gaussian orthogonal, unitary,
and symplectic ensembles [10]. Each ensemble is associated
with a specific symmetry property of the Hamiltonian. GOE
statistics, for example, are employed when describing nuclear
(and atomic) Hamiltonians due to the time-reversal invariant
nature of the system.
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Given the overwhelming evidence of GOE-like behavior
in the spectra of nuclear scattering systems, it is natural to ask
whether RMT-like behavior could be observed in the spectra
of atomic systems. Rosenzweig and Porter [11] addressed
this problem by undertaking a comprehensive examination
of the level structures of atoms and ions belonging to the
third, fourth, and fifth rows of the Periodic Table. Interest-
ingly, Wigner’s prediction (1) was found to mirror the level
distribution of sets with equivalent good quantum numbers
belonging to the fifth row of the Periodic Table, an observation
attributed to the increasing strength of spin-dependent forces
as one moves to the fifth row. In the atomic case, good
quantum numbers correspond to the total angular momentum
J and the parity π , and a group of levels with equivalent Jπ

labels is known as an interacting set. More than 20 years
later, Camarda and Georgopolous [12], using energy-level
data compiled by Martin, Zalubas, and Hagan [13], identified
energy-level fluctuations in the level spectra of lanthanide ions
consistent with the predictions of the GOE.

Since the 1980s, numerous studies have examined the role
of RMT in describing complex atomic systems. Flambaum
et al. [14], inspired by the work of Chirikov [15], performed
a comprehensive study on the structure of the eigenstates of
neutral cerium. The presence of several low-lying orbitals
(4f , 6s, 5d, and 6p) was found to generate an enormous level
density. In fact, the average level spacing D was found to be
significantly smaller than the off-diagonal residual interaction
V = 〈�i |H |�j 〉, resulting in a complete breakdown of the
independent particle model (V/D � 1). As before, only good
quantum numbers, i.e., Jπ , are useful in the labeling of levels.
The eigenstates of the system were found to be built from a
random or chaotic superposition of a large number of basis
states (number of principal components Neig ≈ 70), hence the
term many-body quantum chaos.

Although neutral Ce provides a very suitable testing
ground for the identification of many-body quantum chaos,
it is interesting to ask whether values for Neig similar to
those encountered in the nuclear case (Neig ≈ 104–106) can
be found in other atomic systems. O’Sullivan and co-workers
[16,17] have identified such a system: lanthanide ions in
the presence of 4f wave-function collapse [18]. Briefly, the
double-well nature of the 4f potential is such that, in the
neutral lanthanides, the centrifugal term in the radial poten-
tial dominates and the 4f eigenfunction is located in the
outer well [18–20]. However, with increasing ionization, the
strength of the attractive nuclear Coulomb term becomes
dominant, and the repulsive barrier separating the outer and
inner wells drops, resulting in contraction of the 4f wave
function towards the core [21,22]. In the process of 4f wave-
function contraction, configurations with variable 4f/5s/5p

occupancy overlap significantly in energy, resulting in an
enormous level density and a complete breakdown of any in-
dependent electron designations. Indeed, recent calculations,
building on the experimental work of Carroll and O’Sullivan
[23] and O’Sullivan [24], have identified an admixture of
4f/5p and 4f/5s electrons in the ground-state configurations
of moderately charged lanthanide ions [25]. Clearly, these
structures adhere to the requirements of a system exhibiting
many-body quantum-chaotic features. To investigate whether
such structures do indeed exhibit quantum chaotic features,

Kilbane et al. [4] have undertaken a comprehensive analysis of
the eigenstates and eigenvalues associated with even- and odd-
parity states of Sm IX. Strong evidence of quantum chaotic
features were found to prevail in the energy-level statistics of
odd Sm IX. Interestingly, behavior intermediate between the
regular and chaotic extremes was identified for even Sm IX.

In terms of postlanthanides, we know of only one study,
that of Viatkina et al. [26], which has examined many-body
quantum chaotic signatures in high-Z species. Chaotic behav-
ior in the spectrum of neutral Pa was identified by examining
the level structures and eigenstates of numerous Jπ interact-
ing sets, as well as the observation of a statistical enhancement
of small perturbations via the three-electron interaction of
valence electrons. In the present work, we have extended
the identification of many-body quantum chaos from neutral
Pa to moderately charged actinide ions. Indeed, in a recent
calculation of the ground-state configurations of actinide ions
[27], the effects of 5f wave-function contraction were found
to be significant and lead to strong competition between the
5f and 6p electrons in the formation of the ground states.
Naturally, because of the highly correlated nature of these
level structures, the question of whether such systems exhibit
chaotic features was addressed. As a test case, the level struc-
ture of the Jπ = 5+ interacting set in Rn-like Cm (Cm10+)
was examined.

Indeed, this level sequence was found to be extremely
dense. Moreover, a striking similarity between the level dis-
tribution of this interacting set and that calculated using
Wigner’s prediction (1) was observed.

An extension of this work has been undertaken in the
present study, whereby we have perfomed more elaborate
RMT tests on the level structures of numerous actinide ions.
These tests have been performed on ion stages exhibiting a
pronounced contraction of the 5f wave function, i.e., sig-
nificant 5f/6p wave-function overlap. Short- and long-range
correlations in the spectra have been identified by evaluating
quantities such as the repulsion parameter q, the covariance of
adjacent spacings cov(si, si+1), and the Dyson-Mehta statistic
�3(L). Direct comparisons have been made with the RMT-
predicted values for these quantities, thus allowing for the
quantification of RMT’s suitability in describing gross fea-
tures of the level structures.

The structure of the present paper is as follows. In Sec. II,
we describe the underlying theoretical method and computa-
tional procedure adopted in the flexible atomic code (FAC)
[28] for the calculation of the level structures. In Sec. III
the results of a comprehensive statistical study on the level
structures are presented. Finally, we conclude with a summary
of the present work in Sec. IV.

II. ATOMIC STRUCTURE CALCULATIONS

A standard technique often used to identify quantum
chaotic signatures in atoms and/or ions involves performing
statistical tests on detailed, accurate energy-level “data sets.”
Here, each data set corresponds to a well-defined Jπ manifold
of interacting energy levels, where, importantly, each Jπ

manifold is treated independent of the other manifolds. In this
regard, one possible approach would involve performing these
statistical tests on experimentally obtained energy levels, as
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was demonstrated by Rosenzweig and Porter in their pioneer-
ing work of 1960 [11]. However, the trade-off between the
intrinsic complexity of the level sequences and the preciseness
required when assigning accurate Jπ labels typically results
in a series of fragmentary Jπ manifolds (e.g., see [11]). In
such cases, the appropriateness of applying statistical tests is
questioned. Moreover, the obvious overarching restriction to
this approach is simply a lack of experimental level structure
data, which, unfortunately, applies here in the case of highly
charged actinide ions.

In light of the above considerations, we are clearly re-
stricted to performing these statistical tests on accurate theo-
retical calculations of the level structures. For the ions consid-
ered in this work, accurate calculations of the level structures
require the simultaneous, detailed treatment of both relativis-
tic and correlation effects. A technique often used in such
situations involves modeling the atomic-ionic structure using
the Dirac-Fock-Slater approach implemented in the flexible
atomic code (FAC) [28]. To date, the FAC has proven to be
a powerful tool for reproducing accurate atomic radiative and
collisional quantities such as energy levels, transition rates,
autoionization rates, photoionization cross sections, etc. It is
a flexible, versatile code, which, in its design, has built on
the strength of existing codes, such as HULLAC [29] and the
Pennsylvania code developed by Sampson et al. [30,31].

In the FAC, the level structure is built from an underlying
N -electron Dirac-Coulomb Hamiltonian

H =
N∑

i=1

[
(α i . pi )c + (βi − 1)c2 − Z

ri

]
+

N∑
i<j

1

rij

, (2)

where c is the speed of light and α i , βi are the Dirac matrices.
The (approximate) atomic state functions (ASFs) |�(JMJ π )〉
of the system are represented as a linear combination of
configuration state functions (CSFs) |�(JMJ π )〉 of the same
symmetry

|�(JMJ π )〉 =
∑

k

ck|�k (JMJ π )〉, (3)

where the expansion coefficients ck are obtained through
diagonalization of the Hamiltonian. Each individual CSF in
the summation (3) is written as a Slater determinant of N one-
electron Dirac spinors ϕ, where, in the relativistic formalism,
ϕ is written

ϕnκm = 1

r

[
Pnκ (r )χκm(θ, φ, σ )

iQnκ (r )χ−κm(θ, φ, σ )

]
. (4)

Here, n is the principal quantum number, m is
the magnetic quantum number for a single-electron or-
bital, and κ = (l − j )(2j + 1) is the relativistic angu-
lar momentum quantum number. The functions χκm =∑

ml,ms
C(l 1

2mlms ; jm)Ylml
(θ, φ)δ(ms |σ ) are the standard

spin-angular functions, δ(ms |σ ) are the spin functions,
and the quantities Pnκ (r ) and Qnκ (r ) are the large
and small components of the radial wave function,
respectively.

The first step in any atomic structure computation is the
accurate calculation of the radial orbitals. In the Dirac-Fock-

Slater method pursued here, the components Pnκ (r ) and
Qnκ (r ) satisfy the following coupled Dirac equations:(

d

dr
+ κ

r

)
Pnκ (r ) = α

(
Enκ − V (r ) + 2

α2

)
Qnκ (r ), (5)(

d

dr
− κ

r

)
Qnκ (r ) = α[−Enκ + V (r )]Pnκ (r ), (6)

where α ≈ 1/137 is the fine-structure constant, the energy
eigenvalues of the radial orbitals are written Enκ , and the local
central potential is given by V (r ). Although not provided here,
the expression for V (r ) used in the FAC is a summation over
all subshells nκ involving the terms Pnκ and Qnκ . Because of
this interdependency [V (r ) ↔ Pnκ,Qnκ ], one solves (5) and
(6) for the components Pnκ and Qnκ self-consistently.

In the FAC, a single local central potential V (r ) is used
throughout the calculations. A straightforward derivation of
V (r ) would involve summing over all nκ subshells of the
ground-state configuration. In this approach, only a single
configuration is used to optimize the radial potential. In the
case of excited-state configurations, however, this potential
is clearly less well suited. As a compromise, the approach
adopted in the FAC is to optimize this radial potential using
a “fictitious” configuration with fractional occupation num-
bers. The purpose of this fictitious configuration is to best
reflect the influence of both the ground- and excited-state
configurations in a single optimization of the radial poten-
tial. For example, a fictitious configuration for a Ne-like ion
(ground-state configuration 1s22s22p6) could take the form
1s22s22p43s13p0.63d0.4. This approach was first adopted in
the codes of Sampson et al. [30,31] and has been used to great
effect to generate accurate, reliable level structure data. The
choice of occupancy weighting in this fictitious configuration,
however, is clearly quite arbitrary, and caution is therefore
needed in its construction. For example, as mentioned by
Gu [28], the inclusion of high-lying orbitals in this fictitious
configuration may lead to a more diffuse radial potential than
actually exists in the physical system, thus leading to inaccu-
rate level structure data. In order to correct for the use of this
less-optimized potential, the FAC implements a correction to
the original procedure. In the first step, the average energies of
each configuration adopted in the model are calculated using
radial potentials optimized to each individual configuration.
Next, the radial potential is optimized using a single fictitious
configuration, and the average energy of each configuration is
recalculated using this less-optimized potential. Construction
of the Hamiltonian matrix follows suit. Finally, before explicit
diagonalization of the Hamiltonian matrix, one adds as a
correction to the appropriate Hamiltonian matrix elements the
differences in configuration average energies calculated using
the optimized and less-optimized potentials.

As highlighted in the Introduction, we have recently under-
taken a calculation [27] of the ground-state configurations of
actinide ions in charge states VII–XXV using the pseudorela-
tivistic and fully relativistic approaches implemented in the
Cowan code [32] and the FAC [28], respectively. We have
adopted the results of the FAC level structure calculations in
the current study. As a reminder, calculations of the charge
state structures of isoelectronic sequences in the range Au-
like to Rn-like were performed with variable numbers of
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TABLE I. Charge states, interacting sets, configurations included
in the calculations, and the range of J values considered in the
calculations.

Ion stage J π Configurations J

Bk XII 3+ 5f 8, 5f 76s, 5f 66s2, 5f 56p, 5f 46p2 0 → 13
5f 36p3, 5f 26p4, 5f 6p5, 6p6

Cf XII 7
2

−
5f 7, 5f 66p, 5f 56p2 1

2 → 27
2

5f 46p3, 5f 36p4, 5f 26p5, 5f 6p6

No XIII 4+ 5f 10, 5f 96p, 5f 86p2 0 → 15
5f 76p3, 5f 66p4, 5f 56p5, 5f 46p6

Md XIV 3+ 5f 8, 5f 76p, 5f 66p2 0 → 14
5f 56p3, 5f 46p4, 5f 36p5, 5f 26p6

5f/6s/6p occupancy, i.e., all possible configurations of the
form 5f n6sk6pm were included in the calculations, where
n + k + m is the number of electrons additional to a Pt-
like core (outermost subshell of the form 5d10). Here, the
occupation numbers n, k, and m are integers. For the heavier
isoelectronic sequences in the range Fr-like to Bk-like, only
configurations with variable 5f/6p occupancy were consid-
ered. This choice of reduced configuration space is justified,
however, since the 5f binding energy only overtakes the 6s

at ion stages well in excess of the moderately charged states
considered here. For example, in the Rn-like isoelectronic
sequence, 5f/6s level crossing was shown to occur near the
36th ion stage (Z ≈ 121) [27]. A detailed list of configu-
rations included in the calculations along with the range of
J values considered in these calculations are presented in
Table I. As noted in this study, the construction of a fictitious
configuration for the optimization of the radial potential is
significantly difficult given the existence of strong CI in the
system and also a lack of experimental data to which to
compare the calculated level structures. To circumvent this
difficulty, two sets of calculations were performed for each
ion stage, whereby the fictitious configuration used corre-
sponded to (i) the configuration associated with the lowest-
lying level and (ii) the next lowest-lying configuration. Both
sets of calculations consistently yielded the same ground-
state configurations. For the current study, we will adopt the
level structures calculated using the first approach. Although
we are dealing with high-Z ions, higher-order corrections to
the Hamiltonian, such as the Breit interaction, were not in-
cluded in the original calculations. This decision was built on
the premise that the electron-electron interactions, described
through the Slater integrals Fk , Gk and the Slater CI integrals
Rk , would dominate over higher-order effects. Indeed, the
Breit correction to the interaction between valence electrons is
on the order of α2, significantly smaller than the interactions
described above [33]. However, as discussed by Kozlov et al.
[33], the Breit correction to the exchange interaction be-
tween the valence electrons and the core electrons is typically
non-negligible.

In order to examine this further, we wish to compare the
results of level structure calculations performed both with and
without the Breit interaction included in the Hamiltonian. To
do so, we have examined the Jπ = 3+ interacting set in the
Bk XII ion.

Let En,Breit denote the nth level calculated with the in-
clusion of the Breit interaction and En denote the nth level
calculated without this perturbation. The standard procedure
for quantifying the strength of such a pertubation involves
identifying equivalent levels in both sets of calculations and
comparing their calculated energies. This identification is
typically done by identifying levels with identical quantum
numbers. If the corrections to the energies are rather small
and if the level structures are not too dense, one can simply
match levels based on the ordering of their energies, i.e.,
E1,Breit ⇔ E1, E2,Breit ⇔ E2, etc.

Unfortunately, the process of matching levels with iden-
tical quantum numbers is extremely difficult in the case of
dense level structures. Indeed, the existence of numerous near-
equally weighted basis states contributing to each level makes
the labeling of these levels via the leading eigenvector rather
ambiguous. The corresponding expansion coefficients of these
basis states are highly sensitive to variations in the Hamilto-
nian matrix elements. Therefore, the introduction of a pertur-
bation into the Hamiltonian, such as the Breit interaction, can
alter these expansion coefficients and cause a redesignation of
a level according to the new leading eigenvector. This feature
is evident in the level structure of the Jπ = 3+ interacting set.

In order to quantify the deviations between both calcula-
tions, we first order the levels in terms of increasing energies
as outlined above. The deviation between two levels is then
obtained from the statistic γ = 100 × |En,Breit − En|/En. In-
terestingly, this statistic takes on its largest values for levels
below 20 eV (0.4% < γ < 7.6%). However, as one moves to
higher excitation energies, γ tends to converge around a value
of 1%. Clearly, the inclusion of this perturbation does not have
a significant influence on the general level structure. Although
the level labels may change, the Jπ = 3+ level structure varies
only slightly. Therefore, it is the eigenvectors rather than the
eigenvalues that are most affected by the inclusion of the
Breit interaction in the Hamiltonian. Given that the statistical
tests only depend on the level structures, we conclude that
the neglection of the Breit interaction in the level structure
calculations should not have a significant influence on the
outcome of the RMT statistical tests.

III. LEVEL STRUCTURES AND RMT STATISTICS

In the present section, we introduce and describe the
numerous statistical tests we have performed on the level
structures. This will enable us to identify the existence of
short- and long-range correlations in the energy-level spectra.
As mentioned by Dyson [10], it is important to note that
the goal of Wigner’s statistical theory is to best reproduce
gross features of the spectrum, such as the distribution of
spacings between adjacent levels. Localized quantities, such
as the ordering of levels, cannot be reproduced by the theory.

A. Criteria for selection of ion stages and Jπ sets

The appropriate choice of ion stage and Jπ interacting
set is a key step in the identification of many-body quantum
chaos in an atomic-ionic system. As already discussed, the
vital component of such a system exhibiting GOE statistics
is that there must be some form of breakdown of the shell

022521-4



MANY-BODY QUANTUM CHAOS AND ACTINIDE IONS: … PHYSICAL REVIEW A 98, 022521 (2018)

TABLE II. Charge states, interacting sets, Ntotal, and Nstudied.

Ion stage J π Ntotal Nstudied

Bk XII 3+ 615 109
Cf XII 7

2

−
1121 162

No XIII 4+ 2468 104
Md XIV 3+ 1627 86

structure. Any approximate symmetries, such as those de-
scribed through the quantum numbers n, L, or S, must be
destroyed. The level structure must be extremely dense in na-
ture and display strong configuration mixing (V/D � 1). In
this sense, systems which contain well-defined bands of levels
ascribed to a single configuration, well-separated in energy
from neighboring configurations, are not useful for the current
purposes. An examination of the level structures calculated in
[27] has identified the lightly (q+ < 5+) and heavily (q+ >

16+) ionized species as having relatively ordered level struc-
tures. In the case of the former, the 5f wave function is an
eigenstate of the outer well and has not undergone significant
contraction into the inner well region. No significant disrup-
tion of level orderings has therefore occurred for these species.
In the case of highly charged ions, the 5f wave function has
fully contracted into the inner region, and ground-state config-
urations typically take the form 5f n. Although partial overlap
with neighboring configurations is observed (due to the large
energy spread of 5f n configurations), well-defined energy-
dependent configuration bands still emerge in these systems.
The natural testing ground for the current study therefore
lies between the two extremes mentioned above. In the case
of moderately charged actinide ions, 5f wave-function con-
traction results in significant 5f/6p wave-function overlap.
As a result, configurations with variable 5f/6p occupancy
overlap in energy, and the strong interactions and extremely
dense level structures in these systems result in a complete
breakdown of any independent electron designations.

Now that the range of testable charge states has reduced,
the next step involves identifying appropriate Jπ interacting
sets on which to perform the statistical tests. The criterion
adopted here is that each interacting set must contain a
significantly large number of levels. In the case of the four
interacting sets chosen here, each Jπ group contains >600
levels. However, as mentioned in the next section, statistical
tests are typically performed on subsections of an interacting
set. Accounting for this restriction, we have chosen regions of
the energy spectra which contain no fewer than 80 levels. In-
formation regarding the four chosen ion stages, the interacting
sets, and the number of levels in (i) the entire energy region
Ntotal and (ii) the studied energy region Nstudied is provided
in Table II. Energy-level diagrams belonging to the four ion
stages are presented in Figs. 1–4 . The energy levels shown
in these plots belong to all possible Jπ sets. In these plots,
the level spectra are given a constant height on the y axis.
Superimposed on top of each plot, shown in red, is a histogram
of the level density. More specifically, the height of each
histogram bin corresponds to the ratio of the number of energy
levels contained within that bin to the total number of energy
levels in the spectrum. The level structures are clearly very

FIG. 1. Energy-level diagram of Bk XII. Superimposed on top of
the energy-level spectrum, shown in red, is the energy-level density
(see text for description).

dense, and each ion stage exhibits an interesting variation of
level density with excitation energy. In Fig. 5 we illustrate
the energy spectra of the four interacting sets considered in
the present work. Energy levels enclosed within the red boxes
were utilized in the present study.

B. Level densities and cumulative level distributions

Calculations performed with the FAC provide a se-
quence of eigenvalues which we shall denote by the
set {E1, E2, E3, . . . , En}, where E1 < E2 < E3 < · · · < En.
Throughout these calculations, the ground level is fixed at
E1 = 0 eV. The level structure is described through the level
density ρ(E), where

ρ(E) =
n∑

i=1

δ(E − Ei ). (7)

A quantity often used in the description of level structure
is the mode number or cumulative level distribution N (E). It

FIG. 2. Energy-level diagram of Cf XII. Superimposed on top of
the energy-level spectrum, shown in red, is the energy-level density
(see text for description).
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FIG. 3. Energy-level diagram of No XIII. Superimposed on top of
the energy-level spectrum, shown in red, is the energy-level density
(see text for description).

is written

N (E) =
n∑

i=1

�(E − Ei ). (8)

N (E) counts the number of levels with energies up to
and including E, and is related to the level density through
N (E) = ∫

ρ(E′)dE′. A plot of N (E) versus E takes on the
appearance of a staircase and reveals changes in the level den-
sity as a function of excitation energy. This quantity is shown
in Figs. 6 and 7 for the Jπ = 7/2− and 4+ interacting sets in
Cf XII and No XIII, respectively. First, it is important to note
the enormous level densities associated with these interacting
sets. In each case, there are over 1100 and 2400 levels below
80 and 120 eV, respectively (see Table II). In the case of the
Jπ = 7/2− interacting set, significant changes in level density
are observed across the entire energy range. Two regions of
the spectrum exhibit an almost linear dependence of the mode
number on excitation energy (31 → 40 and 52 → 58 eV). A
reduction in the level density is observed between these two
regions. This behavior can be attributed to the fluctuating level
density observed in Fig. 2. Indeed, the coupling of three (or

FIG. 4. Energy-level diagram of Md XIV. Superimposed on top
of the energy-level spectrum, shown in red, is the energy-level
density (see text for description).

FIG. 5. Energy-level spectra of the four J π sets: 3+ (Bk XII),
7/2− (Cf XII), 4+ (No XIII), and 3+ (Md XIV). The red boxes
superimposed on top of the level spectra indicate the regions where
the spectra were unfolded (see text and Table II).

more) 5f electrons gives rise to three bands of levels, each
separated by regions of small level densities. Increasing the
number of 5f electrons results in these bands becoming less
distinctive because of the large number of levels associated
with these configurations. Indeed, the irregular behavior of the
mode number in the region below 30 eV of Fig. 6 may also be
attributed to this behavior.

From the above discussion, one can conclude that the level
spectrum in the 0–70 eV region of the Jπ = 7/2− interacting
set exhibits a pronounced nonuniformity in its level density.
It is impossible to define a single mean level density for the
energy range. The first step therefore in any statistical analysis
of a level sequence is to remove this energy-dependent density
and to perform what is known as unfolding. In this procedure,
one transforms the level distribution into one with unit level
density, i.e., one rescales the energy levels such that, on
average, each level is separated from its neighboring levels
by a unit of 1. To do so, an appropriate region of the level
spectrum is chosen, and a curve, denoted N̄ (E) (known as the
mean mode number), is fitted to the data. An example of this
can be seen in Fig. 8, where we have chosen the 52.004 →
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FIG. 6. Mode number N (E) as a function of energy for the J π =
7/2− interacting set in Cf XII.
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FIG. 7. Mode number N (E) as a function of energy for the J π =
4+ interacting set in No XIII.

57.9907 eV region of Fig. 6 and have performed a single-order
polynomial least-squares fit to the data. The line of best fit,
N̄ (E), is shown in red and reproduces the level structure data
to a high accuracy. This is demonstrated quantitatively by an
R-square value of 0.9998 [Here, the R-square value is defined
as the ratio of the sum of squares of the regression (SSR) to
the addition of the sum of squares of the error (SSE) and the
SSR, i.e., R2 = SSR/(SSE + SSR). An R-square value close
to 1 indicates an accurate fit to the data.] Furthermore, this
region of the spectrum has the advantage of a large number
of interacting levels (Nstudied = 162). Using the mean mode
number, it is possible to define a new energy scale as the quan-
tity N̄ (E) evaluated at the original level energies, i.e., εj =
N̄ (Ej ). The new unfolded energies, therefore, belong to the
set {N̄ (E1), N̄ (E2), N̄ (E3), . . . , N̄ (En)}. In order to demon-
strate that this sequence has unit level density, first observe
that the original staircase function N (E) could be written as
a combination of a smooth, “average” part Nav(E) = N̄ (E)
(the best fit line) plus a fluctuating component Nfluc(E),

N (E) = Nav(E) + Nfluc(E). (9)

53 54 55 56 57
Energy (eV)
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50

100

150

200

N
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)

FIG. 8. Mode number N (E) as a function of energy for the
52.0004 → 57.9907 eV range of Fig. 6. The mean mode number is
shown in red.

Because we are solely interested in studying the fluctuation
properties of the sequence, the Nav(E) dependence in the
mode number must be removed. Defining the new energy
scale as ε = N̄ (E), we observe that ε = Nav(ε). Therefore,
the average level density, ρav(ε) = dNav(ε)/dε, is equal to
unity. The mode number of this sequence is described through

N̂ (ε) = ε + N̂fluc(ε), (10)

where the level fluctuations have been rescaled in accordance
with the new level density of unity.

A single-order polynomial least-squares fitting procedure
has also been performed for the 26.0873 → 31.9287 eV en-
ergy region of the Jπ = 3+ interacting set in Bk XII. Apart
from a reduction in the number of levels in the interacting set,
the unfolding procedure performed for this set was identical to
that for the Jπ = 7/2− case. As before, excellent agreement
between N̄ (E) and N (E) is illustrated by an R-square value
of 0.9991.

Depending on the shape of the level distribution, there
exists numerous ways to fit a curve to N (E). In the examples
explored above, a single-order polynomial was used in the
least-squares optimization procedure because of the strong
linear dependence of the level density on excitation energy.
As one might expect, however, the choice of a linear fitting
function is not always appropriate. Indeed, an exponential
increase in level density is typically observed when moving
from low-lying levels located near the ground level to higher
excitation energies. An example of this behavior can be seen
in Fig. 7 for the Jπ = 4+ interacting set in No XIII. A
standard method to model such behavior involves adopting
the independent particle model expression for ρ(E) [12,34]
and fitting the following curve to N (E):

N̄ (ρ0, a, E) =
∫ E

El

ρ0 exp(a
√

E′ − El )dE′. (11)

Here, ρ0 and a are curve fitting parameters and El is the en-
ergy of the lowest-lying level of the interacting set. Evaluating
this integral one obtains

N̄ (ρ0, a, E)

= 2ρ0

a2
[exp(a

√
E − El )(a

√
E − El − 1) + 1]. (12)

Using this equation, we have studied the low-energy re-
gions of the Jπ = 4+ and 3+ interacting sets in No XIII and
Md XIV, respectively. For simplicity, the energies of these
interacting sets have been rescaled such that El = 0 eV. In
Fig. 9, the fit of (12) to the mode number N (E) for the
Jπ = 4+ set is illustrated. Excellent agreement of this fit
to the data is illustrated by an R-square value of 0.9996.
Similar agreement is observed for the Jπ = 3+ case in Md
XIV (R2 = 0.9992). Good agreement of the fit N̄ (E) to the
data N (E) is vital in order for the statistical tests to be applied
on accurate rescaled energy levels (unfolded energy levels).
Values of ρ0 and a obtained from the fit (12) to the data for
these two interacting sets are presented in Table III.

It is important to note that, for the remainder of this study,
all statistical tests will be performed on the unfolded energy
scales N̄ (Ej ) = εj . Finally, we define the so-called nearest-
neighbor spacing (NNS) sj as sj = N̄ (Ej+1) − N̄ (Ej ).
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FIG. 9. Mode number N (E) as a function of energy for the
0.6929 → 21.9582 eV range of Fig. 7. The energy levels associated
with this range have been rescaled such that the lowest level has an
energy of 0 eV. The mean mode number is shown in red.

C. Brody parameters and nearest-neighbor
spacing distributions

One of the characteristic features of a many-body quantum
chaotic system is the existence of so-called level repulsion.
Indeed, it is a fundamental property of quantum theory that
two levels belonging to the same interacting set cannot be
degenerate if they are coupled by nonzero matrix elements
[35]. In effect, the levels “repel” each other.

This repulsive nature is inherent to Eq. (1), where it can
be seen that the probability of finding two close-lying levels
vanishes as s → 0. Therefore, it is perhaps no surprise that
the level distributions of highly correlated, dense atomic-ionic
level structures are, generally, well described using Eq. (1).

In the opposite case, where one is faced with a system of
uncorrelated levels belonging to independent Jπ manifolds,
there is no restriction on degeneracy. In this case, the distribu-
tion of NNSs follows a Poisson distribution [recall P (s) ∝
e−s], and near degeneracies are a common occurrence. In
terms of a single Jπ manifold, the existence of any nonzero
off-diagonal matrix elements V destroys any possibility of
level degeneracies, and Poisson-like statistics cannot emerge.
This behavior was observed in a study of Sm IX carried out
by O’Sullivan etal. [16], whereby Poisson-like statistics were
observed in the NNS distribution of level structures calculated

TABLE III. Parameters ρ0 and a of Eq. (12) used to unfold
the level spectra of the J π = 4+ (No XIII) and J π = 3+ (Md XIV)
interacting sets [these parameters do not apply for the J π = 3+ (Bk
XII) and J π = 7

2

−
(Cf XII) sets as a straight line fit was used]. The

95% confidence bounds (C.B.) of the fits and the corresponding
Brody parameters q associated with each ion stage are also tabulated.

J π Ion stage ρ0 (eV−1) a (eV−1/2) C.B. (95%) q

3+ Bk XII ±0.037 0.659
7
2

−
Cf XII ±0.017 0.977

4+ No XIII 0.144 1.001 ±0.036 0.863
3+ Md XIV 0.164 0.8424 ±0.041 0.952
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FIG. 10. Cumulative spacing distribution �(s ) as a function of
NNS’s s for the J π = 7/2− interacting set in Cf XII.

in the absence of CI. Moreover, inclusion of CI forced a
Wigner-like distribution of NNSs.

In the vast majority of systems, however, it is rare that
the level statistics follow precisely either of the two extremes
mentioned above. Instead, behavior intermediate to these two
cases is typically observed. In order to quantify the degree
of intermediacy, one uses the so-called Brody distribution
[36,37], given by

Pq (s) = α(q + 1)sq exp(−αsq+1). (13)

Here, α = [�( q+2
q+1 )]

q+1
and q is known as the Brody or

repulsion parameter. Interpolation between the two extremes
is governed by the value of q: the Poisson-Wigner distribu-
tions are recovered when q = 0 or 1, respectively. A value of
q = 0.50 therefore indicates a degree of level repulsion some-
where intermediate between that of Poisson (no repulsion) and
Wigner. Such behavior has been observed for numerous ionic
systems in the past. For example, Connerade et al. [38] have
obtained a value of q = 0.59 for the 4p spectrum of strontium.
The current task is now to evaluate the Brody parameter for
the four interacting sets considered in the present work.

There exists various methods in the literature for com-
puting the Brody parameter q. In this study, we will restrict
ourselves to the T -function approach of Robnik and Prozen
[38–40]. First, we define the cumulative spacing distribution,
�(s), as

�(s) = 1

(n − 1)

n−1∑
i=1

�(s − si ), (14)

where n is the number of energy levels. Effectively, �(s) is
the number of adjacent level pairs separated by a spacing
of at most s divided by the total number of spacings in the
interacting set. This quantity is shown in Figs. 10 and 11
for the Jπ = 7/2− and 4+ interacting sets, respectively. For
both sets, the majority of spacings take on values in the range
0.1 � s � 2. Relatively few spacings exist for s > 2, the most
extreme case being s = 3.43 in the Jπ = 7/2− set.
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FIG. 11. Cumulative spacing distribution �(s ) as a function of
NNS’s s for the J π = 4+ interacting set in No XIII.

Now, supposing that the spacings are distributed according
to the Brody distribution, we can write that

�(s) =
∫ s

0
P (s ′)ds ′. (15)

Inserting (13) into (15) and making the substitution u =
(s ′)q+1, an explicit dependence of �(s) on q is obtained:

�(s) = 1 − exp(−αsq+1) (16)

Using this expression, Robnik and Prozen [39] introduced
the so-called T function T (s) ≡ ln(ln((1 − �(s))−1)). Inter-
estingly, this function transforms the Brody distribution (13)
into a straight line via

T (s) = ln(α) + (1 + q ) ln(s). (17)

The parameter q can be obtained from the slope (1 + q) of
the line of best fit to T (s). The results are shown in Figs. 12
and 13 for the two interacting sets considered previously.
Shown also in these figures are the ± one sigma errors on
the T function, δT (s), which have been calculated using [39]

δT (s) =
√

�(s)√
(n − 1)[1 − �(s)]| ln[1 − �(s)]| . (18)

-2 -1
ln(s)

-6

-4

-2

0

2

T(
s)

FIG. 12. T (s ) as a function of ln(s ) for the J π = 7/2− interact-
ing set in Cf XII. The line of best fit is shown in red.
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FIG. 13. T (s ) as a function of ln(s ) for the J π = 4+ interacting
set in No XIII. The line of best fit is shown in red.

In both cases, the lines of best fit reproduce the data quite
well. Brody parameters q associated with the four interacting
sets are presented in Table III. Three of the interacting sets
(Cf XII, No XIII, and Md XIV) demonstrate strong level repul-
sion, as illustrated by values of q = 0.977, 0.863, and 0.952,
respectively. A value of q = 0.659 for the Jπ = 3+ set in Bk
XII demonstrates intermediate behavior. The 95% confidence
bounds for the fits are also tabulated, and these values indicate
small errors on the calculated q values. In Figs. 14 and 15
we have plotted histograms of the spacing distributions for
these two sets. The plots clearly illustrate good fits of the
Brody distributions to the data, which is reinforced by values
of χ2(13) = 0.21 and χ2(8) = 0.04, both of which are above
the respective 99.95% confidence levels.

Although the T -function approach does allow for the ac-
curate determination of q, it does exhibit some undesirable
features. One of these features is the existence of spacing-
dependent errors. From Figs. 12 and 13, one can see that
the errors on T (s) increase as one moves to smaller values
of s. Another drawback of this function is that it gives
a nonuniform distribution of T (s) values across the entire
spacing range. The data point density clearly increases as one
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0.05

0.1

0.15

0.2

0.25

P(
s)

FIG. 14. Distribution of NNS’s for the J π = 7/2− interacting set
in Cf XII. A Brody distribution with q = 0.977 is shown in red.
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FIG. 15. Distribution of NNS’s for the J π = 4+ interacting set
in No XIII. A Brody distribution with q = 0.863 is shown in red.

moves to larger values of s, resulting in more information
being located at larger ln(s) values [39]. In order to overcome
these drawbacks, in the same study, Robnik and Prozen [39]
introduced the so-called U function, defined as

U (�(s)) = 2

π
arccos[

√
1 − �(s)]. (19)

Importantly, this function exhibits a constant error δU =
1/[π

√
(n − 1)] for all spacings. We have used this function to

determine the accuracy of the Brody distribution in describing
the FAC-calculated level distributions for the two test cases
of Jπ = 7/2− and 4+. First, we calculated U (�(s)) using
values of �(s) plotted in Figs. 10 and 11. Then, using Eq. (16)
and a value of q obtained from the T -function approach,
the “Brody-predicted” U function, Uq (�(s)), was calculated.
The accuracy of this function was then tested by plotting the
difference U (�(s)) − Uq (�(s)). The results for the two test
cases are shown in Figs. 16 and 17. The bold lines represent
the two quantities U (�(s)) − Uq (�(s)) ± δU and the dashed
lines simply connect the two “extreme” points, illustrating
the range of possible intermediate values. Both plots illustrate
the high accuracy to which the Brody-predicted U function
reflects the true U function. Indeed, maximum deviations of
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FIG. 16. Quantity U (�(s )) − Uq (�(s )) ± δU as a function of
�(s ) for the J π = 7/2− interacting set.

0 0.2 0.4 0.6 0.8 1
(s)

-0.1

-0.05

0

0.05

0.1

U
(

(s
))

 - 
U

q(
(s

))

FIG. 17. Quantity U (�(s )) − Uq (�(s )) ± δU as a function of
�(s ) for the J π = 4+ interacting set.

0.058 and 0.115 are observed for the Jπ = 7/2− and 4+
interacting sets, respectively.

D. Covariance of adjacent spacings

A statistical measure often used in the study of short-
range correlations is the covariance of adjacent spacings,
cov(si, si+1), given by [8]

cov(si, si+1)

=
[

n−2∑
i=1

(si − 〈si〉)(si+1 − 〈si+1〉)

]

×
[(

n−2∑
i=1

(si − 〈si〉)2

)(
n−2∑
i=1

(si+1 − 〈si+1〉)2

)]−1/2

.(20)

This statistic measures correlations between levels εi and
εi+2 and is predicted by GOE theory to have a value of
cov(si, si+1) = −0.27. We have calculated this statistic for
the four interacting sets, the results of which are presented
in Table IV. For these calculations, we assume a mean level
spacing of 1, i.e., we have taken 〈si〉 = 〈si+1〉 = 1. The re-
sults obtained for the Jπ = 7/2− and 4+ sets are clearly in
very good agreement with the GOE-predicted value. Larger
deviations from the GOE-predicted value are observed for
the Jπ = 3+ sets in Bk XII and Md XIV (0.0459 and 0.1057,
respectively).

TABLE IV. Covariance of adjacent spacings cov(si, si+1) and the
interval bounds [a, b] and corresponding Lmax values used in the
calculation of 〈�3(L)〉 for the four interacting sets.

J π Ion stage cov(si , si+1) a b Lmax

3+ Bk XII −0.3159 10 90 40
7
2

−
Cf XII −0.2611 20 140 60

4+ No XIII −0.2541 10 90 40
3+ Md XIV −0.3757 10 80 35
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FIG. 18. Variation of 〈�3(L)〉 with L for the J π = 3+ interacting
set in Bk XII. The broken and solid curves correspond to �3,Poisson(L)
and �3,Wigner (L), respectively (see text).

E. Dyson-Mehta statistic

Thus far, we have investigated the existence of short-range
correlations in the spectrum using the Brody distribution and
the covariance of adjacent spacings. However, these quantities
provide no insight into the existence of long-range corre-
lations in the level spectrum. In this section, we wish to
investigate the role, if any, that long-range correlations play
in the formation of the observed level structures.

A standard measure of long-range correlations, utilized
extensively in nuclear physics, is the Dyson-Mehta statistic
or spectral rigidity �3(L) [41]. In order to describe this
measure, recall Fig. 8 where we have plotted a subsection of
the mode number as a function of unfolded energies for the
Jπ = 7/2− interacting set. Shown in red is the line of best fit.
The Dyson-Mehta statistic, �3(L), quantifies the fluctuations
of the mode number, N (E), from this line of best fit. This
statistic measures the root-mean-squared deviation of N (E)
from the best fit line. Mathematically, �3(L) is defined for
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FIG. 19. Variation of 〈�3(L)〉 with L for the J π = 7/2− inter-
acting set in Cf XII. The broken and solid curves correspond to
�3,Poisson(L) and �3,Wigner (L), respectively (see text).
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FIG. 20. Variation of 〈�3(L)〉 with L for the J π = 4+ interacting
set in No XIII. The broken and solid curves correspond to �3,Poisson(L)
and �3,Wigner (L), respectively (see text).

the interval [a, a + L] as

�3(a, L) = 1

L
min
A,B

∫ a+L

a

[N (x) − (Ax + B )]2dx, (21)

where A and B represent the coefficients of the best-fit line.
This quantity has been evaluated for the four interacting
sets considered in the present work. We have adopted the
method outlined in [42–44] for the calculation of �3(L). First,
Eq. (21) is rewritten in the form [42]

�3(a, L) = M2

16
− 1

L2

[
M∑
i=1

x̃i

]2

+ 3M

2L2

[
M∑
i=1

x̃2
i

]

− 3

L4

[
M∑
i=1

x̃2
i

]2

+ 1

L

[
M∑
i=1

(M − 2i + 1)x̃i

]
,

(22)

where x̃i = xi − (a + L/2) and M is the number of xi in
the interval [a, a + L]. We then proceed as described in
[43,44], where we calculate �3(L) for numerous overlapping
intervals, and then average the final results in a process known
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FIG. 21. Variation of 〈�3(L)〉 with L for the J π = 3+ inter-
acting set in Md XIV. The broken and solid curves correspond to
�3,Poisson(L) and �3,Wigner (L), respectively (see text).
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FIG. 22. Variation of 〈�3(L)〉 with L for the J π = 3+ interacting
set in Bk XII. The red circles, blue triangles, and magenta diamonds
correspond to the intervals [a, b] = [10, 70], [20, 80], and [30, 90],
respectively. The broken and solid curves correspond to �3,Poisson(L)
and �3,Wigner (L), respectively (see text).

as spectral averaging. More specifically, choosing an interval
[a, b] on the unfolded energy scale, we calculate �3(L) for
the intervals [a, a + L], [a + L/2, a + 3L/2], [a + L, a +
2L], [a + 3L/2, a + 5L/2], . . ., until the range [a, b] has
been covered. We then average the results to obtain 〈�3(L)〉.
However, in this method, it is important to note that, for any
choice of L, the final overlapping interval will actually extend
beyond the upper limit b. In this sense, the final interval
should not be included in the averaging process, as its length
differs from the other intervals. Care must be taken when
choosing large values of L, as certain intervals [a, b] may only
accommodate 1 or 2 true intervals of length L. Therefore, it
is best practice to choose a significantly large interval [a, b]
over which to compute 〈�3(L)〉. For example, in the case of
Bk XII, the unfolded energy interval extends from −1.8355
to 107.8787. Choosing the interval [a, b] = [10, 90] results
in three adjacent overlapping intervals for a value of L = 40.
The minimum number of overlapping intervals considered in
the present work is 3, and this fixes the maximum value of L

for a given set. The interval ranges [a, b] and maximum values
of L, “Lmax,” associated with each interacting set are provided
in Table IV.

For a system whose levels are distributed randomly accord-
ing to the Poisson distribution, the �3(L) statistic has a soft
character and exhibits a linear dependence on interval length
[�3,P oisson(L) = L/15]. On the other hand, a system which
conforms to GOE statistics upholds a much stronger rigidity
in its level structure, owing to the highly correlated, repul-
sive nature of its eigenvalues. In these systems, the �3(L)
statistic exhibits a slowly varying, logarithmic dependence
on the interval length (�3,Wigner (L) = π−2[ln(L) − 0.0686]).
In Figs. 18–21 we have plotted �3,P oisson(L) (dashed line)
and �3,Wigner (L) (full line) along with the quantity 〈�3(L)〉
for each interacting set. The vertical lines associated with

each 〈�3(L)〉 value correspond to ± one standard deviation
σ obtained from the averaging process. From these figures,
one can see overwhelming evidence of GOE-like behavior
in the 〈�3(L)〉 statistic for each of the four sets. The Jπ =
3+, 4+ interacting sets in Bk XII and No XIII show very similar
behavior, with the latter perhaps exhibiting smaller ±σ values
than the former. Although the Jπ = 7/2− group does follow
the general trend set down by �3,Wigner (L), this group clearly
shows much larger ±σ values than any of the other interacting
sets. It is interesting to note that, for L � 10, the 〈�3(L)〉
quantity follows a similar behavior for all sets. However,
examining the Jπ = 3+ set at values L > 10, it appears that
this level structure displays a more pronounced rigidity than
the other sets, evident from 〈�3(L)〉 ± σ generally lying
below that of the other sets.

Finally, it is important to note that, if the spectrum fluctua-
tions are translationally invariant, then, as highlighted in [44],
〈�3(L)〉 will be independent of the chosen interval [a, b]. This
can be tested by shifting the interval [a, b] along the unfolded
axis and comparing values of 〈�3(L)〉 calculated for different
intervals. To test this, we have considered once again the Jπ =
3+ interacting set in Bk XII and have calculated values for
〈�3(L)〉 using the three intervals [a, b] = [10, 70], [20, 80],
and [30, 90]. The results are shown in Fig. 22. Clearly, the
three data sets show similar calculated values for 〈�3(L)〉.
Although the ±σ bars have been omitted for clarity, their
inclusion would highlight significant overlap in the range of
allowed 〈�3(L)〉 values, defined by ±σ , for each of the three
data sets. Therefore, within the ±σ bounds, this plot demon-
strates the existence of translationally invariant spectrum fluc-
tuations over the three intervals [a, b] = [10, 70], [20, 80],
and [30, 90].

IV. CONCLUSIONS

In the present study, we have identified the existence
of many-body quantum chaotic features in the energy-level
spectra of four high-Z, moderately charged actinide ions. This
has been made possible through a RMT statistical analysis of
the level sequences. The existence of short- and long-range
correlations in the level spectra has been identified through
evaluation of quantities such as the repulsion parameter q, the
covariance of adjacent spacings cov(si, si+1), and the Dyson-
Mehta statistic �3(L). The results of these calculations are
in very good agreement with RMT predictions. This study
therefore extends the identification of many-body quantum
chaos to high-Z actinide ions.
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