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We consider a nonstationary circuit quantum electrodynamics setup in which a three-level artificial atom in
the � configuration interacts with a single-mode cavity field of natural frequency ω. It is demonstrated that when
some atomic energy level(s) undergoes a weak harmonic modulation, photons can be generated from vacuum
via effective one- and three-photon transitions, while the atom remains approximately in the ground state. These
phenomena occur in the dispersive regime when the modulation frequency is accurately tuned near ω and 3ω,
respectively, and the generated field states exhibit strikingly different statistics from the squeezed vacuum state
attained in the standard cavity dynamical Casimir effect.
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I. INTRODUCTION

The term cavity dynamical Casimir effect (DCE) can be
used to denote the class of phenomena that feature the gener-
ation of photons from vacuum in some cavity due to the reso-
nant external perturbation of the system parameters, where the
cavity serves to produce a resonant enhancement of the DCE
[1–6]. These phenomena were originally studied in the context
of electromagnetic resonators with oscillating walls or con-
taining a macroscopic dielectric medium with time-modulated
internal properties [7–12] but were later generalized for other
bosonic fields, e.g., phononic excitations of ion chains [13],
optomechanical systems [14], cold atoms [15], and Bose-
Einstein condensates [16,17]. For single-mode cavities the
main resonance occurs near the modulation frequency 2ω,
where ω is the bare cavity frequency, and in the absence of
dissipation the average photon number increases exponen-
tially with time [18,19], resulting in a squeezed vacuum state
with even photon numbers, analogously to the phenomenon of
parametric amplification [1,4,9]. The cavity DCE was recently
implemented experimentally using a Josephson metamaterial
consisting of an array of 250 superconductive interference
devices (SQUIDs) embedded in a microwave cavity whose
electrical length was modulated by an external magnetic
flux [20].

The concept of the cavity DCE has been successfully ex-
tended to the area of circuit quantum electrodynamics (QED)
[21–24], in which one or several artificial Josephson atoms
strongly interact with a microwave field confined in supercon-
ducting resonators and waveguides [25–28]. The exquisite in
situ control over the atomic parameters allows us to rapidly
modulate the atomic energy levels and the atom-field coupling
strength [29–35], enabling the use of artificial atoms as substi-
tutes of the dielectric medium with time-dependent properties.
From the viewpoint of a toy model [36], a modulated or
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oscillating dielectric slab can be imagined as a set of atoms
with varying parameters, so ultimately the DCE must emerge
for a single nonstationary two-level atom. Indeed, it was
shown that for an off-resonant qubit(s) undergoing a weak
external perturbation, pairs of photons are generated from vac-
uum under the modulation frequency ∼2ω while the atom(s)
remains approximately in the initial state [21,24,36,37]. In
this scenario the atom plays the role of both the source and
the real-time detector of DCE, since the (low) atomic transi-
tion probability depends on the photon number and in turn
affects the photon generation pattern [21,38,39]. Moreover,
the rich nonharmonic spectrum of the composite atom-field
system permits the implementation of other phenomena in
the nonstationary regime, such as sideband transitions [40–
42], the antidynamical Casimir effect [36,39,43–45], the n-
photon Rabi model [46], generation of entanglement [47,48],
quantum simulations [32,49,50], and the dynamical Lamb
effect [51,52].

Here we explore theoretically the prospects of implement-
ing nontraditional versions of cavity DCE using three-level
atoms (qutrits) in the cyclic (also known as the �) configu-
ration subject to parametric modulation. In this case all the
transitions between atomic levels can occur simultaneously
via the cavity field [53–56], so the total number of excitations
is not conserved even upon neglecting the counter-rotating
terms (CRTs; rotating-wave approximation). Although pro-
hibited by the electric-dipole selection rules for usual atoms,
the � configuration can be implemented for certain artificial
atoms in circuit QED [28] by breaking the inversion symmetry
of the potential energy. Our goal is to find new modulation
frequencies, exclusive of the cyclic qutrits, that induce photon
generation from vacuum without appreciably changing the
atomic state.

We find that for the harmonic modulation of some energy
level(s) of a dispersive cyclic qutrit, photons can be generated
from vacuum for the modulation frequencies η ≈ ω and η ≈
3ω, while the atom predominantly remains in the ground state.
We call these processes one- and three-photon DCE because
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the photons are generated via effective one- and three-photon
transitions between the system’s dressed states, whose rates
depend on the product of all three coupling strengths. We
derive an approximate analytical description of the unitary
dynamics and illustrate the typical system behavior by solv-
ing numerically the Schrödinger equation. In particular, we
show that the average photon number and atomic populations
display a collapse-revival behavior, and the photon number
distributions are completely different from the standard (two-
photon) cavity DCE case. Moreover, we solve numerically the
Markovian master equation and demonstrate that in the pres-
ence of weak dissipation the dissipative dynamics resembles
the unitary one at initial times, confirming that our proposal is
experimentally feasible.

II. PHYSICAL SYSTEM

We consider a single cavity mode of constant frequency ω

that interacts with a qutrit in the cyclic configuration [28,53–
56], so that all atomic transitions are allowed via one-photon
transitions. The Hamiltonian reads

Ĥ /h̄ = ωn̂ +
2∑

k=1

Ek (t )σ̂k,k

+
1∑

k=0

2∑
l>k

gk,l (â + â†)(σ̂l,k + σ̂k,l ). (1)

â (â†) is the cavity annihilation (creation) operator and n̂ =
â†â is the photon number operator. The atomic eigenenergies
are E0 ≡ 0, E1, and E2, the corresponding states are |k〉, and
we define σ̂k,j ≡ |k〉〈j|. The constant parameters gk,l denote
the coupling strengths between the atomic states |k〉 and |l〉
mediated by the cavity field. To emphasize the role of the
counter-rotating terms we rewrite (for l > k)

gk,l (â + â†)(σ̂l,k + σ̂k,l ) → gk,l (âσ̂l,k + ck,l âσ̂k,l + H.c.),

where ck,l = 1 when the corresponding CRT is taken into
account and is ck,l = 0 otherwise.

Utilizing the tunability of Josephson atoms [29–35], we
assume that the atomic energy levels can be modulated ex-
ternally as

Ek (t ) ≡ E
(0)
k + εk sin(ηt + φk ) for k = 1, 2,

where εk � E
(0)
k is the modulation amplitude, φk is the as-

sociated phase, E
(0)
k is the bare energy value, and η � ω is

the modulation frequency. We would like to stress that for
weak perturbations our approach can be easily generalized to
multitone modulations or simultaneous perturbation of all the
parameters in Hamiltonian (1).

We expand the wave function as

|ψ (t )〉 =
∞∑

n=0

e−itλnbn(t )Fn(t )|ϕn〉,

Fn(t ) = exp

{
2∑

k=1

iεk

η
[cos(ηt + φk ) − 1]〈ϕn|σ̂k,k|ϕn〉

}
. (2)

Here λn are the eigenfrequencies of the bare Hamiltonian
Ĥ0 ≡ Ĥ [ε1 = ε2 = 0] (n increasing with energy) and |ϕn〉

are the corresponding eigenstates (dressed states). bn(t ) de-
notes the slowly varying probability amplitude of the state
|ϕn〉 and Fn(t ) ≈ 1 is a rapidly oscillating function with a low
amplitude.

After substituting Eq. (2) into the Schrödinger equation, to
first order in ε1 and ε2 we obtain the differential equation

ḃn =
∑
m
=n

bm[�∗
m;ne

it (λn−λm−η) − �n;me−it (λm−λn−η)], (3)

which describes transitions between the dressed states |ϕn〉
and |ϕm〉 at the transition rate |�n;m|, where

�n;m ≡ 1

2

2∑
k=1

εke
iφk 〈ϕn|σ̂k,k|ϕm〉. (4)

The transition |ϕn〉 ↔ |ϕm〉 occurs when the modulation fre-
quency is resonantly tuned to ηr = |λm − λn| + �ν, where
�ν denotes a small shift [24] dependent on ε1, ε2 due to
the rapidly oscillating terms that were neglected in Eq. (3)
(in this paper we adjust �ν numerically). By writing the
interaction-picture wave function as |ψI (t )〉 = ∑

n bn(t )|ϕn〉
one can cast Eq. (3) as a dressed-picture effective Hamiltonian,

Ĥef (t ) = −i
∑

n,m
=n

�m;n|ϕm〉〈ϕn|e−it (λn−λm−η) + H.c.

Since we focus on transitions in which the atom is mini-
mally disturbed, we consider the dispersive regime

|�1|, |�2|, |�1 + �2|  √
nmax max(gk,l ),

where nmax is the maximum number of system excitations and
the bare detunings are defined as

�1 ≡ ω − E
(0)
1 , �2 ≡ ω − (

E
(0)
2 − E

(0)
1

)
,

�3 ≡ �1 + �2.

Denoting by |ζk〉 the dressed states in which the atom is pre-
dominantly in the ground state, from the standard perturbation
theory we find

|ζk〉 ≈ |0, k〉 + c0,1g
2
0,1

√
k(k − 1)

2�1ω
|0, k − 2〉

+ g0,1

√
k

�1
|1, k − 1〉 − c0,1g0,1

√
k + 1

2ω − �1
|1, k + 1〉

− c1,2g0,1g1,2k

�1(2ω − �3)
|2, k〉 + g0,1g1,2

√
k(k − 1)

�1�3
|2, k − 2〉

− g0,2

√
k

ω − �3
|2, k − 1〉 − c0,2g0,2

√
k + 1

3ω − �3
|2, k + 1〉, (5)

where |j, k〉 ≡ |j〉atom ⊗ |k〉field and k � 0. The corresponding
eigenfrequencies are (neglecting constant shifts)

�k ≈ ωefk + αk2, (6)
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with the effective cavity frequency and the one-photon Kerr
nonlinearity, respectively,

ωef ≡ ω + g2
0,1

�1

(
1 − g2

1,2

�1�3

)
− g2

0,2

ω − �3

− c0,1g
2
0,1

2ω − �1
− c0,2g

2
0,2

3ω − �3
,

α ≡ g2
0,1

�2
1

(
g2

1,2

�3
− g2

0,1

�1
+ c0,1g

2
0,1

2ω
− c1,2g

2
1,2

2ω − �3

+ g2
0,2

ω − �3
+ c0,1g

2
0,1

2ω − �1
+ c0,2g

2
0,2

3ω − �3

)
.

In the Appendix we present the complete expressions for the
eigenstates and eigenvalues obtained from the second- and
fourth-order perturbation theory, respectively.

III. ONE- AND THREE-PHOTON DCE

The lowest-order phenomena that occur exclusively for
cyclic qutrits depend on the combination g0,1g1,2g0,2, so we
define G3 ≡ g0,1g1,2g0,2/2. Indeed, for g0,2 = 0 we recover
the ladder configuration, for g0,1 = 0 the � configuration, and
for g1,2 = 0 the V configuration. After substituting the dressed
states, (A1), into Eq. (4) we find that one such effect is the
three-photon transition between the states |ζk〉 and |ζk+3〉. To
lowest order the respective transition rate reads

�
(ζ )
k;k+3 = G3

√
(k + 3)!

k!
[ε1q1e

iφ1 − ε2q2e
iφ2 ], (7)

where the k-independent parameters are

q1 = c0,2

�1(3ω − �3)(3ω − �1)

+ c0,1c1,2

(2ω − �1)(ω − �3)(ω + �1)
,

q2 = c0,2

�1�3(3ω − �3)

+ c0,1c1,2

(2ω − �1)(ω − �3)(4ω − �3)
.

We see that this effect, corresponding roughly to the tran-
sitions |0, k〉 ↔ |0, k + 3〉 ↔ |0, k + 6〉 ↔ . . . , relies on the
CRT: either c0,2 or the product c0,1c1,2 must be nonzero.

The second effect allowed by the cyclic configuration is
the one-photon transition between the states |ζk〉 and |ζk+1〉 or,
roughly, |0, k〉 ↔ |0, k + 1〉 ↔ |0, k + 2〉 ↔ . . . . We obtain,
to lowest order,

�
(ζ )
k;k+1 = G3

√
k + 1[ε1Q1(k)eiφ1 − ε2Q2(k)eiφ2 ], (8)

where we have defined k-dependent functions

Q1(k) = 1

�1(ω − �1)

(
c1,2c0,2(k + 1)

3ω − �3
+ k

ω − �3

)

− c0,1c0,2(k + 2)

(2ω − �1)(3ω − �3)(3ω − �1)

− c1,2k

�1(ω − �3)(ω + �1)
− c0,1

(ω − �1)(2ω − �1)

×
(

c1,2c0,2(k + 2)

3ω − �3
+ k + 1

ω − �3

)
,

Q2(k) = 1

(2ω − �3)(ω − �3)

(
c0,1(k + 1)

2ω − �1
− c1,2k

�1

)

+ c0,1c1,2c0,2(k + 2)

(2ω − �1)(4ω − �3)(3ω − �3)

+ k

�1�3(ω − �3)
+ c0,2

(2ω − �3)(3ω − �3)

×
(

c0,1(k + 2)

2ω − �1
− c1,2(k + 1)

�1

)
.

We see that for k > 0 (nonvacuum field states) the CRTs are
not required for this effect, but for photon generation from
vacuum either c0,1 or the product c1,2c0,2 must be nonzero.
In analogy to the generation of photon pairs in the standard
DCE, we call the above effects the three- and one-photon
DCE, respectively.

As seen from Eqs. (7) and (8), to induce the one- and
three-photon DCE it is sufficient to modulate just one of the
energy levels, yet the simultaneous modulation of both E1 and
E2 can increase the transition rate provided the phase differ-
ence (φ1 − φ2) is properly adjusted. However, for a constant
modulation frequency the photon generation from vacuum
is limited due to the resonance mismatch for multiphoton
dressed states. Indeed, from Eq. (6) we have

�k+J − �k = (ωef + Jα)J + (2αJ )k,

where J = 1, 3. Assuming realistically that gl,k and εj are all
of the same order of magnitude, we note that |α| � |�(ζ )

k;k+J |
for k ∼ 1. Hence for constant ηJ � �J − �0 (adjusted to
generate photons from vacuum) the coupling between the
states |ζk〉 → |ζk+J 〉 goes off resonance as k increases and
we expect limited photon production. We note that several
methods to enhance photon generation have been proposed
in similar setups, e.g., multitone modulations [21,39], time-
varying modulation frequencies including effective Landau-
Zener transitions [57], and optimum control strategies [58].

IV. DISCUSSION AND CONCLUSIONS

To confirm our analytic predictions we solve numerically
the Schrödinger equation for Hamiltonian (1) considering the
initial state |0, 0〉 (which is approximately equal to the sys-
tem’s ground state in our regime of parameters) and feasible
coupling constants g0,1/ω = 5 × 10−2, g1,2/ω = 6 × 10−2,
and g0,2/ω = 3 × 10−2 (including all the CRTs, cl,k = 1).
For the sake of illustration we consider the sole modulation
of E2, setting ε1 = 0 and ε2 = 7 × 10−2E

(0)
2 . In Fig. 1 we

illustrate the three-photon DCE for the detunings �1/ω =
0.464 and �2/ω = 0.106 and modulation frequency η/ω =
3.0037. We show the average photon number nph = 〈â†â〉,
Mandel’s factor Q = [〈(�n̂)2〉 − nph]/nph (which quantifies
the spread of the photon number distribution, being Q =
1 + 2nph for the squeezed vacuum state), and the atomic
populations Pk = 〈σ̂k,k〉. We also show the photon number
distribution at the time instant ωt∗ = 0.91 × 105 (when nph is
maximum), confirming that the photon generation occurs via
effective three-photon processes. We observe that for t = t∗
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FIG. 1. System behavior for the three-photon DCE. (a) Dynam-
ics of the average photon number nph and Mandel’s Q factor. (b) Dy-
namics of the atomic populations: the probability that the atom leaves
the initial state is �12%. (c) Photon statistics P (n) = Tr(ρ̂|n〉〈n|) for
the time instant ωt∗ = 0.91 × 105 [marked by the green arrow in (a)],
where ρ̂ is the total density operator. Note the local peaks at n = 3k,
asserting the effective three-photon nature of the process.

the photon statistics does not show special behavior around
n ≈ nph. The average photon number and the atomic popula-
tions exhibit a collapse-revival behavior due to increasingly
off-resonant couplings between the probability amplitudes bm

in Eq. (3). Moreover, during the collapses [nph, (1 − P0) ≈ 0]
Mandel’s factor is very large, Q  1, nph, which is typical
of hyper-Poissonian states that have long tails of distribution
with very low (but not negligible) probabilities [38].

In Fig. 2 we perform a similar analysis for the one-photon
DCE, setting the parameters �1/ω = 0.362, �2/ω = 0.51,
and η/ω = 0.9978. The qualitative behavior of nph, Q, and
the atomic populations is similar to that in the previous case,
but the photon number distribution is completely different,
as illustrated in Fig. 2(c) for ωt∗ = 1.61 × 105. Now all the
photon states are populated (as expected for an effective one-
photon process), and the Q factor is always larger than nph
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FIG. 2. System behavior for the one-photon DCE. Similar to
Fig. 1. The probability that the atom leaves the initial state is now
�30%. For ωt∗ = 1.61 × 105 (c) the photon statistics lacks local
peaks, indicating that the photons are generated via effective one-
photon transitions.
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FIG. 3. Dissipative three-photon DCE. Behavior of nph, Q, and
Pk under unitary (thin black lines) and dissipative (thick red lines)
evolutions. For initial times (till the first maximum of nph) the effects
of dissipation are small; for larger times the dissipation strongly
affects the dynamics, but the main qualitative features persist.

due to the larger spread of the distribution. As in the previous
example, there are no special features in the photon statistics
for n ≈ nph, and one has similar probabilities of detecting any
value ranging from 3 to 20 photons.

To assess the experimental feasibility of our proposal we
solve numerically the phenomenological Markovian master
equation for the density operator ρ̂ [54,56],

ρ̇ = 1

ih̄
[Ĥ , ρ̂] + κL[â] +

1∑
k=0

2∑
l>k

γk,lL[σ̂k,l]

+
2∑

k=1

γ
(φ)
k L[σ̂k,k] ,

where L[Ô] ≡ Ôρ̂Ô† − Ô†Ôρ̂/2 − ρ̂Ô†Ô/2 is the Lind-
blad superoperator, κ is the cavity relaxation rate, and γk,l

(γ (φ)
k ) are the atomic relaxation (pure dephasing) rates. Note

that related works demonstrated that for gk,l/ω < 10−1 and
initial times this approach is a good approximation to a
more rigorous microscopic model of dissipation [39,45,57].
Typical behavior of the three-photon DCE under unitary
and dissipative evolutions is illustrated in Fig. 3, where we
set �1/ω = 0.24, �2/ω = −0.132, η/ω = 3.0269 [59] and
feasible dissipative parameters γk,l = γ

(φ)
k = g0,1 × 10−3 and

κ = g0,1 × 10−4 (other parameters are as in Fig. 1). It is seen
that for initial times the dissipative dynamics resembles the
unitary one, indicating that our predictions could be verified
in realistic circuit QED systems.

In conclusion, we have shown that for an artificial cyclic
qutrit coupled to a single-mode cavity one can induce effec-
tive one- and three-photon transitions between the system’s
dressed states in which the atom remains approximately in
the ground state. These effects occur in the dispersive regime
of light-matter interaction for external modulation of some
system parameter(s) with frequencies η ≈ ω and η ≈ 3ω,
respectively. We have evaluated the associated transition rates
assuming the modulation of one or both excited energy levels
of the atom, and our method can be easily extended to the
perturbation of all the parameters in the Hamiltonian. For a
constant modulation frequency the average photon number
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and the atomic populations exhibit a collapse-revival behavior
with a limited photon generation due to effective Kerr non-
linearities. The photon statistics is strikingly different from
the standard (two-photon) DCE case, for which a squeezed
vacuum state would be generated. Although we have focused
on transitions that avoid exciting the atom, our approach can
be applied to study of other uncommon transitions allowed

by � atoms. Hence this study indicates viable alternatives
for engineering effective interactions in nonstationary circuit
QED using cyclic qutrits.
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APPENDIX: FULL EXPRESSIONS FOR THE DRESSED STATES

For the purpose of this paper it is sufficient to calculate the eigenstates of Hamiltonian Ĥ0 using the second-order perturbation
theory. In the dispersive regime we obtain

|ζk〉 = Nk

[
|0, k〉 + g0,1

√
k

�1
|1, k − 1〉 − c0,1g0,1

√
k + 1

2ω − �1
|1, k + 1〉 − g0,2

√
k

ω − �3
|2, k − 1〉 − c0,2g0,2

√
k + 1

3ω − �3
|2, k + 1〉

+
(

c0,1g
2
0,1

2ω − �1
+ c0,2g

2
0,2

3ω − �3

)√
(k + 1)(k + 2)

2ω
|0, k + 2〉 +

(
c0,1g

2
0,1

�1
− c0,2g

2
0,2

ω − �3

)√
k(k − 1)

2ω
|0, k − 2〉

+
(

c1,2c0,2(k + 1)

3ω − �3
+ k

ω − �3

)
g1,2g0,2

ω − �1
|1, k〉 +

(
c0,1(k + 1)

2ω − �1
− c1,2k

�1

)
g0,1g1,2

2ω0 − �3
|2, k〉

+ c0,2g1,2g0,2
√

(k + 1)(k + 2)

(3ω − �3)(3ω − �1)
|1, k + 2〉 − c1,2g1,2g0,2

√
k(k − 1)

(ω − �3)(ω0 + �1)
|1, k − 2〉

+ c0,1c1,2g0,1g1,2
√

(k + 1)(k + 2)

(2ω0 − �1)(4ω − �3)
|2, k + 2〉 + g0,1g1,2

√
k(k − 1)

�1�3
|2, k − 2〉

]
, (A1)

where Nk = 1 + O[(g0/�1)2] is the normalization constant, whose value does not appear in our final (lowest-order) expressions.
For the eigenenergy corresponding to state |ζk〉 we need to use the fourth-order perturbation theory to account for the effective

Kerr nonlinearity. We get

�k = ωk + L1(k) + L2(k),

L1(k) ≡ (δ1 − δ2 − c0,1δ3 − c0,2δ4)k − (c0,1δ3 + c0,2δ4),

L2(k) ≡ [δ1β1(k) − δ2β2(k)]k − [c0,1δ3β3(k) + c0,2δ4β4(k)](k + 1).

We defined the shifts δ1 = g2
0,1/�1, δ2 = g2

0,2/(ω − �3), δ3 = g2
0,1/(2ω − �1), δ4 = g2

0,2/(3ω − �3), δ5 = g2
1,2/(2ω −

�3), δ6 = g2
1,2/(ω − �1). Other dimensionless functions of k are defined as

β1(k) ≡ (δ1 − c0,2δ2)
c0,1(k − 1)

2ω
+ g2

1,2(k − 1)

�1�3
+ c1,2δ5

(
c0,1(k + 1)

2ω − �1
− k

�1

)
− L1(k)

�1
,

β2(k) ≡ (c0,1δ1 − δ2)
c0,2(k − 1)

2ω
− c1,2g

2
1,2(k − 1)

(ω − �3)(ω + �1)
+ δ6

(
c1,2c0,2(k + 1)

3ω − �3
+ k

ω − �3

)
+ L1(k)

ω − �3
,

β3(k) ≡ (δ3 + c0,2δ4)
k + 2

2ω
+ δ5

(
(k + 1)

2ω0 − �1
− c1,2k

�1

)
+ c1,2g

2
1,2(k + 2)

(2ω − �1)(4ω − �3)
+ L1(k)

2ω − �1
,

β4(k) ≡ (c0,1δ3 + δ4)
k + 2

2ω
+ c1,2δ6

(
c1,2(k + 1)

3ω − �3
+ k

ω − �3

)
+ g2

1,2(k + 2)

(3ω − �3)(3ω − �1)
+ L1(k)

3ω − �3
.
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[35] S. Zeytinoğlu, M. Pechal, S. Berger, A. A. Abdumalikov Jr.,
A. Wallraff, and S. Filipp, Microwave-induced amplitude- and
phase-tunable qubit-resonator coupling in circuit quantum elec-
trodynamics, Phys. Rev. A 91, 043846 (2015).

[36] I. M. de Sousa and A. V. Dodonov, Microscopic toy model
for the cavity dynamical Casimir effect, J. Phys. A 48, 245302
(2015).

[37] E. L. S. Silva and A. V. Dodonov, Analytical comparison of
the first- and second-order resonances for implementation of the
dynamical Casimir effect in nonstationary circuit QED, J. Phys.
A 49, 495304 (2016).

[38] A. V. Dodonov and V. V. Dodonov, Strong modifications of the
field statistics in the cavity dynamical Casimir effect due to the

022520-6

https://doi.org/10.1103/PhysRevA.93.022510
https://doi.org/10.1103/PhysRevA.93.022510
https://doi.org/10.1103/PhysRevA.93.022510
https://doi.org/10.1103/PhysRevA.93.022510
https://doi.org/10.1103/PhysRevX.8.011031
https://doi.org/10.1103/PhysRevX.8.011031
https://doi.org/10.1103/PhysRevX.8.011031
https://doi.org/10.1103/PhysRevX.8.011031
https://doi.org/10.1016/0375-9601(92)90212-5
https://doi.org/10.1016/0375-9601(92)90212-5
https://doi.org/10.1016/0375-9601(92)90212-5
https://doi.org/10.1016/0375-9601(92)90212-5
https://doi.org/10.1103/PhysRevA.47.4422
https://doi.org/10.1103/PhysRevA.47.4422
https://doi.org/10.1103/PhysRevA.47.4422
https://doi.org/10.1103/PhysRevA.47.4422
https://doi.org/10.1103/PhysRevA.49.433
https://doi.org/10.1103/PhysRevA.49.433
https://doi.org/10.1103/PhysRevA.49.433
https://doi.org/10.1103/PhysRevA.49.433
https://doi.org/10.1103/PhysRevLett.77.615
https://doi.org/10.1103/PhysRevLett.77.615
https://doi.org/10.1103/PhysRevLett.77.615
https://doi.org/10.1103/PhysRevLett.77.615
https://doi.org/10.1103/PhysRevA.56.4440
https://doi.org/10.1103/PhysRevA.56.4440
https://doi.org/10.1103/PhysRevA.56.4440
https://doi.org/10.1103/PhysRevA.56.4440
https://doi.org/10.1103/PhysRevA.57.1379
https://doi.org/10.1103/PhysRevA.57.1379
https://doi.org/10.1103/PhysRevA.57.1379
https://doi.org/10.1103/PhysRevA.57.1379
https://doi.org/10.1088/1367-2630/18/4/043029
https://doi.org/10.1088/1367-2630/18/4/043029
https://doi.org/10.1088/1367-2630/18/4/043029
https://doi.org/10.1088/1367-2630/18/4/043029
https://doi.org/10.1364/JOSAB.34.000642
https://doi.org/10.1364/JOSAB.34.000642
https://doi.org/10.1364/JOSAB.34.000642
https://doi.org/10.1364/JOSAB.34.000642
https://doi.org/10.1088/0031-8949/2014/T160/014008
https://doi.org/10.1088/0031-8949/2014/T160/014008
https://doi.org/10.1088/0031-8949/2014/T160/014008
https://doi.org/10.1088/0031-8949/2014/T160/014008
https://doi.org/10.1140/epjd/e2009-00314-3
https://doi.org/10.1140/epjd/e2009-00314-3
https://doi.org/10.1140/epjd/e2009-00314-3
https://doi.org/10.1140/epjd/e2009-00314-3
https://doi.org/10.1103/PhysRevLett.109.220401
https://doi.org/10.1103/PhysRevLett.109.220401
https://doi.org/10.1103/PhysRevLett.109.220401
https://doi.org/10.1103/PhysRevLett.109.220401
https://doi.org/10.1016/0375-9601(95)00691-U
https://doi.org/10.1016/0375-9601(95)00691-U
https://doi.org/10.1016/0375-9601(95)00691-U
https://doi.org/10.1016/0375-9601(95)00691-U
https://doi.org/10.1016/j.physleta.2003.08.065
https://doi.org/10.1016/j.physleta.2003.08.065
https://doi.org/10.1016/j.physleta.2003.08.065
https://doi.org/10.1016/j.physleta.2003.08.065
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.1088/1742-6596/161/1/012029
https://doi.org/10.1088/1742-6596/161/1/012029
https://doi.org/10.1088/1742-6596/161/1/012029
https://doi.org/10.1088/1742-6596/161/1/012029
https://doi.org/10.1103/PhysRevA.80.053810
https://doi.org/10.1103/PhysRevA.80.053810
https://doi.org/10.1103/PhysRevA.80.053810
https://doi.org/10.1103/PhysRevA.80.053810
https://doi.org/10.1103/PhysRevB.84.174521
https://doi.org/10.1103/PhysRevB.84.174521
https://doi.org/10.1103/PhysRevB.84.174521
https://doi.org/10.1103/PhysRevB.84.174521
https://doi.org/10.1088/1751-8113/47/28/285303
https://doi.org/10.1088/1751-8113/47/28/285303
https://doi.org/10.1088/1751-8113/47/28/285303
https://doi.org/10.1088/1751-8113/47/28/285303
https://doi.org/10.1038/nature10122
https://doi.org/10.1038/nature10122
https://doi.org/10.1038/nature10122
https://doi.org/10.1038/nature10122
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1038/nature06184
https://doi.org/10.1038/nature06184
https://doi.org/10.1038/nature06184
https://doi.org/10.1038/nature06184
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature08121
https://doi.org/10.1038/nature08121
https://doi.org/10.1038/nature08121
https://doi.org/10.1038/nature08121
https://doi.org/10.1038/ncomms2383
https://doi.org/10.1038/ncomms2383
https://doi.org/10.1038/ncomms2383
https://doi.org/10.1038/ncomms2383
https://doi.org/10.1103/PhysRevLett.106.083601
https://doi.org/10.1103/PhysRevLett.106.083601
https://doi.org/10.1103/PhysRevLett.106.083601
https://doi.org/10.1103/PhysRevLett.106.083601
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevA.91.043846
https://doi.org/10.1103/PhysRevA.91.043846
https://doi.org/10.1103/PhysRevA.91.043846
https://doi.org/10.1103/PhysRevA.91.043846
https://doi.org/10.1088/1751-8113/48/24/245302
https://doi.org/10.1088/1751-8113/48/24/245302
https://doi.org/10.1088/1751-8113/48/24/245302
https://doi.org/10.1088/1751-8113/48/24/245302
https://doi.org/10.1088/1751-8113/49/49/495304
https://doi.org/10.1088/1751-8113/49/49/495304
https://doi.org/10.1088/1751-8113/49/49/495304
https://doi.org/10.1088/1751-8113/49/49/495304


ONE- AND THREE-PHOTON DYNAMICAL CASIMIR … PHYSICAL REVIEW A 98, 022520 (2018)

interaction with two-level atoms and detectors, Phys. Lett. A
375, 4261 (2011).

[39] D. S. Veloso and A. V. Dodonov, Prospects for observing
dynamical and antidynamical Casimir effects in circuit QED
due to fast modulation of qubit parameters, J. Phys. B 48,
165503 (2015).

[40] J. D. Strand, M. Ware, F. Beaudoin, T. A. Ohki, B. R. Johnson,
A. Blais, and B. L. T. Plourde, First-order sideband transitions
with flux-driven asymmetric transmon qubits, Phys. Rev. B 87,
220505(R) (2013).

[41] Y. Lu, S. Chakram, N. Leung, N. Earnest, R. K. Naik, Z. Huang,
P. Groszkowski, E. Kapit, J. Koch, and D. I. Schuster, Universal
Stabilization of a Parametrically Coupled Qubit, Phys. Rev.
Lett. 119, 150502 (2017).

[42] Z. Chen, Y. Wang, T. Li, L. Tian, Y. Qiu, K. Inomata, F. Yoshi-
hara, S. Han, F. Nori, J. S. Tsai, and J. Q. You, Single-photon-
driven high-order sideband transitions in an ultrastrongly cou-
pled circuit-quantum-electrodynamics system, Phys. Rev. A 96,
012325 (2017).

[43] L. C. Monteiro and A. V. Dodonov, Anti-dynamical Casimir
effect with an ensemble of qubits, Phys. Lett. A 380, 1542
(2016).

[44] A. V. Dodonov, J. J. Díaz-Guevara, A. Napoli, and
B. Militello, Speeding up the antidynamical Casimir ef-
fect with nonstationary qutrits, Phys. Rev. A 96, 032509
(2017).

[45] A. V. Dodonov, D. Valente, and T. Werlang, Antidynamical
Casimir effect as a resource for work extraction, Phys. Rev. A
96, 012501 (2017).

[46] J. Casanova, R. Puebla, H. Moya-Cessa, and M. B. Plenio,
Equivalence among generalized nth order quantum Rabi mod-
els, arXiv:1709.02714.

[47] S. Felicetti, M. Sanz, L. Lamata, G. Romero, G. Johans-
son, P. Delsing, and E. Solano, Dynamical Casimir Effect
Entangles Artificial Atoms, Phys. Rev. Lett. 113, 093602
(2014).

[48] D. Z. Rossatto, S. Felicetti, H. Eneriz, E. Rico, M. Sanz, and
E. Solano, Entangling polaritons via dynamical Casimir effect
in circuit quantum electrodynamics, Phys. Rev. B 93, 094514
(2016).

[49] S. Felicetti, C. Sabín, I. Fuentes, L. Lamata, G. Romero, and
E. Solano, Relativistic motion with superconducting qubits,
Phys. Rev. B 92, 064501 (2015).

[50] C. Sabín, B. Peropadre, L. Lamata, and E. Solano, Simulating
superluminal physics with superconducting circuit technology,
Phys. Rev. A 96, 032121 (2017).

[51] N. B. Narozhny, A. M. Fedotov, and Yu. E. Lozovik, Dynamical
Lamb effect versus dynamical Casimir effect, Phys. Rev. A 64,
053807 (2001).

[52] D. S. Shapiro, A. A. Zhukov, W. V. Pogosov, and Yu.
E. Lozovik, Dynamical Lamb effect in a tunable super-
conducting qubit-cavity system, Phys. Rev. A 91, 063814
(2015).

[53] Y.-X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical
selection rules and phase-dependent adiabatic state control in a
superconducting quantum circuit, Phys. Rev. Lett. 95, 087001
(2005).

[54] Y.-X. Liu, H.-C. Sun, Z. H. Peng, A. Miranowicz, J. S. Tsai, and
F. Nori, Controllable microwave three-wave mixing via a single
three-level superconducting quantum circuit, Sci. Rep. 4, 7289
(2014).

[55] Y.-J. Zhao, J.-H. Ding, Z. H. Peng, and Y.-X. Liu, Realization
of microwave amplification, attenuation, and frequency conver-
sion using a single three-level superconducting quantum circuit,
Phys. Rev. A 95, 043806 (2017).

[56] P. Zhao, X. Tan, H. Yu, S.-L. Zhu, and Y. Yu, Cir-
cuit QED with qutrits: Coupling three or more atoms
via virtual-photon exchange, Phys. Rev. A 96, 043833
(2017).

[57] A. V. Dodonov, B. Militello, A. Napoli, and A. Messina, Effec-
tive Landau-Zener transitions in the circuit dynamical Casimir
effect with time-varying modulation frequency, Phys. Rev. A
93, 052505 (2016).

[58] F. Hoeb, F. Angaroni, J. Zoller, T. Calarco, G. Strini, S.
Montangero, and G. Benenti, Amplification of the parametric
dynamical Casimir effect via optimal control, Phys. Rev. A 96,
033851 (2017).

[59] For these parameters nph is smaller than in Fig. 1, so the master
equation can be solved numerically by truncating the Fock
space at a smaller number of photons.

022520-7

https://doi.org/10.1016/j.physleta.2011.10.023
https://doi.org/10.1016/j.physleta.2011.10.023
https://doi.org/10.1016/j.physleta.2011.10.023
https://doi.org/10.1016/j.physleta.2011.10.023
https://doi.org/10.1088/0953-4075/48/16/165503
https://doi.org/10.1088/0953-4075/48/16/165503
https://doi.org/10.1088/0953-4075/48/16/165503
https://doi.org/10.1088/0953-4075/48/16/165503
https://doi.org/10.1103/PhysRevB.87.220505
https://doi.org/10.1103/PhysRevB.87.220505
https://doi.org/10.1103/PhysRevB.87.220505
https://doi.org/10.1103/PhysRevB.87.220505
https://doi.org/10.1103/PhysRevLett.119.150502
https://doi.org/10.1103/PhysRevLett.119.150502
https://doi.org/10.1103/PhysRevLett.119.150502
https://doi.org/10.1103/PhysRevLett.119.150502
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1016/j.physleta.2016.02.031
https://doi.org/10.1016/j.physleta.2016.02.031
https://doi.org/10.1016/j.physleta.2016.02.031
https://doi.org/10.1016/j.physleta.2016.02.031
https://doi.org/10.1103/PhysRevA.96.032509
https://doi.org/10.1103/PhysRevA.96.032509
https://doi.org/10.1103/PhysRevA.96.032509
https://doi.org/10.1103/PhysRevA.96.032509
https://doi.org/10.1103/PhysRevA.96.012501
https://doi.org/10.1103/PhysRevA.96.012501
https://doi.org/10.1103/PhysRevA.96.012501
https://doi.org/10.1103/PhysRevA.96.012501
http://arxiv.org/abs/arXiv:1709.02714
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevB.93.094514
https://doi.org/10.1103/PhysRevB.93.094514
https://doi.org/10.1103/PhysRevB.93.094514
https://doi.org/10.1103/PhysRevB.93.094514
https://doi.org/10.1103/PhysRevB.92.064501
https://doi.org/10.1103/PhysRevB.92.064501
https://doi.org/10.1103/PhysRevB.92.064501
https://doi.org/10.1103/PhysRevB.92.064501
https://doi.org/10.1103/PhysRevA.96.032121
https://doi.org/10.1103/PhysRevA.96.032121
https://doi.org/10.1103/PhysRevA.96.032121
https://doi.org/10.1103/PhysRevA.96.032121
https://doi.org/10.1103/PhysRevA.64.053807
https://doi.org/10.1103/PhysRevA.64.053807
https://doi.org/10.1103/PhysRevA.64.053807
https://doi.org/10.1103/PhysRevA.64.053807
https://doi.org/10.1103/PhysRevA.91.063814
https://doi.org/10.1103/PhysRevA.91.063814
https://doi.org/10.1103/PhysRevA.91.063814
https://doi.org/10.1103/PhysRevA.91.063814
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1038/srep07289
https://doi.org/10.1038/srep07289
https://doi.org/10.1038/srep07289
https://doi.org/10.1038/srep07289
https://doi.org/10.1103/PhysRevA.95.043806
https://doi.org/10.1103/PhysRevA.95.043806
https://doi.org/10.1103/PhysRevA.95.043806
https://doi.org/10.1103/PhysRevA.95.043806
https://doi.org/10.1103/PhysRevA.96.043833
https://doi.org/10.1103/PhysRevA.96.043833
https://doi.org/10.1103/PhysRevA.96.043833
https://doi.org/10.1103/PhysRevA.96.043833
https://doi.org/10.1103/PhysRevA.93.052505
https://doi.org/10.1103/PhysRevA.93.052505
https://doi.org/10.1103/PhysRevA.93.052505
https://doi.org/10.1103/PhysRevA.93.052505
https://doi.org/10.1103/PhysRevA.96.033851
https://doi.org/10.1103/PhysRevA.96.033851
https://doi.org/10.1103/PhysRevA.96.033851
https://doi.org/10.1103/PhysRevA.96.033851



