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X-ray transition energies and isotope shifts in heavy atoms are evaluated. The energy levels with vacancies in
the inner shells are calculated within the approximation of the average of a nonrelativistic configuration employing
the Dirac-Fock-Sturm method. The obtained results are compared with other configuration-interaction theoretical

calculations and with experimental data.
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I. INTRODUCTION

Precise calculations of the energies of the x-ray emission
lines and the related isotope shifts in heavy atomic systems
are required by experiments [1-6]. The most accurate to-date
theoretical and experimental values of x-ray K-, L-, and
M -transition energies were tabulated in Ref. [6] and have been
used in the NIST database [7]. As for the isotope shift in
heavy neutral atoms, the first measurements of the isotope
shifts in x-ray Ko, lines for neutral uranium isotopes have
been performed by Brockmeier and co-workers [8] and for
molybdenum isotopes by Sumbaev and Mezentsev [9]. In
Ref. [10], an experimental and theoretical study of the isotope
shifts in x-ray L lines in neutral uranium was carried out. The
isotope shifts of atomic x-ray K lines in mercury (Hg) were
measured for different pairs of isotopes in Ref. [11].

From the theoretical side, the binding energies and the
isotope shifts in heavy many-electron atoms can be calcu-
lated very accurately using various methods, including the
multiconfiguration Dirac-Fock method (MCDF) [6,12-14], the
configuration-interaction Dirac-Fock-Sturm (CI-DFS) method
[15,16], the method combining the configuration interaction
and many-body perturbation theory (CI+MBPT) [17], the
relativistic coupled-cluster method [18], etc. But, as shown
in Ref. [6], the MCDF method (as well as the other methods
mentioned above) is not efficient enough for calculations of
the autoionizing inner-shell hole states. Special methods, such
as the complex scaling (CS) method or perturbation theory,
should be used to calculate the Auger shifts of these states. The
CS method was used in calculations of the Auger resonances
of light atoms. For instance, the CS method in combination
with the coupled-cluster method was used in nonrelativistic
calculations of the hole (1s~") state of Be [19]. Unfortunately,
this approach becomes too time consuming in the relativistic
calculations of heavy neutral atoms. So, to take into account
the correlation and Auger shift corrections to x-ray lines, in
Refs. [6,12] the relativistic many-body perturbation theory
(RMBPT) was employed. In the framework of the RMBPT
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method, the Auger shift can be estimated by a simpler and
less accurate approach [20]. We note also that in Ref. [6]
the quantum electrodynamics (QED) corrections have been
determined using Welton’s approximation.

In the present paper we use the assumption that the center
of gravity of the x-ray emission line in heavy atoms can be
calculated as the difference of the averages of nonrelativistic
valence configurations with the different vacancies in the
inner shells. This approximation is used in the Dirac-Fock
and CI-DFS calculations in this work. In this approach the
energy is averaged over all atomic terms of the nonrelativistic
valence configuration. The idea of the nonrelativistic configu-
rational average (“LS average”) in the relativistic Dirac-Fock
calculations was proposed in Refs. [21,22]. The validity of
this approximation is demonstrated by our calculations of the
binding energies of x-ray lines.

To calculate the Auger shifts we use the RMBPT method
but, in contrast to Ref. [6], in the Brillouin-Wigner form.
The obtained non-QED results are combined with the cor-
responding QED contributions, which have been evaluated
by including the model Lamb-shift operator into the Dirac-
Coulomb-Breit Hamiltonian [23-25]. As a result, the most
precise theoretical predictions for the energies and isotope
shifts of x-ray K and L lines are presented.

Atomic units (h =m = e = 1) are used throughout the

paper.

II. METHOD OF CALCULATION

In order to calculate the x-ray transition energies, we use
the following three-step large-scale CI-DFS method [15,16].
At the first step, to obtain the one-electron wave functions ¢;
for the occupied atomic shells, we use the Dirac-Fock method
[26] with vacancies in the inner shells and the average of the
nonrelativistic configuration for the group of valence electrons.
Then the DFS orbitals are obtained by solving the DFS
equations for the vacant shells. At the last step, the relativistic
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CI+MBPT method is used to obtain the many-electron wave
functions and the total energies.

According to the method of group functions [27], the total
many-electron wave function is presented in the form of an
antisymmetric product of the wave functions of two groups
of electrons. The first one is the group of “active” electrons,
while the second one is the group of “frozen” electrons. In
the formulation of our problem, the core electrons are active,
and the valence electrons are frozen. Thus, the total electronic
energy E; of the atom can be represented as a sum of two parts,

Etot = Euv + EC‘Ua

where E,, is the energy of the valence electrons and E,, is
the total energy of the core electrons in the Coulomb and
exchange field of the valence electrons.

The x-ray emission linewidths of heavy atoms are so large
that they can exceed the value of the multiplet splitting of the
atomic valence levels. In this case, to calculate the position
of the center of gravity (or maximum) of the x-ray line
observed in the experiment, it is sufficient to calculate the
transition energies and isotope shifts in the approximation
of the nonrelativistic configuration average of the group of
valence electrons (for more details, see Ref. [28]).

J

A. Average of nonrelativistic valence configuration: LS average

The total energy of the valence electrons E,, is calcu-
lated by the Dirac-Fock method in the configuration aver-
age approximation. The idea of the configuration average
in the case of the nonrelativistic Hartree-Fock method was
treated in detail by Slater [29]. The formalism can be easily
extended to the case of the relativistic configuration [30].
The well-known procedure of the relativistic configurational
average is meaningful only when j-j coupling dominates,
which obviously is not the case for most neutral atoms.
Furthermore, the use of a pure j-j coupling scheme leads
to a wrong nonrelativistic limit. To remedy this shortcoming,
it is necessary to consider the interaction of the relativistic
configurations which correspond to the same nonrelativistic
one. This corresponds to an intermediate type of coupling
or approximation of the barycenter of the nonrelativistic
configuration.

For these reasons it is reasonable to use the averaging over
all the j-j configurations arising from a valence nonrelativis-
tic configuration in the calculations of neutral atoms. As a
result, one can derive the following energy expression in the
nonrelativistic configurational LS average (see Ref. [22] for
details),

~ o~ ~
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Here, indices a and b enumerate relativistic shells, A and B denote nonrelativistic shells, g, and g, are the numbers of electrons
(occupation numbers) in the shells a and b, and g4 and gp are the numbers of electrons in the nonrelativistic shells A and B,
respectively. I, is the one-electron radial integral [30] and F k(a, b) and G*(a, b) are the standard Coulomb and exchange radial
integrals [30], respectively. The parameters g, w,, and w4 p in Eq. (1) are defined as
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where Fj‘ j, are the coefficients introduced in Ref. [30],
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The expression (1) can be rewritten in the same form as the nonrelativistic expression for the energy in the Hartree-Fock
method [31],

- 1 —0 —0
Epn=_asla+5 ) as(as— DF (A, A)+ D qaqs F (A, B)
A A

A<B
—k —=k _ —k
+3 Y qalqa—DFasF (A A+ Y > qaqs8h 5. G (A, B), 6)
A k>0 A<B k

022517-2



RELATIVISTIC CALCULATIONS OF X-RAY TRANSITION ...

PHYSICAL REVIEW A 98, 022517 (2018)

where fk(A, B) and Ek(A, B) are effective mean values of the radial integrals defined as

Z Z (2ja+1—-3j,;,)2jp+ I)Fo(a, b), A=B,
(44 +2)(4a + 1)
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In the nonrelativistic limit, the integrals fk(A, B) and

Ek(A, B) approach the corresponding nonrelativistic radial
integrals defined in the nonrelativistic Hartree-Fock method
[31].

The coefficients ?Z 4 and §’;’b coincide with the corre-
sponding coefficients defined in the nonrelativistic Hartree-
Fock method in the approximation of the center of gravity,

2
1414 +2(Ch0)
AAT 44 4+1 2k+1
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B. CI-DFS method with average of nonrelativistic configuration

To take into account the electron correlations, the large-
scale configuration-interaction (CI) method in the basis of
four-component Dirac-Fock-Sturm (DFS) orbitals ¢, is used.
These orbitals are obtained by solving the Dirac-Fock-Sturm
equations [15,16].

The wave function of a group of active electrons was
obtained by the CI+MBPT method. Various excited configu-
rations are obtained from the main configuration by single and
double excitations of “active” electrons. In addition, the contri-
bution of the so-called Auger configurations was obtained by
the RMBPT method using a simple pole integration approach
suggested in Ref. [20]. This approach made our method more
stable.

The interaction with the valence electrons is taken into
account by the introduction of a single-particle potential, which
is the sum of the Coulomb and exchange potentials. The
Coulomb and exchange potentials of the valence electrons are
constructed in the standard way using the first-order reduced
density matrix taken in the approximation of the average of
nonrelativistic valence configuration,

Ja
D7 (N, (r). (10)

H=—Ja
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where the summation runs over indices of the valence electrons
and g, is defined by Eq. (3).

C. QED corrections

In this paper we approximate the QED potential by the
following sum,

VQED — VSE + VUehl + VWK, (11)

where VSE is the so-called model self-energy operator, and
VUehl and VWK are the Uehling and Wichmann-Kroll parts of
the vacuum polarization, respectively. Both VU and VWK are
local potentials. The Uehling potential can be evaluated by a
direct numerical integration of the well-known formula [32] or,
more easily, by using the approximate formulas from Ref. [33].
A direct numerical evaluation of the Wichmann-Kroll potential
VWKis rather complicated. For the purpose of the present work,
itis sufficient to use the approximate formulas for this potential
from Ref. [34].

Following Refs. [23,24], we represent the one-electron SE
operator as the sum of local V;>F and nonlocal V,; parts,

VS = ViS¢ + Vi, (12)
where the nonlocal potential is given in a separable form,

Var= Y o) B {bxl-

i,k=1

13)

Here, ¢; are so-called projector functions. The choice of these
functions is described in detail in Ref. [23]. The constants B;;
are chosen so that the matrix elements of the model operator
V3E calculated with hydrogenlike wave functions ; are equal
to the matrix elements Q;; of the exact SE operator X(¢) [35],
1

Wil VE 1Y) = Que = E(I/fiHE(Si) + Z(ellvr). (14)
Introducing two matrices, AQ;x = Qix — (1/f,~|\/1§f|1/fk) and
Dix = {(¢i|¥), we find that

By = > (D)W |AQulyn)(D . (15)
=1
The local part of the SE potential was taken in a simple form
[23],
Vieew (1) = Acexp (=r/ic), (16)

where the constant A, is chosen to reproduce the SE shift for
the lowest-energy level at the given « in the corresponding
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TABLEI The comparison of the natural linewidths and the widths
of the multiplet splitting for uranium x-ray lines. AM is the width of
the multiplet splitting and I' is the natural linewidth.

Line Transition I' (eV) AM (eV)
La, 2p3h — 3di) 11.7 16.8
LB 2pih — 3d3) 13.5 16.55
LBs 2515 = 3p3h 239 284
LB 2515 — 3pih 30.1 27.7
Ka, Ls; 5 = 2p3h 104.5 277
Ka, Ls;h = 2pih 106.3 27.6

H-like ion and A¢ = /i/(mc). The computation code based on
this method is presented in Ref. [24].

III. ENERGIES OF X-RAY EMISSION LINES

In Table I, the natural widths taken from Ref. [36] are
compared with the widths of the multiplet splitting for x-ray
lines in uranium. The multiplet splitting arises if the atom
contains open valence shells. When a core electron vacancy
is created, an unpaired electron in the core can couple with
electrons in the outer shells. This creates a number of states
which can be seen in the photoelectron spectrum as a multipeak
envelope.

The comparison of the widths gives an indication of the right
application of the approximation of the barycenter of nonrela-
tivistic configuration. It is expected that the approximation of
the barycenter configuration is applicable in the case when the
natural linewidth is bigger than or at least comparable to the
multiplet splitting magnitude. The data in Table I demonstrate
that the required conditions are fulfill.

The results of the calculations of the K « lines for uranium,
xenon, and mercury and the L lines for uranium are presented
in Tables III-VI, respectively. The calculations have been
performed using the Dirac-Fock method [26] in the approx-
imation of the barycenter of nonrelativistic configuration (1).
The Breit, electron correlation, QED, and nuclear recoil (mass
shift) contributions are evaluated using the CI-DFS method.
The nuclear charge distribution was taken into account within
the Fermi model with the root-mean-square nuclear radii taken
from Refs. [37,38]. The QED contributions are evaluated
by including the model Lamb-shift operator into the Dirac-
Coulomb-Breit Hamiltonian [23].

The nuclear recoil effect is calculated within the Breit
approximation using the relativistic nuclear recoil Hamiltonian
[15,39-42],

1 aZ (oc,-~r,-)r,-
HM:ﬁ[k Pi = - “i‘i‘T Pk |-

a7)

The results of the calculations of the individual contribu-
tions to the recoil effect (mass shift) for K« lines in xenon and
uranium are collected in Table II. We note that the separation
of the mass shift into the individual mass shift contributions is
the same as in Ref. [43].

TABLE II. The values of the normal mass shift (NMS), the
relativistic normal mass shift (RNMS), the specific mass shift (SMS),
and the relativistic specific mass shift (RSMS) contributions to the
total value of the mass shift (Total MS) for xenon and uranium Ko
lines (in eV).

Line NMS RNMS SMS RSMS Total MS
B36Xe Koy —0.172  0.059 0.044 —0.010 —0.080

Kay, —0.167 0.055 0.040 —0.005 —0.078
U Kay —-0.708 0548 0.116 —0.088  —0.133

Ka, —0.661 0508 0.083 —0.039 —0.109

The uncertainties of the total values of the x-ray lines in
Tables III-VI are mainly due to the correlation and Auger shift
contributions which depend on the way of the calculations.
They are determined by studying the stability of the results
with respect to a variation of the basis size. For uranium, for
instance, we use the basis set which includes all orbitals with
the excitations up to (13s 12p 10d 8 f) shells. The results of
these calculations are unstable within 1 eV, so the conservative
estimates of the uncertainty of the order of 2-3 eV are used.
In the case of the uranium atom, the nuclear polarization
and deformation corrections were taken from Refs. [44—46]
and [37], respectively. The uncertainty of 50% was assumed
for these corrections. For **Xe and 2**Hg atoms the nuclear
polarization and deformation corrections are negligible [47].

A comparison of the energies of the K« lines for 38U,
136Xe, and 2™*Hg and the L lines for 2*®U with other theo-
retical results and experimental data demonstrates very good
agreement. This allows us to conclude that the approximation
of the barycenter of the nonrelativistic configuration in the
calculations of the x-ray transition energies is applicable for
heavy atoms with open valence shells.

IV. ISOTOPE SHIFTS OF X-RAY LINES IN NEUTRAL
URANIUM AND MERCURY

Isotope shifts of atomic systems give a useful tool for the
determination of the nuclear charge radius differences (see,
e.g., Refs. [4,37,49-51] and references therein). For the last
years significant progress was gained in the calculations of
the isotope shifts in highly charged ions [13,15,43,52-54].
Here, with the methods developed for highly charged ions, we
calculate the isotope shifts of the x-ray lines in neutral atoms.
As is known, the isotope shifts of the energy levels are mainly
determined by the finite nuclear size (field shift) and nuclear
recoil (mass shift).

The field shift is caused by the difference in the nuclear
charge distribution of the isotopes. The main contribution to
the field shift can be calculated in the framework of the Dirac-
Coulomb-Breit Hamiltonian. The nuclear charge distribution
is usually approximated by the spherically symmetric Fermi
model,

_ N
" 1 +expl(r —o)/al’

where the parameter a is generally fixed tobea = 2.3/(41n 3)
fm and the parameters N and c are determined using the given
value of the root-mean-square (rms) nuclear charge radius

p(r, R) (18)
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TABLE III. Individual contributions to the energy of the Ko lines for >*®U (in keV) with the nuclear charge radius R = 5.8569 fm in this
work and R = 5.8625 fm in Refs. [6,48].

Ka; Ka,
Transition This work Theory [48] This work Theory [48]
Dirac-Fock 99.1031 99.1016 95.2777 95.2763
Breit —0.4339 —0.4319 —0.3940 —0.3923
Frequency-dependent Breit 0.0067 0.0066 0.0126 0.0125
QED —0.2466 —0.2436 —0.2486 —0.2460
Electron correlations + Auger shift 0.0038 0.0030 0.0030 0.0046
Mass shift —0.0001 —0.0001
Nuclear polarization 0.0002 0.0002% 0.0002 0.0002%
Nuclear deformation 0.0001 0.0001
Total 98.4333(38) 08.4359P 94.6508(30) 94.6553°
Theory [6] 98.4336(36) 94.6531(37)
Experiment [6,7] 98.43158(28) 94.65084(56)

4Corrected according to Refs. [44-46].
bCorrected for the updated value of the nuclear polarization.

TABLE V. Individual contributions to the energy of the K« lines for **Xe (in keV) with the nuclear charge radius equal to R = 4.7964 fm.

Ko, Koy
Transition This work Theory [3] This work Theory [3]
Dirac-Fock 29.8909 29.8908 29.5665 29.5660
Breit —0.0736 —0.0733 —0.0693 —0.0691
Frequency-dependent Breit 0.0004 0.0004 0.0008 0.0008
QED —0.0410 —0.0410 —0.0416 —0.0416
Electron correlations 4 Auger shift 0.0021 0.0017 0.0020 0.0022
Mass shift —0.0001 —0.0001
Total 29.7788(21) 29.7787 29.4582(20) 29.4584
Theory [6] 29.7783(29) 29.4584(30)
Experiment [6,7] 29.77878(10) 29.458250(50)

TABLE V. Individual contributions to the energy of the K o lines for 2**Hg (in keV) with the nuclear charge radius R = 5.4744 fm.

Ko, Koy
Dirac-Fock 71.2322 69.2850
Breit —0.2674 —0.2465
Frequency-dependent Breit 0.0034 0.0061
QED —0.1519 —0.1540
Electron correlations 4+ Auger shift 0.0029 0.0035
Mass shift —0.0001 —0.0001
Theory (this work) 70.8191(18) 68.8942 (19)
Theory [6] 70.8190(22) 68.8943 (23)
Experiment [6] 70.8195(18) 68.8951 (17)

TABLE VL. Individual contributions to the energy of the L lines for 2**U (in keV) with the nuclear charge radius R = 5.8569 fm.

Loy LB, LBs 1:n
Dirac-Fock 13.4869 17.3123 17.5446 16.6560
Breit —0.0496 —0.0895 —0.0474 —0.0391
Frequency-dependent Breit 0.0056 —0.0003 —0.0022 —0.0006
QED —0.0058 —0.0037 —0.0401 —0.0404
Electron correlations + Auger shift 0.0007 0.0010 0.0003 0.0002
Mass shift —0.0000 —0.0000 —0.0000 —0.0000
Theory (this work) 13.4379(17) 17.2198(20) 17.4552(16) 16.5762(16)
Theory [6] 13.4382(14) 17.2187(16) 17.4565(36) 16.5762(34)
Experiment [6,7] 13.43897(19) 17.22015(28) 17.45517(73) 16.57551(30)
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TABLE VII. Individual contributions to the isotope shift for the
Ko lines in 228U (in meV) with given values of nuclear charge
radii PR = 5.8287 fm, **R = 5.8569 fm).

TABLE VIII. Individual contributions to the isotope shift for the
K« lines in 228U (in meV) with given values of nuclear charge
radii PR = 5.8138 fm, **R = 5.8569 fm).

KO[I K(Xz KO[l K(Iz

Dirac-Fock 1346.35 1323.88 Dirac-Fock 2056.57 2022.24
Breit —12.34 —12.06 Breit —18.86 —18.42
Frequency-dependent Breit 0.07 0.12 Frequency-dependent Breit 0.11 0.19
QED —13.89 —13.89 QED —21.20 —21.21
Electron correlations 4 Auger shift —0.17 —0.18 Electron correlations 4 Auger shift —0.25 —0.26
Mass shift —-1.70 —1.39 Mass shift —2.86 —2.34
Total theory 1318(30) 1296(30) Total theory 2014(46) 1980(45)

Experiment [8] 1800(200) 1800(200)

R = (r?>)'/? and the normalization condition f drp(r, R) =
1. The potential induced by p(r, R) is defined as

[o.¢]
Vn(r,R) = —4nZ/ dr'r?p(r’, R)ri, (19)
0 >

where r. = max(r, r’). The explicit formulas for Vy(r, R) in
the case of the Fermi model can be found, e.g., in Ref. [55].
This potential is used in the Dirac-Coulomb-Breit Hamiltonian
to obtain the relativistic wave functions and the total energies.
The related isotope shifts are evaluated by the formula

8Ers = E(Ra) — Eiot(Rp), (20)

where R4 and Rp are the rms radii of the isotopes A and B
and E(R4) and Ei(Rp) are the total electronic energies.

In Tables VII and VIII we present the contributions to
the field shifts for the Ko lines in #>%%U and #***U,
respectively. The total theoretical values are given by a sum of
the Dirac-Fock, Breit, frequency-dependent Breit, QED, mass
shift, and electron-correlation contributions. Except for the
QED correction, all other terms are evaluated in the same way
as the x-ray line energies. The QED corrections are determined
employing the approach presented in Ref. [43]. Namely, this
was done by multiplying the s-state QED correction factor
taken from Refs. [56,57] with the nuclear size effect on the
total transition energy.

The obtained theoretical results are compared with the
related experimental data from Ref. [8]. We note that the
Ka lines were indistinguishable in those experiments and,
therefore, the Koy and Ko, transition values taken from

Ref. [8] are assumed to be the same. The theoretical uncertainty
is estimated as a doubled quadratic sum of the uncertainty due
to an unknown nuclear polarization and deformation effects
and a half of the QED contribution. In accordance with the
results of Ref. [43], we have assumed that the uncertainty
caused by uncalculated nuclear polarization and deformation
effects should be on the level of 1% of the corresponding field
shift contribution.

Table IX displays the results of the calculations of the L-line
isotope shifts, which are carried out for uranium isotopes with
A = 238, 235. The isotope shifts of these lines are generally
determined in the same way as for the K« lines. The only
difference is in neglecting the QED contributions for the Lo,
and LB, lines. As one can see, there exists a rather large
discrepancy between theory and experiment [10] for the L,
line. The reason for this discrepancy is unclear to us.

In Table X the individual contributions to the total isotope
shifts for the K o lines in 2**20?Hg are presented. It can be seen
that the total theoretical results are in good agreement with
the experimental ones [11]. The total values of the isotope
shifts for different pairs of mercury isotopes are selected in
Table XI. The main theoretical uncertainty comes from the
nuclear polarization contribution. It is worth noting that for all
isotopes of mercury the theoretical predictions agree with the
experimental ones [11].

V. CONCLUSION

In this paper we have evaluated the energies and the
isotope shifts of the x-ray lines in neutral atoms using the

TABLE IX. Individual contributions to the isotope shift for the L lines in »>?¥U (in meV) with given values of nuclear charge radii

(*¥R = 5.8287 fm, 2! R = 5.8569 fm).

La, LB LBs LB,

Dirac-Fock —5.608 16.863 228.750 222.565
Breit 0.084 —0.200 —1.444 —1.372
Frequency-dependent Breit 0.046 —0.003 —0.041 —0.025
QED —2.203 —2.194
Electron correlations 4+ Auger shift —0.002 —0.004 0.013 0.012
Mass shift —0.079 —0.229 —0.454 —0.394
Total theory —5.56(11) 16.43(35) 225(5) 219(5)

Experiment [10] —6(2) 30(2) 253(8) 241(10)
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TABLE X. Individual contributions to the isotope shift for the K «
lines in 2?2 Hg (in meV) with given values of nuclear charge radii
(™R = 5.4744 fm, *” R = 5.4648 fm).

TABLE XI. Total isotope shifts for the Ko lines in 2°+?2Hg,
204,20]Hg’ 204.20()Hg’ 204']99Hg, and 204,198Hg (ln meV) Wlth given
values of nuclear charge radii taken from Ref. [38].

KO(] KOtz

Dirac-Fock —149.116 —149.118
Breit 1.227 1.229
Frequency-dependent Breit —0.007 —0.007
QED —1.614 —1.619
Electron correlations + Auger shift 0.098 0.102
Mass shift 1.199 1.079
Total theory —148(3) —147(3)

Experiment [11] —156(44) —156(44)

configuration-interaction method in the Dirac-Fock-Sturm ba-
sis in approximation of the barycenter of the valence non-
relativistic configuration. The obtained results are compared
with previous calculations and experiments. The comparison
demonstrates good agreement of the obtained theoretical re-
sults for the K lines and the related isotope shifts in uranium
and mercury atoms. In the case of the L lines, there exist some
discrepancies between theory and experiment for the isotope
shifts in uranium atoms. The discrepancy becomes especially
large for the L ) lines. The reason for this discrepancy remains
unclear to us.

Ko, Ko,
204200 Theory —148(3) —147(3)
Experiment [11] —156(44) —156(44)
204201 Theory —246(6) —246(6)
Experiment [11] —286(36) —286(36)
204.200y5 Theory —291(7) —292(7)
Experiment [11] —305(30) —305(30)
204,199 Hg Theory —408(9) —408(9)
Experiment [11] —425(40) —425(40)
204198 Theory —424(10) —424(10)
Experiment [11] —468(44) —468(44)
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