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Distinguishing models of surface response through the self-energy of an electron
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The self-energy of an electron confined between parallel surfaces with arbitrary dielectric properties is
calculated. The mechanism for this effect is the surface-induced modification of the fluctuating quantized vacuum
field to which the electron is coupled, thereby endowing it with a surface-dependent self-energy in broad analogy
to the Casimir-Polder effect for an atom. We derive a general formula for this self-energy shift and find that its sign
is different for two commonly used models of surface response, namely, the plasma model and the Drude model.
‘We propose an experiment which could detect this difference in sign, shedding light on continuing uncertainty
about the correct description of the interaction of low-frequency vacuum photons with media.
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Quantum electrodynamics (QED) is an extremely suc-
cessful description of the interaction between charges and
electromagnetic fields. One of its most remarkable predictions
is the existence of a fluctuating ground state, variously known
as the zero-point energy or vacuum field. Often cited as
evidence that vacuum fluctuations are “real” is the attractive
force between parallel plates arising from the imposition of
boundary conditions on the vacuum field; this is the famous
Casimir effect [1]. Beginning with the pioneering work of
Sparnaay in 1957 [2], there have been a string of experiments
measuring the Casimir force in various situations [3-6]. An
unexpected result was seen in [6], where it was found that
theory and experiment agree if a lossless plasma model is
used for the surfaces, and the apparently more realistic Drude
model of a dissipative surface makes predictions inconsistent
with experiment. Even more curiously, a later experiment [7]
produced the opposite conclusion — its results fit with the
Drude model and not the undamped plasma. This has led to
a considerable amount of discussion over the last decade or
so [8]. This was fueled, in part, by this problem’s status as a
dominant error in experiments aiming to probe physics beyond
the standard model. Perhaps even more importantly, the Drude-
plasma question has implications for the fundamental physical
question of whether virtual photons are subject to dissipation.

Bearing this in mind, it is natural to wonder whether there
are any independent checks in surface-dependent vacuum
QED, for which theory predicts strongly differing results
depending on whether a Drude or plasma model is used.
Previously it has been shown that a single electron interacting
with an infinite half space is a rich test-bed for different models
of surface-dependent effects due to its extreme sensitivity to
the low-frequency response of the medium [9,10], which can
drastically change depending upon the choice of model. Here

We begin by considering a single electron of momentum
P, minimally coupled to the electromagnetic field {®, A}, SO
that the interaction Hamiltonian is Hiy = — P - A+ed. In
macroscopic QED, the components of the vector potential
at position r in a system composed of material bodies of
permittivity e(r, ) may be expressed in terms of the bosonic
operators fl; (r, w) and a;(r, ) respectively creating or de-
stroying one excitation of the combined matter-field system
via!
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where all geometric properties are encoded via the (classical)
electromagnetic Green’s function G satisfying

VxV x G(r, ¥, w) — w’e(r, w)G(r, ¥, 0) = [38(r — 1).
2
Labeling a state with momentum eigenstate p and N matter-
field excitations by |p; N) and postponing discussion of the

static contribution from &, one has for the lowest-order
momentum-dependent energy shift of the vacuum state

e’ < l(ps11p-Alp;0)
AE=—53. , (3)
"
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where E is the unperturbed energy of the initial state, and
primed quantities are those relevant to the intermediate state.
Using the following relation for the dyadic Green’s function
(see, for example, [12]),

w® / &r'[Ime(r, )]G (r, v, )G (¢, 1", @)

we will first use the formalism of macroscopic QED [11] to =ImG;;(r, 1", 0), 4)
generalize this result to arbitrary geometries, and then consider

a specific case for which we also propose an experiment

that could conclusively determine whether Drude or plasma 'We use natural units i = ¢ = €, = 1 throughout unless otherwise
response is appropriate for a given material. specified.
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one finds for the energy shift (3) in the no-recoil approximation
(see [9,10])

ie? ®dow ...

AE = zﬂmz(pﬂf_w ?G;‘(r, r,w), 5)
where we have isolated surface-dependent effects by replacing
G with its scattering part G**—this is the portion of the Green’s
function that vanishes if all boundaries are removed. The
Green’s function G* has no poles in the upper half of the
complex-w plane, so the entire shift integral can be worked out
from its residue at w = 0:

&2 Gii(r,r,w)

AB=—o sl Ry =]

(6)

Equation (6) contains all previous results for the surface-
dependent self-energy (which can also be interpreted as a shift
in mass) in specific situations (see [9,10,13]) but is valid for
arbitrary surface geometry and material properties. To find
the self-energy for a particular geometry one simply inserts
the relevant scattering Green’s tensor. For example, in the
particular case of parallel perfectly conducting plates at z = 0
and z = d as considered in [13], the Green’s tensor [14],
expressed as a two-dimensional Fourier transform over parallel
wave vectors k|, is simple enough that the resulting & integral
appearing in Eq. (6) can be carried out analytically. Defining
¢ = z/d, one finds after some algebra the self-energy shift
between perfectly conducting plates:

*(pj)
AEPC(§)=W 7 cot(me)
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where H, = Y ;_, k="' and py is the momentum parallel to the
plates. The above result agrees with [13]. Expanding for small
¢, one finds that the leading term is given by e (p) /(32 m*z),
in agreement with previous single-plate work [9,10] obtained
via a normal-mode quantization rather than macroscopic QED.
In realistic situations one requires more complex models of
the surface response, for example, the plasma model or Drude
models defined respectively by
2 w2
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In these situations, even the integrands of the k integrals
become somewhat unwieldy so we do not report them here. It
is interesting to note that the Drude model integral may again
be carried out analytically, but the result contains hundreds of
terms so is not particularly illuminating as compared to simply
doing the integral numerically. Nevertheless, we agree with
previous Drude model work for small ¢ [10] and can still quote

a reasonably compact analytic result for the shiftat ¢ = 1/2:
)
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FIG. 1. Surface-dependent self-energy for Drude and plasma
models as a function of position z between plates separated by a
distance d. Here we have scaled the energy by the energy shift £ of the
electron at the midpoint between parallel perfect conductors, obtained
from Eq. (7) by setting ¢ = 1/2 with result (in S.I. units) Ey =
e’ piIn2/(8meyc*m?d). This is approximately equal to 8 x 1072J
(~5neV)foran electron moving at 0.01¢ in a 10-pum-wide gold cavity
(w, = 1.37 x 10'°Hz, y = 4.05 x 10"} Hz,and wr ~ 10" Hz[15]).

where &'(0) = [de(w)/dw]|u—0, £"(0) = [d*e(w)/dw?]|w—o,
and n(w) = (e(w) — 1)/(e(w) + 1). We have made use of
the polylogarithm function Li;(x) = Y2, z—k and the “Lerch

transcendent” @ (x, s, o) = Y ;o ﬁ We plot the ¢ depen-
dence of the shift in Fig. 1, where we see the unexpected effect
that the energy shift has a different sign the for the Drude and
plasma models.

An intuitive explanation could be formed by considering
this energy shift in the context of mass renormalization: the
coupling of the electron to the electromagnetic field causes
an increase from some fixed bare mass m( to the mass m
that we observe, with m = my + dm, where §m includes the
mass shift in free space, as well as any surface-dependent
correction such as that calculated here. The mass shift §m of
a free particle is related to the energy shift calculated here
via %(pz) = —AE (cf. [16]), so that a positive surface-
dependent component in the energy shift corresponds to a
negative surface-dependent correction to §m. Thus our plasma
results, for example, correspond to a small reduction in mass
compared to that in free space. This makes sense in terms of the
fact that our result is dominated by low-frequency excitations,
where the plasma model behaves very similarly to a perfect
conductor; an incident electric field is completely reflected
and undergoes a 7 phase shift. This causes it to destructively
interfere with the incident wave.? This means that the electron
feels a weaker effect from radiation reaction than it would
if it were in free space, meaning that the surface-dependent
contribution to the mass is negative, as borne out in the results
presented here. Conversely, the Drude surface behaves more
like a dielectric at low frequencies, with polariton excitations
opening up additional channels for the interaction with the

’The integrals are dominated by small & due to their exponential
falloff, meaning it suffices to consider normal incidence.
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FIG. 2. Schematic of the proposed half-cyclotron experimental
setup, where half of the electron’s cyclotron orbit is subject to a
surface-dependent correction and half is not.

electron, resulting in an increase in the mass relative to that for
free space.

This sign difference between Drude and plasma models is
the kind of feature that is relatively easy to measure exper-
imentally, so in the following sections we explore a possible
method for experimental diagnosis of whether Drude or plasma
models are more appropriate for quantum field theory near a
given surface.

An experiment aiming to measure the shift discussed above
must involve an electron that can be moved in and out of
proximity to a surface, and ideally, it should also be set up
in a way that the experimental observable depends as strongly
as possible on the sign of the dynamical force found from (6),
which of course is an addition to the ever-present (and much
larger, at least in a nonrelativistic setting) electrostatic force.
For example, sending an electron beam through a cavity in an
experiment analogous to the Casimir-Polder force experiment
of [17] and attempting to observe the momentum dependence
of the deflection would be extremely difficult, as the Drude
or plasma difference in the O(v/c)*> dynamical force would
show up as an unobservably tiny additional deflection to that
given by the purely electrostatic (velocity-independent) force.?
Thus a radically different approach is required, for which we
propose the setup shown in Fig. 2. Here, an electron undergoes
cyclotron motion in a tube extending halfway around a circle
(a “half cyclotron”) and ultimately we will show that with
reasonable parameters the Drude and plasma models could
be distinguished by observing what type of magnetic field
modulation is required to keep the electron in persistent
cyclotron motion.

We describe the apparatus by considering the electron to be
“free” (aside from the magnetic field causing cyclotron motion)

3E.g., an electron 1 um away from a conductor is attracted to its
image and collides with the surface in about 0.1 ns, setting an upper
bound on the time for which the electron can be used. If it moves
parallel to the surface at 0.1c, the dynamical force calculated here
causes an additional deflection of the order 1 nm.

whenintheregion0 < 6 < m,whileintheregionm < 6 < 27
it is considered as confined in the tube. In this first proof-of-
principle calculation we take R > d and hence ignore edge
effects in the transition regions 8 ~ 0 and 6 =~ 7 (though in
principle these could be estimated from known exact Green’s
functions for systems with edges [18]), giving for the force
acting on the electron:

Free for 0 <O <7

Feone for m <6 <21 ° (10)

FO) = {

The assumption R 3> d means that the curved section can
be considered locally as parallel plates, so the force Fiont
up to order ( pﬁ) can be obtained from the results of the
previous section. Thus we have a prescription that allows
us to consider the forces upon an electron that moves
around the complete circle. The acceleration of the elec-
tron should have a negligible effect on the electron-plate
interaction itself, as the parameters we will choose are well
within the regime where the acceleration is much less than
c? /z [19].

Considering first the free region, the force on the circulating
electron is given simply by the cyclotron expression, Fee =
ev By, with By as appropriate to cause the electron’s cyclotron
radius to match the radius of curvature of the tube. The electron
then passes through the confined region, where, assuming it is
not exactly in the center of the tube, it gains an additional
surface dependence. This will cause the electron to leave
its circular orbit, meaning that the applied B, is no longer
appropriate for cyclotron motion. In order to remedy this, one
has to change the magnetic field by an amount AB in such
a way that the effective force on the electron (when it is in
the confined region) is always ev By, i.e., we choose AB so
that ev(By + AB) + Fyr = evBy is satisfied, meaning that
the required field modulation is AB = — Fy¢/(efc) where
B=v/c.

The surface force Fy,s consists of an electrostatic part, as
well as the first dynamical correction calculated in the previous
sections. The electrostatic part can be found via textbook
calculation and is given by

0 2
?én)fzz [®(0(0), 2,1 =) — ®(1(0), 2, 7).
(11)

F, static =

Initially taking into account just the electrostatic part of the
force, one has A Byy,ic = — Fyatic/(efc) for the required field
modulation. The static force is of course independent of g,
so the quantity 8 A By 1S constant in 8, as demonstrated in
Fig. 3. There we have chosen parameters such that the effects of
surface roughness and patch charges should be minimized. For
gold surfaces the rms roughness and patch size can be as low
as 0.4 nm [21] and 25 nm [22] respectively, so all the electron-
surface distances chosen are orders of magnitude greater than
these length scales. While a full analysis of roughness and patch
effects is far beyond the scope of this proof-of-principle work,
previous investigations of the corresponding corrections to the
Casimir force show that both these effects are negligible when
plate separation significantly exceeds roughness amplitude
[23] and patch size [22,24].
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FIG. 3. Field modulation strength required to keep an electron
with velocity v = Bc in cyclotron motion in the apparatus shown in
Fig. 2 and the various positions z for the electron are taken as indicated
in the figure, each with an uncertainty of Az = 2.5 nm associated
with a narrow electron beam [20]. The stability of the magnetic field is
taken as one part in 10, as discussed in the main text. We also include
a 5-pm variance in the radius of the ring and a 1-um variance in d to
account for possible manufacturing imperfections—the former turns
out to be by far the dominant error. The solid lines (blue for plasma, red
for Drude) represent the results with all dynamical effects included,
while the dashed (Drude) and dotted (plasma) lines are those when
only the static terms are taken. The red (blue) shaded areas are the
estimated uncertainties for the dynamical shifts required for Drude
(plasma) models, while the gray shaded areas are the uncertainties in
the static fields. Since the electron is undergoing cyclotron motion,
each velocity implies a particular magnetic field strength (for a given
radius), given simply via B = (mc/e)B/R ~ (0.0017 Tm)p/R—this
magnetic field (for R = 1 mm) is indicated on the upper axis.

If we now derive a force Fyy, from the dynamical energy
shift AE via Fyyy = —dAE/dz, we can then add this to the
electrostatic part to find the required field modulation when
dynamical corrections are taken into account:

_ Fstatic + den(ﬁ)
efc '

Now the product BAB will no longer be constant in 8, as
demonstrated by the solid lines in Fig. 3. It is important to note
that Fig. 3 pushes the bounds of our model (large velocities)
and of experimental reality (small distances) in order to
demonstrate a general trend. For the more realistic situation
of smaller velocities and larger distances, it is more conve-
nient to investigate the dimensionless quantity M, defined
as

AB = (12)

Fan _ AB
F, static ABstatic

M=— -1, (13)
where the equality follows from Eq. (12) and the definition
of ABguic. This quantity is a measure of how large the
field modulation that preserves cyclotron motion needs to
be if all dynamical corrections are included, relative to that
required if there were no dynamical effects. For perfect reflec-

B(T) (with R = lmm)
0. 0.05 0.1 0.15 0.2 0.25 0.3

Plasma

With dynamical corrections (Plasma)
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-1076+ N ) IS PR R— L
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FIG. 4. Relative field correction factor M needed in order to pre-
serve cyclotron motion when dynamical surface effects are included at
z =1 um. If no dynamical surface effects were present, one would
have M = 0. The experimental errors are taken as the same as in
Fig. 3, which turn out to be too small to be visible at the scale of this
graph. Inset: Schematic representation of the time dependence of the
B field required to preserve cyclotron motion for both models.

tors, the small ¢ approximation of M is particularly simple:

Mpm(¢ = 0) = ’i—z + 0(¢?), while for realistic models we plot
|M|in Fig. 4. For example, given a magnetic field of 0.035T =
350G one would have to add or subtract a modulation with a
relative magnitude of 10~#, which is 100 parts per million
(ppm). Magnetic field sources routinely have stability at the
0.1 — 5 ppm scale [25,26] (which compares favorably with
the 10 ppm taken in Fig. 3) and in extreme cases can approach
one part per billion [27]. This means that with routinely
achievable magnetic field stability the required modulation
would be approximately 3 orders of magnitude larger than the
background magnetic field instability.

In this work we have derived a general formula for the shift
in the self-energy of an electron in arbitrary environments. We
have applied this to the situation of identical parallel plates,
reproducing in the relevant regime earlier results obtained
by normal-mode quantization near a single plate. We found
an unexpected result whereby the dynamical shift for Drude
and plasma models of the surface are of different signs
and approximately the same magnitude. We then outlined a
cyclotron motion-based experiment that takes advantage of this
specific feature of our results in order to distinguish whether
a Drude or plasma model is more appropriate for a given
surface. This setup proposed here would provide a reliable,
independent, and experimentally clean probe of macroscopic
media’s low-frequency response to the fluctuating vacuum,
which has been at the heart of continuing issues in Casimir
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physics. It is not clear whether the root of this debate is indeed
a fundamental issue or a hitherto unresolved problem with
experimental tests, but having an additional and independent
method to shed more, and most importantly, new light on
the issue is certainly a step into the right direction towards
resolution, in one way or another.
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