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We investigate theoretically the Casimir-Polder potential of an atom which is driven by a laser field close
to a surface. This problem is addressed in the framework of macroscopic quantum electrodynamics using the
Green’s tensor formalism and we distinguish between two different approaches: a perturbative ansatz and a
method based on Bloch equations. We apply our results to a concrete example, namely an atom close to a
perfectly conducting mirror, and create a scenario where the tunable Casimir-Polder potential becomes similar
to the respective potential of an undriven atom due to fluctuating field modes. Whereas the perturbative approach
is restricted to large detunings, the ansatz based on Bloch equations is exact and yields an expression for the
potential which does not exceed 1/2 of the undriven Casimir-Polder potential.
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I. INTRODUCTION

Casimir-Polder forces [1] are weak electromagnetic forces
between an atom and a surface caused by spontaneously
arising noise currents both in the atom and the surface. These
noise currents are the source of quantized electromagnetic
fields, which are described by the theory of macroscopic
quantum electrodynamics (QED) [2,3]. This extension of
vacuum QED incorporates the presence of macroscopically
modeled matter in its field operators. Electric and magnetic
fields are given by these field operators and the classical dyadic
Green’s tensor which contains the physical and geometrical
information regarding the surface. The Green’s tensor is the
propagator of the electromagnetic field and mathematically, it
is the formal solution of the Helmholtz equation [4–7]. The
surface’s presence causes a frequency shift [8,9] in the atomic
transition frequency which is the reason for a usually attractive
force of the atom towards the surface, the Casimir-Polder force;
cf., e.g., Ref. [5].

Casimir-Polder shifts and potentials have been studied
extensively for a huge variety of different physical setups
and configurations. Different materials, such as metals [8],
graphene [10], and metamaterials [11,12] have been studied,
whereas, e.g., Casimir-Polder potentials for nonreciprocal ma-
terials [13] require an extension of the theory [14]. Moreover,
one can study atoms in the ground state or the excited state,
in an environment at T = 0 [1] or at a temperature different
from zero [15]. Additionally there is a static way of calculating
potentials using perturbation theory [15] and a dynamical way
by solving the internal atomic dynamics [16].

Experimentally, there are several approaches to measuring
Casimir-Polder forces and verifying the developed theories.
One of the first approaches [17] is based on a measurement
of the deflection of atoms passing through a parallel-plate
cavity as a function of plate separation. The Casimir-Polder
force can be inferred by measuring the angle of deflection.
If the incoming atoms are very slow and are reflected by the
medium the scattering process has to be described quantum

mechanically [18]. A respective experiment is presented in
Ref. [19]. Another method is the study of mechanical motions
of a Bose-Einstein condensate (BEC) under the influence of
a surface potential [20]. The Rb BEC is trapped magnetically
and the perturbation of the center-of-mass oscillations due to
the surface’s presence are detected. Similar to the method
mentioned above the temperature dependence of Casimir-
Polder forces was investigated [21]. In this experiment a
Bose-Einstein condensate of Rb atoms was brought close to
a dielectric substrate and the collective oscillation frequency
of its mechanical dipole was measured. Higher temperatures
are generated by heating the substrate with a laser. At close
distances the effect of the Casimir-Polder force on the trap
potential is significant.

These Casimir-Polder forces are present for single atoms
that are trapped next to a surface. Reference [22] presents an
experiment where a single Rb atom that is trapped by a tightly
focused optical tweezer beam [23] couples to a solid-state
device, namely a nanoscale photonic crystal cavity. The trap
is essentially a standing wave formed by the laser beam and
its reflected beam with minima of potential energy at the
intensity maxima. At a low temperature a single atom is loaded
into the first minimum of potential energy by scanning the
optical tweezer over the surface [22,24]. The atom’s position
can be controlled precisely, until the atom comes too close
to the surface where the attractive Casimir-Polder potential
dominates over the trap potential. Significant effects of the
Casimir-Polder force on the trapping lifetime of atoms were
already predicted for magnetically trapped atoms close to a
surface [25].

In this context we want to mention experiments [26,27]
using atomic beams and a laser to reflect the atomic beam
next to a dielectric. The laser field is internally reflected
at the dielectric’s surface producing a thin wave along the
surface, which decays exponentially in the normal direction.
An incoming atom feels a gradient force from this surface wave
expelling the atom out of the field. This reflection process is
state selective [26]. Such a setup can also be used to measure
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the Casimir-Polder force between ground-state atoms and a
mirror [28]. Laser-cooled atoms with a specific kinetic energy
are brought close to the mirror with an evanescent wave. The
atoms are reflected from an evanescent wave atomic mirror if
their kinetic energy is higher than the potential barrier. By
measuring the kinetic energy of the atoms, as well as the
intensity and detuning of the evanescent wave, the CP force
can be extracted.

In this work, we want to investigate the Casimir-Polder
potential for a laser-driven atom and study this problem in
off-resonant and resonant regimes. The solution is described in
the framework of macroscopic QED using Green’s tensors. The
off-resonant regime has previously been studied in Ref. [29] for
a perfect conductor. However, as we will show in the following,
the obtained results only hold in the nonretarded regime. A
similar calculation based on the optical Bloch equations, as in
the resonant regime, is carried out in Ref. [30]. Reference [31]
reports on an experiment with resonantly driven atoms that are
already adsorbed on a surface. It is possible to measure the
electric fields generated by these atoms.

This paper is organized as follows. Section II gives an
overview over the interaction Hamiltonian and describes the
decomposition of the electric field into a free and an induced
contribution containing the Green’s tensor. The internal atomic
dynamics is outlined in Sec. III, where the surface-induced
frequency shift and decay rate are introduced. We distinguish
here between a perturbative approach in Secs. IV and V and
an ansatz based on Bloch equations in Sec. VI. We derive
dipole moments in the time domain, the free laser force, and
the Casimir-Polder potential for both methods. Section VII
studies the example of a two-level atom in front of a perfectly
conducting mirror and gives a comparison of both methods
with the undriven standard Casimir-Polder potential.

II. ELECTRIC FIELD IN MACROSCOPIC
QUANTUM ELECTRODYNAMICS

We compute the Casimir-Polder potential for an atom that
is driven by a laser field in the presence of a surface. The theory
of macroscopic QED is an extension of vacuum QED that
incorporates the surface in its field operators. This system is
governed by a Hamiltonian Ĥ consisting of an atomic part ĤA,
a field part ĤF containing surface effects, and the interaction
part between the atom and the modified field ĤAF. The field
part of the Hamiltonian

Ĥ F =
∑

λ=e,m

∫
d3r

∫ ∞

0
dω h̄ω f̂†λ(r, ω) · f̂λ(r, ω) (1)

sums over both electric and magnetic fundamental excitations
e, m and integrates the matter-modified creation and annihila-
tion operators f̂†λ(r, ω), f̂λ(r, ω) of the body-field system over
the entire space in position and frequency. The electric and
magnetic excitations establish the spontaneously arising noise
polarization P̂N and noise magnetization M̂N, respectively,
which together form the noise current ĵN = −iωP̂N+−→∇ ×M̂N.
These fluctuating noise currents of the matter-field system
are the origin of electric and magnetic fields in a variety of
dispersion forces, such as the van der Waals force between the
electronic shells of two atoms or molecules and the Casimir

force between macroscopic objects. These dressed bosonic
field operators follow the commutation relations

[f̂λ(r, ω), f̂†λ′ (r′, ω′)] = δλλ′δ(r − r′)δ(ω − ω′). (2)

Acting on the ground state |{0}〉 the annihilation operator
f̂λ(r, ω) gives zero for all values of λ, ω, and r. Higher field
states are produced by acting f̂†λ(r, ω) on the ground state of
the field |{0}〉.

The expression for the electric field is defined by the field
operators and the dyadic Green’s function (Green’s tensor) [3]

Ê(r, t ) =
∫ ∞

0
dω[Ê(r, ω, t ) + Ê†(r, ω, t )]

=
∫ ∞

0
dω

∑
λ=e,m

∫
d3r′ Gλ(r, r′, ω) · f̂λ(r′, ω) + H.c.

(3)

The Green’s tensor formally solves the Helmholtz equation
for the electric field resulting from the Maxwell equations in
vacuum. It can be considered as the field propagator between
field points and source points and can also be decomposed
into electric and magnetic contributions satisfying the integral
relation ∑

λ=e,m

∫
d3s Gλ(r, s, ω) · G∗T

λ (r′, s, ω)

= h̄μ0

π
ω2ImG(r, r′, ω). (4)

The atomic Hamiltonian

Ĥ A =
∑

n

EnÂnn (5)

contains the atomic eigenenergies En of level n and the
diagonal elements of the atomic flip operator Âmn = |m〉〈n|.

The interaction Hamiltonian Ĥ AF contains the electric
dipole moment operator d̂ that can be represented in terms
of the atomic flip operator

d̂ =
∑
m,n

dmnÂmn. (6)

Using the expression for the dipole moment, the atom-field
interaction Hamiltonian reads

Ĥ AF = −d̂ · Ê(rA) = −
∑
m,n

Âmndmn · Ê(rA), (7)

where rA is the atom’s position. Inserting Eq. (3) into the
interaction Hamiltonian (7) allows us to set up the Heisenberg
equation of motion for the field operator by using the total
Hamiltonian of the system (1), (5), and (7), whose solution
reads

f̂λ(r, ω, t ) = e−iω(t−t0 ) f̂λ(r, ω)

+ i

h̄

∫ t

t0

dt ′e−iω(t−t ′ )G∗T
λ (rA, r, ω) · d̂(t ′). (8)

The field operator f̂λ(r, ω, t ) in the Heisenberg picture evalu-
ated at time t0 would reproduce the time-independent equiva-
lent in the Schrödinger picture.
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The first part of the annihilation operator is the free con-
tribution in absence of the atom. At the laser source VS it has
a coherent-state contribution of the laser field and otherwise
there are ubiquitous vacuum fluctuations. A corresponding
field state reads

|ψ〉F = |{fλ(r, ω)}〉
r∈VS

⊗ |{0}〉
r/∈VS

. (9)

If the annihilation operator f̂λ(r, ω, t ) from Eq. (8) acts on the
state (9), there are consequently two contributions

f̂λ(r, ω)|ψ〉F =
{

fλ(r, ω)|ψ〉F if r ∈ VS,

0 if r /∈ VS.
(10)

Such a deconvolution of the field operators was done in
Ref. [32]. The result (8) can be inserted into the equation
for the electric field (3) yielding the final expression for the
time-dependent electric-field operator

Ê(r, ω, t ) = Êfree(r, ω, t ) + Êind(r, ω)

= Ê(r, ω)e−iω(t−t0 ) + iμ0

π
ω2

∫ t

t0

dt ′e−iω(t−t ′ )

× ImG(r, rA, ω) · d̂(t ′), (11)

with the free component

Êfree|ψ〉F =
∫

VS

d3r ′Gλ(r, r ′, ω) · fλ(r, ω)|ψ〉F

≡ E(r, ω)|ψ〉F. (12)

The classical electric driving field of the laser at the atom’s
position E(rA, t ) can be written as Fourier relations with
time-independent and time-dependent frequency components
E(rA, ω, t ) and E(rA, ω), similar to Eq. (3),

E(rA, t ) =
∫ ∞

0
dω[E(rA, ω, t ) + E∗(rA, ω, t )]

=
∫ ∞

0
dω[e−iωtE(rA, ω) + eiωtE∗(rA, ω)]

= E(rA) cos (ωLt ), (13)

with the driving frequency of the laser ωL. The frequency
components can then be identified as

E(rA, ω) = 1
2 E(rA)δ(ω − ωL),

E∗(rA, ω) = 1
2 E(rA)δ(ω − ωL). (14)

The second part of Eq. (11) is the induced field stemming from
the atom directly. This term is affected by the atom’s position
rA and state at all times after the preparation into the initial
state.

The induced part of the electric field Êind(r, ω) in Eq. (11)
depends on the dipole moment of the atom d̂(t ). In Sec. III,
where the internal atomic dynamics is investigated, the dipole
moment is split into a free fluctuating part and an induced part
as well. Following perturbation theory, the induced electric
field Êind(r, ω) depends on the free dipole moment. Only
higher-order terms would contain the induced contributions
again. The procedure of decomposing the electric field and
the dipole operator into free and induced parts related to the
order of perturbation is taken from Refs. [33–35]. In Sec. IV

the induced dipole moment and the induced electric field are
computed in a perturbative approach.

III. INTERNAL ATOMIC DYNAMICS

After deriving an expression for the electric field consisting
of the free part and the induced part in Sec. II, one can compute
the Heisenberg equation of motion for the atomic flip operator
Âmn(t ) in a similar way [3]

˙̂Amn(t ) = iωmnÂmn(t ) + i

h̄

∑
k

∫ ∞

0
dω

×{[Âmk (t )dnk − Âkn(t )dkm] · Ê(rA, ω, t )

+ Ê†(rA, ω, t ) · [dnkÂmk (t ) − dkmÂkn(t )]}. (15)

The electric field (11) is evaluated using the Markov ap-
proximation for weak atom-field coupling and we discard
slow nonoscillatory dynamics of the flip operator by setting
Âmn(t ′) � eiω̃mn(t ′−t )Âmn(t ) for the time interval t0 � t ′ � t .
The dynamics is determined by the shifted frequency ω̃mn =
ωmn + δωmn with the pure atom’s eigenfrequency ωmn and the
Casimir-Polder frequency shift δωmn due to the presence of the
surface, which is computed in the following. We make use of
the relation∫ t

−∞
dt ′e±i(ω−ω̃nm )(t−t ′ ) = πδ(ω − ω̃nm) ± iP

(
1

ω − ω̃nm

)
(16)

with the Cauchy principle value P and used ω̃nm = −ω̃mn.
Moreover, we have set the lower integral boundary from t0
to minus infinity. The Markov approximation reduces the
memory of the atomic flip operator from its entire past to
present time t only. To apply the Markov approximation we
have assumed that the atomic transition frequency ω̃10 is not
close to any narrow-band resonance mode of the medium. If
there were such an active mode, the atom would mostly interact
with it, similar to a cavity. In this case the mode would have to
be modeled by a Lorentzian profile [3,36,37].

After defining the coefficient

Cmn = μ0

h̄
�(ω̃nm)ω̃2

nmImG(rA, rA, ω̃nm) · dmn

− iμ0

πh̄
P

∫ ∞

0
dω

1

ω − ω̃nm

ω2ImG(rA, rA, ω) · dmn,

(17)

the equation of motion for the atomic flip operator (15) reads

˙̂Amn(t ) = iωmnÂmn(t ) + i

h̄

∑
k

∫ ∞

0
dω

×{e−iω(t−t0 )[Âmk (t )dnk − Âkn(t )dkm] · Ê(rA, ω)

+ eiω(t−t0 )Ê†(rA, ω) · [dnkÂmk (t ) − dkmÂkn(t )]}
−

∑
k,l

[dnk · CklÂml (t ) − dkm · CnlÂkl (t )]

+
∑
k,l

[dnk · C∗
mlÂlk (t ) − dkm · C∗

klÂln(t )]. (18)
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Equations of motion for the diagonal and nondiagonal atomic
flip operators can be decoupled by assuming that the atom
does not have quasidegenerate transitions. Moreover, the atom
is unpolarized in each of its energy eigenstates, dmm = 0,
which is guaranteed by atomic selection rules [3]. Thus the
fast-oscillating nondiagonal parts Âmn(t ) can be decoupled
from the slowly oscillating diagonal operator terms Âmm(t ).
In the following we take the expectation value of the atomic
flip operator (15). By making use of the definitions of the
surface-induced frequency shift and decay rate

δωnk = − μ0

πh̄
P

∫ ∞

0
dω

1

ω − ω̃nk

ω2dnk

· ImG(1)(rA, rA, ω) · dkn,

�nk = 2μ0

h̄
ω̃2

nkdnk · ImG(rA, rA, ω̃nk ) · dkn, (19)

the relations

δωn =
∑

k

δωnk, �n =
∑
k<n

�nk, (20)

and the expression for the shifted frequency

ω̃mn = ωmn + δωm − δωn, (21)

the expressions for the diagonal elements and the nondiagonal
elements of the atomic flip operator for a coherent electric field
E(rA, t ) (13) read

〈 ˙̂Amm(t )〉 = −�m〈Âmm(t )〉 +
∑
k>m

�km〈Âkk (t )〉

+ i

h̄

∑
k

[〈Âmk (t )〉dmk − 〈Âkm(t )〉dkm]

· E(rA, t ) (22)

and

〈 ˙̂Amn(t )〉 = iω̃mn〈Âmn(t )〉 − 1

2
[�n + �m]〈Âmn(t )〉

+ i

h̄

∑
k

[〈Âmk (t )〉dnk − 〈Âkn(t )〉dkm] · E(rA, t ). (23)

Whereas the diagonal terms of the atomic flip operator rep-
resent the probabilities of the atom to be in the respective
state, the equation for the nondiagonal elements of the atomic
flip operator are needed to compute the dipole moment (6).
As the electric field (11) consists of two contributions, the
dipole moment can also be decomposed into a free part
d̂free(t ) stemming from the first term in Eq. (23), which is the
homogeneous solution, and the induced term d̂ind(t ) from the
inhomogeneous solution containing the electric field

d̂(t ) = d̂ind(t ) + d̂free(t ). (24)

This notation is schematic because the equation for the atomic
flip operator containing phenomenological damping constants
is only defined as an averaged quantity.

In the next section, Sec. IV, the dipole moment is computed
in a perturbative approach.

IV. PERTURBATIVE APPROACH

Making use of lowest-order perturbation theory, the induced
part of the dipole moment d̂ind (24) only depends on the
free electric field Êfree (11) and the induced electric field
Êind is computed by using the free dipole moment d̂free only,
respectively.

The expectation value of the dipole moment operator
〈d̂(t )〉 equals zero, if the atom’s initial state is an incoherent
superposition of energy eigenstates. In this approach the atom
stays in its initial state |n〉 with 〈Âkl (t ′)〉 ≈ 〈Âkl (t )〉 ≈ δknδln.
The expectation value of the dipole moment in the energy
eigenstate |n〉 is given by the equation

〈d̂(t )〉n =
∑
k �=n

[〈Ânk (t )〉ndnk + 〈Âkn(t )〉ndkn]. (25)

Since the dipole moment in time domain for an atom in an
energy eigenstate |n〉 only contains off-diagonal atomic flip
operators, we only need the solution of the nondiagonal atomic
flip operator elements (23). Moreover, the free part of this term
Âmn vanishes because of the initial condition of off-diagonal
terms 〈Âmn(t0)〉 = 0. We call the dipole moment in eigenstate
|n〉 (25) under the influence of a coherent electric driving field
(13) the induced dipole moment and it reads in the Markov
approximation, where we set t0 → −∞,

〈d̂ind(t )〉n = i

h̄

∑
k

∫ t

−∞
dt ′{e[iω̃nk− 1

2 (�n+�k )](t−t ′ )dnkdkn

− e[iω̃kn− 1
2 (�k+�n )](t−t ′ )dkndnk} · E(rA, t ′). (26)

After inserting the electric field (13) into this equation and
identifying the complex atomic polarizability as

αn(rA, ω) = 1

h̄

∑
k

[
dnkdkn

ω̃kn − ω − i
2 (�n + �k )

+ dkndnk

ω̃kn + ω + i
2 (�n + �k )

]
, (27)

with the property α∗
n (ω) = αn(−ω∗) the dipole moment in time

domain reads

〈d̂ind(t )〉n = 1
2 [αn(ωL) · E(rA)e−iωLt + α∗

n(ωL) · E(rA)eiωLt ].

(28)

The dipole moment in frequency domain is obtained by a
Fourier transform of Eq. (26)

〈d̂ind(ω)〉n = 1

2π

∫ ∞

−∞
dt eiωt 〈d̂ind(t )〉n

= i

2πh̄

∑
k

∫ ∞

−∞
dt eiωt

∫ t

−∞
dt ′

× {e[iω̃nk− 1
2 (�m+�n )](t−t ′ )dnkdkn

− e[iω̃kn− 1
2 (�m+�n )](t−t ′ )dkndnk} · E(rA, t ′). (29)

By making use of the definition of the electric driving field (13)
and (14) and the δ function

1

2π

∫ ∞

−∞
dt ei(ω−ωL )t = δ(ω − ωL) (30)
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or simply by using the result for the dipole moment in time
domain (28), the frequency component of the dipole moment
〈d̂ind(ω)〉n (29) can be written as

〈d̂ind(ω)〉n = αn(ωL) · E(rA, ω). (31)

We have discarded the δ(ω + ωL) terms in Eq. (31) which
do not contribute in the reverse transformation of the dipole
component from frequency domain to time domain, which is
given by

〈d̂ind(t )〉n =
∫ ∞

0
dω[e−iωt 〈d̂ind(ω)〉n + eiωt 〈d̂†

ind(ω)〉n]. (32)

In the next step, we insert the induced dipole moment (28) back
into the expression of the induced electric field (11) to calculate
a higher-order term of the induced electric field yielding

〈
Ê(2)

ind(r, t )
〉 = iμ0

π

∫ ∞

0
dω ω2

×
{

1

2
e−iωLt

[
πδ(ω − ωL) − iP 1

ω − ωL

]

× ImG(r, rA, ω) · αn(ωL) · E(rA)

+ 1

2
eiωLt

[
πδ(ω + ωL) − iP 1

ω + ωL

]

× ImG(r, rA, ω) · α∗
n(ωL) · E(rA)

− 1

2
eiωLt

[
πδ(ω − ωL) + iP 1

ω − ωL

]

× ImG(r, rA, ω) · α∗
n(ωL) · E(rA)

− 1

2
e−iωLt

[
πδ(ω + ωL) + iP 1

ω + ωL

]

× ImG(r, rA, ω) · αn(ωL) · E(rA)}. (33)

The expressions containing δ(ω + ωL) do not contribute to the
electric field under the integration over ω from zero to ∞. One
can make use of the definition of the imaginary part of the
Green’s tensor

ImG(r, rA, ω) = 1

2i
[G(r, rA, ω) − G∗(r, rA, ω)] (34)

and the Schwarz principle G∗(r, rA, ω) = G(r, rA,−ω∗) for
real frequencies ω = ω∗. The integrals over the Cauchy
principle value P

∫ ∞
0 dω/(ω − ωL) and P

∫ −∞
0 dω/(ω + ωL)

have poles along the curve of integration at ωL and −ωL,
respectively, and are evaluated in the complex plane. There
is a part along the quarter circle, which vanishes because
of lim|ω|→0 G(1)(r, rA, ω)ω2/c2 = 0. The Green’s tensor is
evaluated at complex frequencies ω → iξ in the part along the
imaginary frequency axis. Expressions containing discrete fre-
quencies ωL are obtained by computing the pole contributions.
The integrals P

∫ ∞
0 dω/(ω + ωL) and P

∫ −∞
0 dω/(ω − ωL)

do not contain poles. Their contributions are thus equal to the
part along the imaginary axis.

After bringing together the calculations from all parts,
the nonresonant part stemming from the integration along
the imaginary frequency axis vanishes altogether and all
that remains is a resonant contribution containing discrete
frequencies ωL〈

Ê(2)
indt (r, t )

〉 = 1
2μ0ω

2
Le−iωLtG(r, rA, ωL) · αn(ωL) · E(rA)

+ 1
2μ0ω

2
LeiωLtG∗(r, rA, ωL) · αn(ωL) · E(rA)

(35)

remains. The final expression for the electric field shows
the Green’s tensor and the atomic polarizability at the laser
frequency ωL. The shifted atomic transition frequency ω̃nk

only enters the expression as part of the atomic polarizability
in Eq. (27). This time-dependent expression shows oscillations
with the laser frequency ωL as opposed to the atomic transition
frequency in the term of lowest order (35). Moreover, there is
a scaling of the electric field emitted by the atom with the
amplitude of the electric driving field E(rA). This opens up the
possibility to enhance the electric field emitted by an atom by
increasing the laser intensity.

The higher-order result for the induced electric field (35) can
be inserted into the equation of the induced dipole moment
(26) leading to a higher-order induced dipole moment. By
dropping the counter-rotating terms, the higher-order dipole
moment reads〈

d̂(4)
ind(t )

〉
= 1

2μ0ω
2
Le−iωLtαn(ωL) · G(rA, rA, ωL) · αn(ωL) · E(rA)

+ 1
2μ0ω

2
LeiωLtα∗

n(ωL) · G∗(rA, rA, ωL) · α∗
n(ωL) · E(rA).

(36)

The order is determined by the number of dipole moments in
the respective expression. The higher-order results of both the
induced electric field (35) and the induced dipole moment (36)
are inserted into an expression of the elctromagnetic potential
in the following Sec. V.

V. COMPONENTS OF THE ELECTROMAGNETIC
POTENTIAL

Both the electric field (11) and the dipole moment (6) can be
decomposed into a spontaneously fluctuating free part and an
induced contribution. Since the distance between the atom and
the laser is assumed to be large, there is no backaction from the
atom to the laser. The general expression for the potential is a
combination of all of these contributions and reads in normal
ordering (as indicated by : · · · :)

U (rA, t ) = − 1
2 〈d̂(t ) · Ê(rA, t )〉

= − 1
2 〈: d̂free(t ) · Êfree(rA, t ) :〉

− 1
2 〈: d̂free(t ) · Êind(rA, t ) :〉

− 1
2 〈: d̂ind(t ) · Êfree(rA, t ) :〉

− 1
2 〈: d̂ind(t ) · Êind(rA, t ) :〉, (37)
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FIG. 1. Sketch of the atom close to the surface. The dipole
fluctuations cause the undriven Casimir-Polder potential UCP.

giving rise to four different terms that are analyzed in the
following. This decomposition of the Casimir-Polder potential
was carried out in Refs. [38,39]. We incorporate an additional
contribution of the electric field from the coherent driving laser
field (10). The first term contains the free dipole moment
and the free electric field and therefore is of lowest order
in perturbation theory. For r ′ ∈ VS, this expression leads to
the vanishing expectation value of the free dipole moment
〈d̂free(t )〉 = 0. In the case of r ′ /∈ VS, this term vanishes as
well according to Eqs. (9) and (10).

The second term inserts the free dipole moment into the
induced electric field (11). The expression

UCP(rA, t ) = −1

2
〈: d̂free(t ) · Êind(rA, t ) :〉

= − iμ0

2π

∫ ∞

0
ω2

∫ t

0
dt ′e−iω(t−t ′ )

×〈d̂free(t )·ImG(1)(rA, rA, ω) · d̂free(t ′)〉+H.c.

(38)

is the standard Casimir-Polder potential, (radiation-reaction
term), and stems from the dipole fluctuations [38]. Figure 1
shows a sketch of the standard Casimir-Polder potential. The
third term in Eq. (37) has a contribution from the coherent
electric field (r ′ ∈ VS) and is identified with the light force of
the laser on the atom. Figure 2 shows a sketch of the interaction
between the atom and the laser field. The electric driving
field causes a force on the atom, which is associated with the
AC Stark shift. This laser light potential is defined as

UL(rA, t ) = − 1
2 〈: d̂ind(t ) · Êfree(rA, t ) :〉

= − 1
2 〈d̂ind(t )〉n · E(rA, t ). (39)

By inserting the result for the expectation value of the dipole
moment operator in eigenstate |n〉 in time domain (28) and the
electric driving field (13) we obtain the result

UL(rA, t ) = − 1
2 E(rA) · αn(ωL) · E(rA) cos2 (ωLt ). (40)

Under the assumption of real polarizabilities with real dipole
moments d10 = d01 = d for a two-level atom with a transition

FIG. 2. Sketch of the atom under the influence of the laser field.
The laser field leads to the occurrence of the laser light potential UL.

frequency ω̃10 and no damping, the atomic polarizability
reads

α(ω) = 1

h̄

[
dd

ω̃10 − ωL
+ dd

ω̃10 + ωL

]
= 1

h̄

2ω̃10dd

ω̃2
10 − ω2

L

. (41)

Since the damping rates are set equal to zero, the atomic
polarizability (27) is real valued. For an isotropic atomic state
it reads

α(ωL) = 2ω̃10d
2

3h̄
(
ω̃2

10 − ω2
L

)1, (42)

where the factor of 1/3 stems from isotropy. By assuming
a small detuning in comparison to the atomic transition
frequency � = ωL − ω̃10 � ω̃10, which is usually guaranteed,
the atomic polarizability reads

α(ωL) ≈ − d2

3h̄�
1. (43)

The potential of the light force under these approximations is
given by

UL(rA, t ) ≈ 1

12

d2E2(rA)

h̄�
, (44)

where we have averaged over fast oscillating terms.
The light force only depends on the field strength of the

laser, the detuning between the laser frequency and atomic
transition frequency, and the atomic dipole moment. Due to the
direct interaction of atom and laser without taking the surface
into account, there is no dependence on the distance.

The light force acts upon the atom depending on the
atom’s energy state. Weak-field seekers show an electric dipole
moment that is antialigned with the electric field so that they
are attracted towards a local minimum of the magnitude of the
electric laser field [40]. In contrast to that, high-field seekers are
drawn towards a local maximum in the energy landscape of the
electric field. References [40,41] describe magnetic trapping
techniques for neutral atoms, where the significance of the
atomic energy state for the trapping procedure is outlined.

The fourth term in Eq. (37) 〈d̂ind(t ) · Êind(rA, t )〉 includes
the induced dipole moment and the induced electric field and
is one order higher in perturbation theory. Both for r ′ /∈ VS

and for r ′ ∈ VS, using Eqs. (9) and (10), this term reduces to
〈d̂free(t )〉 = 0 and thus vanishes.
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FIG. 3. Sketch of the atom under the influence of the laser field
and the vacuum fluctuations leading to the potential term ULCP.

After analyzing Eq. (37), expressions of next higher order
can be set up by making use of the induced electric field (35)
and the induced dipole moment (36) of higher order. The fourth
term of Eq. (37) leads to the result

− 1
2

〈
:d̂ind(t ) · Ê(2)

ind(rA, t ):
〉

= − 1
4μ0ω

2
LE(rA) · αn(ωL) · ReG(1)(rA, rA, ωL)

·αn(ωL) · E(rA), (45)

where we have assumed real and isotropic polarizabilities (42).
The electric field emitted by the atom (35) is evaluated at the
atom’s position rA. We have discarded fast oscillating terms
with e−2iωLt and e2iωLt so that the final result for the potential
does not show a time-dependence any more.

The third term in Eq. (37), 〈d̂(2)
ind(t ) · Êfree(rA, t )〉, is com-

puted by using Eq. (36) and gives the exact same expression as
Eq. (45) so that the total laser-driven Casimir-Polder potential
eventually reads

U
per
LCP(rA, t )

= − 1
2

〈
: d̂ind(t ) · Ê(2)

ind(rA, t ) :
〉 − 1

2

〈
: d̂(2)

ind(t )·Êfree(rA, t ) :
〉

= − 1
2μ0ω

2
LE(rA) · αn(ωL) · ReG(1)(rA, rA, ωL)

·αn(ωL) · E(rA). (46)

Figure 3 shows the atom under the influence of vacuum
fluctuations and the laser field. The Casimir-Polder force
corresponding to the respective potential (46) is computed by
taking the gradient of the potential

FLCP(rA) = −−→∇ AULCP(rA) (47)

and can be expressed using the two contributions

−→∇ 〈
: d̂(2)

ind · Êfree(r) :
〉
r=rA

+ −→∇ 〈
: d̂ind · Ê(2)

ind(r) :
〉
r=rA

, (48)

where one can use the relation
−→∇ E(rA) · E(r)|r=rA

=
1
2

−→∇ AE2(rA) and the symmetry of the Green’s tensor−→∇ G(r, rA) = 1
2

−→∇ AG(rA, rA). The result (46) is analyzed
further for a special geometry and an atom in Sec. VII and
is compared with the findings in Ref. [29].

VI. POTENTIAL ANSATZ BASED ON OPTICAL
BLOCH EQUATIONS

In this approach, the atomic dipole moment (25) is also
computed, but there is a strong coupling between the atom and
the laser field. As a result the diagonal terms of the atomic flip
operator (22) play an important role in the internal dynamics.
Both the results for the light force on the atom and the Casimir-
Polder potential have to be adjusted to this case.

1. Dynamics and dipole moments

Whereas Secs. IV and V study the internal atomic dynamics
for the case where the atom stays in its initial state, this
assumption is not made in this section. A strong coupling
between the atom and the laser frequency manifesting itself
in Rabi oscillations is assumed.

We look at a two-level atom and want to study the internal
dynamics. In order to compute the dipole moment in the time
domain (28) we use the nondiagonal atomic flip operator (23)
and obtain equations of motion for 〈Â10(t )〉 by setting m = 1
and n = 0 and for 〈Â01(t )〉, where we have set m = 0 and
n = 1:

〈 ˙̂A10(t )〉 = iω̃10〈Â10(t )〉
+ i

h̄
[〈Â11(t )〉 − 〈Â00(t )〉]d01 · E(rA, t ),

〈 ˙̂A01(t )〉 = iω̃01〈Â01(t )〉
+ i

h̄
[〈Â00(t )〉 − 〈Â11(t )〉]d10 · E(rA, t ). (49)

The dipole moments d00 and d11 are equal to zero and we have
set the damping terms �0 and �1 to zero. Since the nondiagonal
terms 〈Â10(t )〉 and 〈Â01(t )〉 couple to 〈Â00(t )〉 and 〈Â11(t )〉,
one has to use Eq. (22) to compute the diagonal flip operators
by setting m = 1 and m = 0, respectively,

〈 ˙̂A11(t )〉 = i

h̄
[〈Â10(t )〉d10 − 〈Â01(t )〉d01] · E(rA, t ),

〈 ˙̂A00(t )〉 = i

h̄
[〈Â01(t )〉d01 − 〈Â10(t )〉d10] · E(rA, t ). (50)

In the following we assume real dipole moments d10 = d01 =
d. After inserting the electric driving field (13), fast oscillating
terms are discarded according to the rotating wave approx-
imation (RWA). Moreover, we define a frame rotating with
the laser frequency 〈 ˆ̃A10(t )〉 = e−iωLt 〈Â10(t )〉 and 〈 ˆ̃A01(t )〉 =
eiωLt 〈Â01(t )〉. Additionally, the Rabi frequency � and the
detuning � are defined as

� = E(rA) · d
h̄

, � = ωL − ω̃10. (51)

The new set of equations reads

〈 ˙̃̂
A10(t )〉 = −i�〈 ˆ̃A10(t )〉 + 1

2 i�[〈Â11(t )〉 − 〈Â00(t )〉],

〈 ˙̃̂
A01(t )〉 = i�〈 ˆ̃A01(t )〉 − 1

2 i�[〈Â11(t )〉 − 〈Â00(t )〉],
〈 ˙̂A11(t )〉 = 1

2 i�[〈 ˆ̃A10(t )〉 − 〈 ˆ̃A01(t )〉],
〈 ˙̂A00(t )〉 = − 1

2 i�[〈 ˆ̃A10(t )〉 − 〈 ˆ̃A01(t )〉]. (52)
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This system of differential equations is solved by introducing
new variables

Â+ = 1
2 (Â11 + Â00), Â− = 1

2 (Â11 − Â00),

ÂI = 1
2 ( ˆ̃A10 + ˆ̃A01), ÂII = 1

2 ( ˆ̃A10 − ˆ̃A01), (53)

and we consider the initial conditions 〈Â00(0)〉 = 1 and
〈Â11(0)〉 = 〈Â01(0)〉 = 〈Â10(0)〉 = 0. The final solution of the
system of equations of motion reads

〈Â00(t )〉 = �2

�2 + �2
cos2

(
1

2

√
�2 + �2t

)
+ �2

�2 + �2
,

〈Â11(t )〉 = �2

�2 + �2
sin2

(
1

2

√
�2 + �2t

)
,

〈Â10(t )〉 = − ��

�2 + �2
sin2

(
1

2

√
�2 + �2t

)
eiωLt

− i�

2
√

�2 + �2
sin

(√
�2 + �2t

)
eiωLt ,

〈Â01(t )〉 = − ��

�2 + �2
sin2

(
1

2

√
�2 + �2t

)
e−iωLt

+ i�

2
√

�2 + �2
sin(

√
�2 + �2t )e−iωLt . (54)

The diagonal components of the solution can be interpreted
as occupation probabilities 〈Â00(t )〉 = p0(t ) and 〈Â11(t )〉 =
p1(t ) and the nondiagonal elements are needed to compute the
dipole moment, which is given in Eq. (25) by

〈d̂(t )〉 = [〈Â10(t )〉 + 〈Â01(t )〉]d

= − 2��

�2 + �2
sin2

(
1

2

√
�2 + �2t

)
cos (ωLt )d

+ �√
�2 + �2

sin(
√

�2 + �2t ) sin (ωLt )d. (55)

The second term of the dipole moment (55) dominates over
the first term in the case of resonance � = 0, whereas the first
term plays an important role for a large detuning � � �.

The occupation probabilities 〈Â11(t )〉 and 〈Â00(t )〉 and
the off-diagonal solutions 〈Â10(t )〉 (54) feature the dressed
frequency

√
�2 + �2. The off-diagonal solutions oscillate

with the laser frequency ωL, which governs the oscillation
frequency of the laser-induced Casimir-Polder potential, which
will be seen later. Reference [42] gives a detailed analysis of
the driving frequencies revealing the appearance of Mollow
triplets [43] consisting of the three frequencies ωL, ωL + �,
and ωL − �, which are shifted by the Rabi frequency �. Since
in our case ωL � �, we neglect the effect stemming from the
Mollow triplet in the following analysis.

2. Force of the free laser field

The potential of the free laser field is given in Eq. (39) and
has to be evaluated for the dipole moment (55). After averaging
over fast oscillating terms with the laser frequency ωL, we

obtain the free electric force

U el
L (rA, t ) = 1

2
E(rA) · d

��

�2 + �2
sin2

(
1

2

√
�2 + �2t

)
.

(56)

This result for the potential can be compared to the respective
perturbative result (44) for a large detuning � � �. By apply-
ing the definition of the Rabi frequency � and the detuning �

(51) and time-averaging the expression sin2 ( 1
2

√
�2 + �2t ) to

1
2 we obtain

U el
L (rA, t ) ≈ 1

12

d2E2(rA)

h̄�
, (57)

where we again assumed an isotropic atomic state. This
result agrees with the respective result from the perturbative
approach (44).

3. Casimir-Polder potential

To compute the laser-driven Casimir-Polder potential

UBE
LCP = − iμ0

2π

∫ ∞

0
dω ω2

∫ t

0
dτ e−iω(t−τ )〈d̂(t )

· ImG(1)(rA, rA, ω) · d̂(τ )〉

+ iμ0

2π

∫ ∞

0
dω ω2

∫ t

0
dτ eiω(t−τ )〈d̂(τ )

· ImG(1)(rA, rA, ω) · d̂(t )〉, (58)

one needs the correlation functions of the atomic flip operators
〈Â10(t )Â01(τ )〉 and 〈Â01(t )Â10(τ )〉 evaluated at time t and
τ . Neglecting fast oscillating terms for t ≈ τ cancels the
correlation functions 〈Â10(t )Â10(τ )〉 and 〈Â01(t )Â01(τ )〉 and,
by making use of the relation (16), one obtains under the initial
conditions from Sec. VI 1

〈Â10(t )Â01(τ )〉 = eiωL(t−τ ) �2

�2 + �2
sin2

(
1

2

√
�2 + �2t

)
,

〈Â01(t )Â10(τ )〉 = e−iωL(t−τ )

[
�2

�2 + �2
+ �2

�2 + �2

× cos2

(
1

2

√
�2 + �2t

)]
. (59)

In the RWA picture these correlation functions are named
〈 ˆ̃A10(t ) ˆ̃A01(τ )〉 and 〈 ˆ̃A01(t ) ˆ̃A10(τ )〉. These correlation func-
tions are identical to the occupation probabilities (54) of the
system: 〈Â00(t )〉 = p0(t ) = 〈 ˆ̃A01(t ) ˆ̃A10(τ )〉 and 〈Â11(t )〉 =
p1(t ) = 〈 ˆ̃A10(t ) ˆ̃A01(τ )〉. Therefore, the total potential can be
written in terms of occupation probabilities. The total potential
in terms of the occupation probabilities reads

UBE
LCP = p0(t )U0 + p1(t )U1 (60)

with the potentials for the ground state U0 and the excited state
U1 given by

U0 = μ0

π

∫ ∞

0
dξ

ωLξ 2

ξ 2 + ω2
L

d · G(1)(rA, rA, iξ ) · d,

U1 = −μ0

π

∫ ∞

0
dξ

ωLξ 2

ξ 2 + ω2
L

d · G(1)(rA, rA, iξ ) · d

−μ0ω
2
Ld · ReG(1)(rA, rA, ωL) · d, (61)
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where we have used the identity 〈 ˆ̃A10(t ) ˆ̃A01(τ )〉 =
〈 ˆ̃A10(τ ) ˆ̃A01(t )〉. The final expression consists of a nonresonant
contribution under the integral and a resonant one.

In the large-detuning limit � � �, where the atomic
polarizability (43) is applied, and after a time-average
sin2( 1

2

√
�2 + �2t ) → 1

2 , the resonant contribution of this
expression agrees exactly with Eq. (46).

If we set the electric driving field E(rA) equal to zero the
probabilities reduce to p0(t ) = 1 and p1(t ) = 0 and Eq. (60)
with Eq. (61) is equal to the standard ground state Casimir-
Polder potential, given the laser frequency is set to the atomic
transition frequency ωL = ω̃10 [2,3]. The potential shows only
a nonresonant integral term.

If the atom is initially in its excited state 〈Â11(0)〉 = 1,
〈Â11(0)〉 = 0 and we set the electrical driving field to zero, the
probabilities are p1(t ) = 1 and p0(t ) = 0; the potential (60)
with Eq. (61) is identical to the Casimir-Polder potential for an
atom in its excited state. In this case the potential is composed
of a resonant part containing the transition frequency and a
nonresonant contribution.

VII. ATOM NEAR A PLANE SURFACE

We want to evaluate the driven Casimir-Polder potential for
the atom (46) under the influence of the driving laser field (13)
for a specific choice of applied electric field and geometry. In
Ref. [44] we apply the result for the laser-induced Casimir-
Polder potential in Eq. (46) to a specific laser driving field,
namely an evanescent laser beam under realistic experimental
conditions and compare its contribution to the sum of the
light potential and the Casimir-Polder potential. Reference [29]
studies this setup for the electrical driving field

E(rA) = E0(rA)

⎛
⎝sin (θ )

0
cos (θ )

⎞
⎠. (62)

The angle θ is between the z axis and the orientation of the field
E(rA). The unpolarized dipole moment induced by this field
is aligned in the same direction and its image dipole differs by
a sign in the x component. We study the setup for a perfectly
conducting mirror with the reflective coefficients rs = −1 and
rp = 1 leading to the components of the scattering part of the
Green’s tensor

G(1)
xx (r, r, ω) = G(1)

yy (r, r, ω)

= ω

32πc

[(
c

ωz

)3

− 2i

(
c

ωz

)2

− 4

(
c

ωz

)]
e

2iωz
c

G(1)
zz (r, r, ω) = ω

16πc

[(
c

ωz

)3

− 2i

(
c

ωz

)2
]
e

2iωz
c . (63)

The nondiagonal elements of the Green’s tensor are equal to
zero. This result reflects the interaction of the dipole moment
(62) with itself mediated by the presence of the surface of
the perfectly conducting mirror with Green’s tensor (63). By
making use of Eq. (46) the Casimir-Polder potential for the

laser-driven atom eventually reads

U
per
LCP(rA) = −μ0ω

3
Lα2

n(ωL)E2
0 (rA)

64πc

×
{

[1 + cos2 (θ )]

(
c

ωLz

)3

cos

(
2ωLz

c

)

+ 2[1 + cos2 (θ )]

(
c

ωLz

)2

sin

(
2ωLz

c

)

− 4 sin2 (θ )

(
c

ωLz

)
cos

(
2ωLz

c

)}
. (64)

We have again used real and isotropic atomic polarizabilities.
The Casimir-Polder potential for the laser-induced electric
field can be approximated in the retarded limit (ωLz/c � 1)
and in the nonretarded limit (ωLz/c � 1)

U
per
LCP(rA) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0ω
2
Lα2

n(ωL)E2
0 (rA)

16πz
sin2 (θ ) cos

(
2ωLz

c

)
,

ωLz

c
� 1,

−μ0α
2
n(ωL)E2

0 (rA)c2

64πz3
[1 + cos2 (θ )],

ωLz

c
� 1.

(65)

We compare the expression for the laser-induced Casimir-
Polder potential in Eq. (64) using macroscopic QED with the
results from Ref. [29], wherein both the electric field and the
induced atom-surface interaction potential are computed using
the image dipole method.

The monochromatic external field (13) acts on the atom,
whose dipole moment is then aligned in the same direction.
The induced electric field of the atom (35) is given by

E(rA, t ) = 1

2
[3 cos (θ )ez − ep]

αn(ωL)E0(rA)

4πε0(2z)3

× [
e−iωLt e

2iωLz

c + eiωLt e− 2iωLz

c

]
(66)

containing the time dependence of the electric driving field
(13). By using the unitary vectors in the z direction ez and the
direction of the image dipole moment ep our result is identical
to the respective expression in Ref. [29]. The respective atom-
surface interaction potential in this notation using Eq. (64) is
given by

ULCP(rA) = −α2(ωL)E2
0 (rA)

64πε0z3
[1 + cos2 (θ )] cos

(
2ωLz

c

)
(67)

and has lost the time-dependent terms. Equation (67) agrees
perfectly with the respective result from Ref. [29].

In Ref. [29] it is stated that the terms in z−2 and z−1 are
neglected in the near-field regime. This expression is identified
with the nonretarded limit of the laser-driven Casimir-Polder
potential in Eq. (65), which is proportional to z−3. Figure 4
shows that Eq. (67) is not sufficient for the interaction
potential (64).

The obtained equations are evaluated by making use of
the example presented in Ref. [29]. We have partly used
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FIG. 4. Total Casimir-Polder potential from the perturbative ap-
proach for a Na atom close to a surface driven by a laser with an
intensity of I = 5 W/cm2 (64) (——) and the potential with only the
contribution proportional to z−3 (67) ( ).

more accurate values stemming from an increased preci-
sion of measurements. The static atomic polarizability is
given by the expression αDC = e2/mω̃2

10 with the electron
mass m and the resonance frequency ω̃10 and a value of
αDC/(4πε0) = 24×10−30 m3 is delivered. We used a more
recent experimentally determined value of αDC/(4πε0) =
24.11×10−30 m3 [45] for our calculations. The laser intensity
is I = ε0c|E0(rA)|2/2 = 5 W/cm2 and the detuning between
laser frequency ωL and the resonance frequency ω̃10 has a
value of ωL − ω̃10 = 2π×100 MHz. This yields values for
the atomic transition frequency of ω̃10 = 3.24×1015 1/s and
the dipole moment d = 3.71×10−29 C m. The detuning is
seven orders of magnitude smaller than the atomic transition
frequency ω̃10 and 0.29 of the value of the Rabi frequency
� (51). We assume the dipole to be aligned along the x axis
θ = π/2 and thus parallel to the surface.

Using these parameters the light-force potential (39) has a
value of UL = −1.30×10−27 J, which is attractive and of the
same order of magnitude as Casimir-Polder potential.

Figure 4 compares the total expression of the driven
Casimir-Polder potential (64) with Eq. (67), which is identical
with the nonretarded limit of Eq. (64). Consequently, we see
good agreement between both curves at small distances. Nev-
ertheless, the magnitude of this approximation from Ref. [29]
does not agree well with the result obtained from Eq. (64). In a
next step, Eq. (64) is evaluated for several detuning values and
is compared with the Casimir-Polder potential of the undriven
atom in its excited state

UCP(rA) = −μ0ω̃
2
10d · ReG(1)(rA, rA, ω̃10) · d

= −μ0ω̃
3
10d

2

96πc

{(
c
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)3
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(
2ω̃10z

c

)

+ 2

(
c

ω̃10z

)2

sin

(
2ω̃10z

c

)

− 4

(
c

ω̃10z

)
cos

(
2ω̃10z

c

)}
. (68)

The dipole moment is chosen to be aligned along the x axis
with d2

x = 1
3d2 to establish the same conditions as for the laser-

driven potential. The Casimir-Polder potential for the undriven

FIG. 5. Total Casimir-Polder potential from the perturbative ap-
proach for a Na atom close to a surface driven by a laser with
an intensity of I = 5 W/cm2 (64) with the detunings 5(ωL − ω̃10)
( ), 2(ωL − ω̃10) ( ), and ωL − ω̃10 ( ) and the undriven
Casimir-Polder (68) (——).

atom in its excited state can also be approximated in its retarded
(ω̃10z/c � 1) and nonretarded (ω̃10z/c � 1) limits

UCP(rA) =

⎧⎪⎪⎨
⎪⎪⎩

μ0ω̃
2
10d

2

24πz
cos
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c

)
,
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c
� 1,

−μ0d
2c2

96πz3
,

ω̃10z

c
� 1.

(69)

Since, according to the perturbative approach, the perturbative
approach assumes the atom stays in its initial state during
the atomic dynamics, the detuning must not be too small.
Figure 5 compares the driven Casimir-Polder potential from the
perturbative approach, Eq. (64), with three different detuning
values with the standard Casimir-Polder potential. There is
good agreement between the driven potential with a detuning
of ωL − ω̃10 and the standard Casimir-Polder potential. Since
the detuning between the laser frequency ωL and the atomic
transition frequency ω̃10 is very small, all of the potentials are
in phase.

The result for the driven Casimir-Polder potential following
the approach using Bloch equations based on Eq. (60) from
Sec. VI is evaluated using a dipole moment aligned with the
electric field in Eq. (62) and the scattering part of the Green’s
tensor (63). We obtain for the resonant contribution

UBE
LCP(rA, t ) = −μ0ω

3
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96πc
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− 4
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cos

(
2ωLz

c

)}
. (70)

Since the laser-field strength is included in the Rabi frequency
�, the laser-driven Casimir-Polder potential (70) reaches a
value of saturation for � � �, which is 1

2 of the value of
the standard undriven Casimir-Polder potential. This value
represents an upper bound for the increase of the potential
due to an applied field.
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FIG. 6. Total Casimir-Polder potential from the Bloch equation
approach for a Na atom close to a surface driven by a laser with
an intensity of I = 5 W/cm2 (70) with the detunings 0.1(ωL − ω̃10)
( ), 10(ωL − ω̃10) ( ), and ωL − ω̃10 ( ) and the undriven
Casimir-Polder (68) (——).

In the retarded and nonretarded limit and after the averaging
over time UBE

LCP approximates to

UBE
LCP(rA) =

⎧⎪⎪⎨
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2
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(71)

The result (70) contains an additional time dependency in
contrast to Eq. (64). By averaging over time, the distance
dependence of the potential can be investigated and compared
to the off-resonant case. Figure 6 compares the Casimir-
Polder potential from the Bloch equation approach for several
detunings (70) with the original Casimir-Polder potential (68).

The time dependence of UBE
LCP can be studied by looking at

different distances. In Fig. 7 we observe structures similar to
Rabi oscillations. The oscillations for two different distances
of the atom from the surface have different amplitudes and
different phases depending on the sign and value of the
potential at these distance values.

Figure 8 compares the results for the driven Casimir-Polder
potential from the perturbative approach, the Bloch equation
approach, and the undriven Casimir-Polder potential. For the

FIG. 7. Time-dependent Casimir-Polder potential from the Bloch
equation approach for a Na atom close to a surface driven by
a laser with an intensity of I = 5 W/cm2 (70) for a distance of
z = 2×10−7 m (——) and a distance of z = 10−7 m ( ).

FIG. 8. Total Casimir-Polder potential for a Na atom close to a
surface driven by a laser with an intensity of I = 5 W/cm2 for the
perturbative approach (64) ( ) and the Bloch equation approach
(70) ( ). This is compared to the Casimir-Polder potential for an
undriven atom (68) (——).

chosen detuning ωL − ω̃10, all curves are in phase and the
result from the perturbative approach and the standard Casimir-
Polder potential agree very well. The respective result from the
Bloch equation approach is also in phase, but reaches not more
than 1/2 of the value of the undriven Casimir-Polder potential.
For small distances all of the potentials are negative and will
lead to an attractive force between the atoms and the surface.
Whereas the perturbative approach is limited by the value of the
detuning and would produce unphysical values in the opposite
case, the Bloch equation method is valid for all detunings.

VIII. SUMMARY

We have computed the Casimir-Polder potential of an atom
in proximity of a surface that is driven by a monochromatic
laser field. Applying a perturbative approach and using Bloch
equations, we have compared the results with the standard
Casimir-Polder potential caused by spontaneously arising
polarizations and magnetizations.

Our calculations are formulated in the theory of macro-
scopic quantum electrodynamics (QED), which describes mat-
ter macroscopically by permittivity and permeability tensors.
In Sec. II we first established an expression for the electric
field consisting of a free laser field and the field emitted by
the atom close to the surface. The internal atomic dynamics is
studied in the form of equations of motion for the atomic flip
operator (Sec. III). From this point on, we have distinguished
between a perturbative treatment, where the atom stays in
its initial state during the dynamics (Secs. IV and V), and a
different way using Bloch equations (Sec. VI). In the former
case we computed the dipole moment of the laser-driven
atom, found an expression for the electric field, and used both
expressions to obtain the respective potential. Since both the
electric field and the dipole moment can be split into a free
part connected to the field fluctuations and a laser-induced
part, one can obtain the laser-driven and standard expression
for the Casimir-Polder potentials. In the second approach
we solved the Maxwell-Bloch equations and represented the
laser-driven Casimir-Polder potential in terms of correlation
functions. The final result agrees with the perturbative result
in the large-detuning limit.
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In Sec. VII the results are applied to a dipole moment
parallel to the surface induced by an electric laser field pointing
in the same direction. The results are compared to the standard
Casimir-Polder potential and agree very well with each other.
The driven Casimir-Polder potential from the Bloch equation
approach also agrees with the standard undriven potential, but
can only reach a maximum of 1/2 of its respective value in the
case of a small detuning. The perturbative approach is based
on the assumption that the atom stays in its initial state during
the atomic dynamics. Therefore, this approach is restricted to
large detunings, whereas the Bloch equation approach does not
show such a restriction.

This derivation makes the artificial creation of the Casimir-
Polder potential by using a driving laser field possible. Nev-
ertheless, it was shown that the laser-driven potential has an
upper boundary which cannot be overcome. It is also to be
expected that this effect will be increased by coupling several
atoms in proximity of a surface to a laser field. This possible
enhancement of Casimir-Polder potentials due to an applied
electric field makes it seem possible to visualize particularly

small effects being connected to Casimir-Polder potentials
between a chiral object and a surface [46] or an atom and
nonreciprocal material, such as a topological insulator [13].
Both of these materials have electromagnetic properties that
are based on the coupling between electric and magnetic fields
which are usually very small.

Reference [44] compares the laser-driven Casimir-Polder
potential driven by an evanescent wave under experimentally
realizable conditions with the usually assumed sum of the light
potential and the standard Casimir-Polder potential and shows
its significance, thus proving the nonadditivity of these two
potentials.
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