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Charge-parity-violating effects in Casimir-Polder potentials
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We demonstrate under which conditions a violation of the charge-parity (CP) symmetry in molecules will
manifest itself in the Casimir-Polder interaction of these with a magnetodielectric surface. Charge-parity violation
induces a specific electric-magnetic cross polarizability in a molecule that is not chiral, but time-reversal (T)
symmetry violating. As we show, a detection of such an effect via the Casimir-Polder potential requires a material
medium that is also sensitive to time reversal, i.e., it must exhibit a nonreciprocal electromagnetic response. As
simple examples of such media, we consider a perfectly reflecting nonreciprocal mirror that is a special case of a
perfect electromagnetic conductor, as well as a Chern-Simons medium. In addition, we show that Chern-Simons
and related media can induce unusual atom-surface interactions for anisotropic molecules with and without a
chiral response.
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I. INTRODUCTION

The Casimir effect is an effective electromagnetic force
between polarizable objects that is induced by the recently
directly observed vacuum fluctuations of the quantum elec-
tromagnetic field [1]. Originally conceived by Casimir as an
attractive force between two perfectly conducting mirrors [2],
recent progress in material design and control has placed
Casimir forces between materials exhibiting both more real-
istic and more complex electromagnetic responses in a focus
of interest [3]. Inter alia, (para)magnetic media [4,5], chiral
materials [6], topological insulators [7,8] and graphene [9,10]
have been studied.

A major driving force behind such investigations continues
to be the search for repulsive Casimir forces to overcome stic-
tion in nanotechnology [11]. Inspired by Boyer’s observation
that the force between a perfectly conducting plate and an
infinitely permeable one is repulsive [12], it was theoretically
predicted that repulsion persists for combinations of purely
electric and magnetic media with a more realistic response.
Quite generally, repulsive Casimir forces arise whenever the
nature of the electromagnetic response of the two interacting
objects is diametrically opposite in a certain sense, for example,
if the objects show electric versus magnetic responses, have
opposite chirality, or represent topological insulators with
different internal arrows of time.
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Casimir-Polder forces between an atom or a molecule and
a macroscopic body are a closely related type of dispersion
force [13] and hence subject to the same phenomenology
regarding their dependence on the electromagnetic nature of
the interacting objects. However, they are (i) a local effect
due to the small size of one of the two interacting objects,
and (ii) they can be measured with far higher accuracy due to
the superior techniques in manipulating and controlling single
atoms or molecules [14]. This suggests that Casimir-Polder
forces might (i) serve as a probe of the molecule’s or the body’s
properties rather than a force that is to be manipulated and
overcome, and that (ii) this probe could be applied to access
very exotic properties of matter. In particular, we intend to
apply this idea to the phenomenon of charge-parity violation in
molecules, asking the hypothetical question: Would a potential
charge-parity violation in a molecule become manifest in its
Casimir-Polder interaction with a macroscopic body and, if so,
under what conditions?

One of the fundamental symmetries of the standard model
of particle physics is the invariance under combined charge (C),
parity (P), and time (T) reversal. However, a physical system
need not be invariant under each of these three symmetries
individually. Examples of parity nonconservation include pro-
cesses involving the weak force such as the β decay [15,16].
The weak interaction is also responsible for the broken parity
invariance in rovibrational spectra of chiral molecules [17,18].
The antiferromagnet Cr2O3, on the other hand, is an example
of a P-odd and T-odd system that exhibits a pseudoscalar
response (see Ref. [19] and references therein) which provides
a template for perfect electromagnetic conductors [20]. In the
search for physics beyond the standard model, weak-scale
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supersymmetry would induce a CP violation that is reflected
in an intrinsic electron dipole moment (EDM) of neutrons or
electrons (see Ref. [21] for a review). Recent experiments place
an upper limit of |de| < 8.7 × 10−29e cm on the electron EDM
[22].

Within a field-theoretic setting, it is known that a Chern-
Simons interaction violates both P and T symmetries [23,24].
The Casimir interaction between two flat Chern-Simons layers
was studied in Refs. [25–28], with its main feature being
the prediction of both attractive and repulsive regimes of
the Casimir force between Chern-Simons layers separated
by a vacuum slit. A physical example showing an effective
Chern-Simons interaction is a quantum Hall system consisting
of a two-dimensional (2D) electron gas [29]. The coupling
constant of the Chern-Simons action is different for each
quantum Hall plateau, with its value being determined by
the external magnetic field perpendicular to the quantum Hall
layer. The implication is that the Casimir-Polder potential will
be quantized at the quantum Hall plateaus [30].

In this article, we investigate the Casimir-Polder potential
for an anisotropic molecule in the presence of a flat Chern-
Simons layer. It is known that the CP-even part of the Casimir-
Polder potential is quadratic in the coupling constant of the
Chern-Simons layer [31]. On the other hand, the CP-odd part of
the Casimir-Polder potential, which we derive here, is linear in
the coupling constant. The sign of the Chern-Simons coupling
can be altered by reversing the direction of an external magnetic
field. As a result, the CP-odd part of the Casimir-Polder
potential can be extracted from measurements at any plateau of
a quantum Hall system performed at external magnetic fields
with alternating spatial directions.

The article is organized as follows. We begin with a discus-
sion of atom-field coupling and the resulting Casimir-Polder
interaction potentials in the presence of nonreciprocal media.
As a particular example, we consider a planar Chern-Simons
layer that gives rise to nonreciprocal effects. In the following,
we then construct the Casimir-Polder potentials for molecules
with various anisotropic, asymmetric polarizabilities, includ-
ing the particular case of CP-odd molecules. We close the
article with some concluding remarks. Details regarding the
Chern-Simons action and its influence on Maxwell’s equations
have been delegated to the Appendix.

II. ATOM-FIELD COUPLING

The Curie dissymmetry principle [32] suggests that CP-
odd atomic properties can only couple to environments which
are also T odd, i.e., nonreciprocal, so that the Green’s tensor
does not necessarily fulfill the Onsager relation GT(r ′,r,ω)=
G(r,r ′,ω) regarding the reversibility of optical paths [33].

This suggests a novel possibility for the detection of CP-odd
atomic properties by studying the electromagnetic interaction
of a CP-odd molecule with a macroscopic Chern-Simons layer
by means of the Casimir-Polder potential.

The interaction of a molecule A with the electromagnetic
field can be described by the multipolar Hamiltonian in long-
wavelength approximation as [34]

ĤAF = −d̂ · Ê(rA) − m̂· B̂(rA) (1)

(d̂, m̂: molecular electric and magnetic dipole moments; rA:
position) when neglecting the diamagnetic interaction. The
position-dependent Casimir-Polder potential can be derived
within second-order perturbation theory by replacing the full
propagator of the electromagnetic field G with its scattering
part G(1) [34,35]. A general technique for calculating the
Casimir-Polder potential in an arbitrary gauge of the vector
potential was developed in Ref. [31], with example calcula-
tions in different gauges being provided in Ref. [35]. In the
following, we will derive contributions to the Casimir-Polder
potential from electric-electric and electric-magnetic terms in
the presence of a planar Chern-Simons layer.

A. Casimir-Polder potential for a nonmagnetic molecule

The Casimir-Polder potential [13] for a nonmagnetic
ground-state molecule arises from the second-order energy
shift

Uee(rA) = h̄μ0

2π

∫ ∞

0
dξ ξ 2 tr[α(iξ ) · G(1)(rA,rA,iξ )], (2)

where

α(ω) = lim
ε→0+

1

h̄

∑
k

[
dk0d0k

ω + ωk + iε
− d0kdk0

ω − ωk + iε

]
(3)

is the molecular polarizability, and G(1) is the scattering part
of the electromagnetic Green’s tensor. In order to make the
influence of nonreciprocal media more explicit, we decompose
the polarizability and Green’s tensors into their respective
symmetric and antisymmetric parts,

Uee(rA) = h̄μ0

2π

∫ ∞

0
dξ ξ 2 tr

[
αS(iξ ) · G(1)

S (rA,rA,iξ )

+αA(iξ ) · G(1)
A (rA,rA,iξ )

]
. (4)

The first term is the ordinary Casimir-Polder potential in
environments respecting the Onsager theorem [36,37]. The
second term is due to the presence of nonreciprocal media;
it only arises for molecules with an anisotropic, asymmetric
polarizability. Examples for its relevance are the recently
considered interaction of an atom with a plate exhibiting a
Chern-Simons interaction [31] or with a topological-insulator
plate [38].

It is instructive to study the effects of P and CP violation due
to the presence of a flat Chern-Simons layer at z = 0 described
by the action

S = a

2

∫
dt dx dy εzνρσ AνFρσ , (5)

with a dimensionless parameter a. The scattering part of a
Green’s function G(1) above (zA > 0) a Chern-Simons plate
in the gauge A0 = 0 mixes s- and p-polarized waves,

G(1)(r,r ′,iξ ) = 1

8π2

∫
d2q

β
eiq·(r−r ′)−β(z+z′)(e+

s e−
s rs

+ e+
p e−

p rp + e+
p e−

s rs→p + e+
s e−

p rp→s) (6)

(q ⊥ ez, β =
√

ξ 2/c2 + q2), where the polarization unit vec-
tors for the s- and p-polarized waves read e±

s = eq × ez,
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e±
p = −(c/ξ )(iqez ± βeq)] and the respective reflection co-

efficients of the half space are given in the Appendix.
The symmetric part of the polarizability leads in this case

to a potential equal to the Casimir-Polder potential in front of a
perfectly conducting plate multiplied by a factor a2/(1 + a2).
The asymmetric part of the polarizability yields an additional
interaction with the Chern-Simons plate [31], viz.,

Uas(zA) = h̄

32π2ε0c

a

1 + a2

∫ +∞

0
dξεjlzαjl(iξ )ξ

×
(

1 + 2
ξzA

c

)
e−2ξzA/c. (7)

In the retarded limit, ωkzA/c � 1, the potential (7) leads to an
1/z5

A asymptote,

Uas(zA) = − c2

8π2ε0z
5
A

a

1 + a2

∑
k

Im(d0k,xdk0,y)

ω2
k

, (8)

whereas at short separations, ωkzA/c � 1, it is well approxi-
mated by a 1/z3

A potential,

Uas(zA) = − 1

16π2ε0z
3
A

a

1 + a2

∑
k

Im(d0k,xdk0,y). (9)

The limiting cases of a perfectly reflecting, nonreciprocal mir-
ror (rs→p = ±1,rp→s = ±1,rs = 0,rp = 0) can be immedi-
ately obtained from Eqs. (7)–(9) by substituting a/(1 + a2) →
±1. The latter is a specific example of a perfect electromagnetic
conductor and emerges from a perfect electric conductor by
means of a duality transformation [20].

B. Casimir-Polder potential for a molecule with C P-odd
cross polarizabilities

For an electromagnetic molecule, both electric and mag-
netic dipole couplings contribute to the atom-field interac-
tion (1). Beyond the purely electric interaction, we are now
interested in the part of the Casimir-Polder potential due to
the second-order energy shift arising from mixed electric-
magnetic transitions,

UCP (rA) = Uem(rA) + Ume(rA)

= − h̄μ0

2π

∫ ∞

0
dξ ξ

{
tr
[
χme(iξ ) · G(1)(rA,rA,iξ )

←−∇ ′]

+ tr[χ em(iξ ) · ∇ × G(1)(rA,rA,iξ )]
}
,

(10)

where we have introduced the cross polarizabilities

χ em(ω) = lim
ε→0

1

h̄

∑
k

[
dk0m0k

ω + ωk + iε
− d0kmk0

ω − ωk + iε

]
, (11)

χme(ω) = lim
ε→0

1

h̄

∑
k

[
mk0d0k

ω + ωk + iε
− m0kdk0

ω − ωk + iε

]
. (12)

It is customary to decompose the Hamiltonian ĤA = Ĥ0 +
V̂ CP of the atomic subsystem into CP-even and -odd parts
[39]. We can use perturbation theory to express the eigenstates
|n〉 and energies En of ĤA in terms of the eigenstates |n0〉
and energies E0

n of Ĥ0. Assuming that 〈n|V̂ CP |n〉 ≡ V CP
nn =

0 [39], we have En = E0
n in linear order in V̂ CP , while the

eigenstates acquire linear shifts due to the CP-odd interaction,

|n〉 = |n0〉 +
∑

l

|l0〉 〈l
0|V̂ CP |n0〉
E0

n − E0
l

. (13)

To linear order in V̂ CP , we can hence expand

d0kmk0 = −
∑

l

V CP
0l d0

klm
0
0k

h̄ω0
l

−
∑

l

d0
0lV

CP
lk m0

k0

h̄
(
ω0

l − ω0
k

)

−
∑

l

d0
0kV

CP
kl m0

l0

h̄
(
ω0

l − ω0
k

) −
∑

l

d0
0km0

klV
CP
l0

h̄ω0
l

, (14)

with the definitions ω0
k = (E0

k − E0
0 )/h̄, d0

nm = 〈n0|d̂|m0〉,
m0

nm = 〈n0|m̂|m0〉, and V CP
nm = 〈n0|V̂ CP |m0〉.

Substituting this result into Eq. (11), relabeling l ↔ k in the
third term, and using the identity

1(
ω0

l − ω0
k

)(
ω0

k ± ω + iε
) + 1(

ω0
l − ω0

k

)(
ω0

l ± ω + iε
)

= 1(
ω0

k ± ω + iε
)(

ω0
l ± ω + iε

) (15)

results in the expression

χ em(ω)= lim
ε→0

1

h̄

∑
k,l

[
V CP

0l d0
klm

0
0k

ω0
l

(
ω+ω0

k+iε
)− V CP

0l d0
lkm0

k0

ω0
l

(
ω−ω0

k+iε
)
]

+ lim
ε→0

1

h̄

∑
k,l

[
d0

l0V
CP
lk m0

0k(
ω + ω0

l + iε
)(

ω + ω0
k + iε

)

− d0
0lV

CP
lk m0

k0(
ω − ω0

l + iε
)(

ω − ω0
k + iε

)
]

+ lim
ε→0

1

h̄

∑
k,l

[
d0

k0m0
lkV

CP
l0

ω0
l

(
ω+ω0

k +iε
) − d0

0km0
klV

CP
l0

ω0
l

(
ω−ω0

k +iε
)
]
.

(16)

For a CP-odd system, the electric and magnetic transition
dipole matrix elements have a vanishing relative phase, so that
χme = χT

em. Due to this symmetry, it is clear that the cross
polarizabilities of a CP-odd system do not lead to an interaction
with a perfectly conducting plate. However, they do provide
an interaction with a Chern-Simons layer as well as with
a perfectly reflecting nonreciprocal mirror. To evaluate this
contribution of the cross polarizabilities of a CP-odd molecule
to the Casimir-Polder interaction with a nonreciprocal medium,
we use Eq. (10) with χjl ≡ χem,jl = χme,lj to find

UCP (zA) = h̄

32π2ε0cz
3
A

a

1 + a2

∫ ∞

0
dξe−2ξzA/c

×
{

[χxx(iξ ) + χyy(iξ )]

(
1 + 2

ξzA

c
+ 4

ξ 2z2
A

c2

)

+ 2χzz(iξ )

(
1 + 2

ξzA

c

)}
. (17)

Note that the symmetry of the cross polarizabilities implies
that χjl(iξ ) = 1

h̄

∑
k

2ωk

ω2
k+ξ 2 dk0,jm0k,l , where dk0,jm0k,l is a real
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number. In the retarded limit, ωkzA/c � 1, the approximation
χjl(iξ ) 
 χjl(0) leads to the asymptote

UCP (zA) = h̄

16π2ε0z
4
A

a

1 + a2

× [
χxx(0) + χyy(0) + χzz(0)

]
. (18)

In the opposite nonretarded limit, we may approximate

UCP (zA) = h̄

32π2ε0cz
3
A

a

1 + a2

∫ ∞

0
dξ

× [
χxx(iξ ) + χyy(iξ ) + 2χzz(iξ )

]
. (19)

The limiting case of a perfectly reflecting, nonreciprocal mirror
(rs→p = ±1,rp→s = ±1,rs = 0,rp = 0) can be immediately
obtained from Eqs. (17)–(19) by replacing a/(1 + a2) → ±1.

Upon substitution, χ → α, the potential (17) coincides
with the well-known Casimir-Polder potential [13] of a purely
electric atom in front of a perfectly conducting plate, apart from
a factor of two. This correspondence can be easily understood
from the duality of electric and magnetic fields [33]. Under a
duality transformation by an angle θ/4, a perfectly conducting
plate transforms into a perfect nonreciprocal reflector [20],
while a purely dielectric atom transforms into one with cross
polarizabilities. The factor of two stems from the fact that
two cross polarizabilities contribute to UCP as opposed to
the single electric polarizability contributing to the ordinary
Casimir-Polder potential.

Let us compare the magnitude of the CP-odd ground-
state potential with that of the Casimir-Polder potential of
an ordinary, purely electric atom. We note that when going
from the ordinary to the CP-odd case, one electric dipole
moment d is replaced by m/c, while the other electric dipole
moment of the order of d ∼ ea0 (e: electron charge; a0: Bohr
radius) is replaced by the CP-odd electron EDM dCP . The first
replacement leads to a reduction by a factor of roughly the
fine-structure constant m/(cd) ∼ α, while the second yields a
factor dCP /(ea0) ≈ 1.6 × 10−20 according to the most recent
upper limit [22]. The CP-odd ground-state potential is thus
smaller than the ordinary Casimir-Polder potential by a factor
of roughly 10−22.

In order to potentially use the Casimir-Polder potential as a
probe for CP-odd effects, one needs to enhance the effect by
means of cavity QED. To this end, consider an excited atom
in resonance with a cavity. Starting from the known resonant
Casimir-Polder frequency shift of an excited atom in state
n [40],

�f = −μ0

h

∑
k<n

ω2
nkdnk Re G(1)(rA,rA,ωnk) · dkn, (20)

and applying the above replacements d �→ m/c, d �→ dCP ,
we estimate the CP-odd resonant frequency shift to be of the
order of

�fCP ∼ μ0

h
ω2 m

c
Re GdCP . (21)

The Green’s tensor scales as Re G ∼ Qω/c, where Q is
the quality factor of the cavity [41]. In addition, we take
into account the EDM enhancement which arises in heavy
paramagnetic atoms so that dCP ∼ Kde, where K is the atomic
enhancement factor and de ≈ 1.6 × 10−20ea0 is the electron

EDM, as above. In addition, we estimate ω ∼ ER/h̄, where
ER is the Rydberg energy and, once more, m/c ∼ ea0α. Com-
bining these estimates and noting that the EDM enhancement
factor can reach values of up to 103 [24] and that Q factors of
up to 1011 have been reported, a frequency shift of the order of
50 Hz becomes conceivable, which is within reach of current
experimental resolution [18]. Note that such a cavity-QED
setup based on CP-odd Casimir-Polder shifts would easily
outperform a number of early experiments that have placed
upper limits on the electron EDM using paramagnetic atoms in
a conventional setup. Here, the reported constraints range from
de ≈ 4 × 10−5ea0 in the 1950s [42] to de ≈ 8 × 10−19ea0 in
the early 1990s [43] (see Ref. [24] for an overview).

C. Chern-Simons interaction with chiral molecules

For chiral, time-reversal invariant molecules, Lloyd’s the-
orem states that electric and magnetic transitions carry a
relative phase factor, i = eiπ/2 [44], so that the relation
χme = −χT

em holds between the cross polarizabilities. The
case of an isotropic chiral polarizability and the respective
chiral Casimir-Polder potential was studied in Ref. [45]. Here
we demonstrate that the interaction of a molecule with an
anisotropic, asymmetric chiral polarizability and nonchiral
media leads to an additional component of the Casimir-Polder
potential. As an example, we evaluate this component of
the Casimir-Polder potential for a molecule with anisotropic,
asymmetric chiral polarizability in front of a Chern-Simons
layer.

Using Eq. (10), one obtains the Chern-Simons interaction
with P-odd chiral molecules now satisfying χjl ≡ χem,jl =
−χme,lj ,

UP (zA) = − h̄

64π2ε0z
4
A

a2

1 + a2

∫ +∞

0
dξεjlzχjl(iξ )

× e−2ξzA/c

ξ

(
3 + 6

ξzA

c
+ 8

ξ 2z2
A

c
+ 8

ξ 3z3
A

c

)
,

(22)

where a summation over j,l is implied. Note that due to
the symmetry χem,jl = −χme,lj , one can write χjl(iξ ) =
1
h̄

∑
k

2ξ

ω2
k+ξ 2 Im(dk0,jm0k,l), where dk0,jm0k,l is purely imagi-

nary. As a result, in the retarded limit, ωkzA/c � 1, we obtain

UP (zA) = − c

4π2ε0z
5
A

a2

1 + a2

∑
k

εjlzIm(dk0,jm0k,l)

ω2
k

. (23)

In the opposite nonretarded limit, we may approximate

UP (zA) = − 3h̄

64π2ε0z
4
A

a2

1 + a2

∫ +∞

0
dξ

εjlzχjl(iξ )

ξ

= − 3

64πε0z
4
A

a2

1 + a2

∑
k

εjlzIm(dk0,jm0k,l)

ωk

. (24)

In the limit a → ±∞, we obtain the potential of a chiral
molecule in front of a perfectly conducting plate. Note, how-
ever, that the quantity χxy(iξ ) − χyx(iξ ) should be different
from zero to obtain a nonvanishing potential.
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III. CONCLUSIONS

With regard to answering our central question, we have
shown that charge-parity-violating effects in molecules can
indeed be manifest in their Casimir-Polder interaction with a
surface. As anticipated from the Curie dissymmetry principle,
this requires the surface to also possess CP-odd or T-odd
properties. We have shown this explicitly for a nonreciprocal
perfect reflector as an example of a perfect electromagnetic
conductor medium, as well as for a Chern-Simons medium.
The result in the former case is strikingly similar in form to
the well-known formula by Casimir and Polder, which can
readily be understood from the duality invariance of QED in
the absence of free charges or currents.

In addition, we have shown that Chern-Simons media lead
to a different Casimir-Polder potential for anisotropic chiral
molecules. In this case, the respective power laws of the
potential in the short- and long-distance limits differ from those
previously predicted for isotropic molecules. Our findings can
be generalized to topological insulator media, where we expect
similar new potential components for CP-odd or anisotropic
molecules.

Although the CP-odd polarizability that induces the re-
spective ground-state potential is very small [46], the resonant
Casimir-Polder potential for an excited atom may be consid-
erably larger. We have estimated that using an optimal combi-
nation of a high-Q cavity and a strong EDM enhancement
factor as found in heavy paramagnetic atoms, the CP-odd
resonant Casimir-Polder frequency shift is within reach of
current experimental resolution, even when taking into account
the most recent upper limits on the electron EDM.
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APPENDIX: DIFFRACTION FROM A PLANAR
CHERN-SIMONS LAYER

The action for a planar Chern-Simons layer at z = 0 has the
form [see Eq. (5)]

S = a

2

∫
dt dx dy εzνρσ AνFρσ , (A1)

where the current due to the Chern-Simons interaction is
J ν = aεzνρσ Fρσ . Maxwell’s equations for the electromagnetic
field in the presence of the action (A1) are subsequently

modified to

∂μFμν + a εzνρσ Fρσ δ(z) = 0. (A2)

From Eq. (A2), the continuity conditions follow as (see, e.g.,
Ref. [47])

Ez|z=0+ − Ez|z=0− = −2aHz|z=0, (A3)

Hx |z=0+ − Hx |z=0− = 2aEx |z=0, (A4)

Hy |z=0+ − Hy |z=0− = 2aEy |z=0. (A5)

Consider an s-polarized plane electromagnetic wave im-
pinging onto a planar Chern-Simons layer at z = 0,

Ex = exp(−ikzz) + rs exp(ikzz), z > 0, (A6)

Ex = ts exp(−ikzz), z < 0, (A7)

Hx = rs→p exp(ikzz), z > 0, (A8)

Hx = ts→p exp(−ikzz), z < 0, (A9)

where the factor exp[i(ω/c)t + ikyy] is omitted for simplicity.
From the continuity condition (A4), it follows that

rs→p − ts→p = 2a ts . (A10)

From the continuity condition Ex |z=0+ = Ex |z=0− , one obtains

1 + rs = ts . (A11)

The continuity condition Ey |z=0+ = Ey |z=0− and the Maxwell
equation Ey = − 1

iω
∂zHx yield

rs→p = −ts→p. (A12)

From the continuity condition (A5) and the Maxwell equation
Hy = 1

iω
∂zEx , one gets

1 − rs − ts = −2a ts→p. (A13)

By solving (A10)–(A13), one obtains the reflection and trans-
mission coefficients of an s-polarized wave as

rs = − a2

1 + a2
, ts = 1

1 + a2
,

(A14)

rs→p = a

1 + a2
, ts→p = − a

1 + a2
.

By a duality transformation, i.e., by exchanging the fields E,H

as well as the indices s, p in Eqs. (A6)–(A9), we obtain the
reflection and transmission coefficients for the diffraction of a
p-polarized wave as

rp = a2

1 + a2
, tp = 1

1 + a2
,

(A15)

rp→s = a

1 + a2
, tp→s = a

1 + a2
.
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