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Singly ionized lutetium has a number of fortuitous properties well suited for a design of an optical clock and
corresponding applications. In this work, we study Lu+ properties relevant to a development of the clock using
the relativistic high-precision method combining configuration interaction and the linearized coupled-cluster
approaches. The systematic effects due to interaction of an external electric-field gradient with the quadrupole
moment and the dynamic correction to the blackbody radiation shift are studied and uncertainties are estimated.
The value of the 5d6s 1D2 polarizability is predicted. We also demonstrate that Lu+ is a good candidate to search
for variation of the fine-structure constant.
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I. INTRODUCTION

Further development of frequency standards is important for
many applications requiring an improved precision and high
stability, such as searches for the variation of the fundamental
constants [1], tests of the Lorentz invariance [2,3], dark matter
searches [4–6], study of many-body physics and quantum
simulations [7,8], relativistic geodesy [9], very long baseline
interferometry [10], gravitational wave detection [11], and oth-
ers. The systematic uncertainties at the 10−18 level, two orders
of magnitude better than for the Cs clock currently defining the
SI second [12], were recently demonstrated with both neutral
atom lattice clock based on the 1S0 − 3P o

0 transition in Sr [13]
and a single trapped ion clock based on the electric octupole
2S1/2 − 2Fo

7/2 transition in 171Yb+ [14].
A bottleneck to an improvement of the trapped ion clocks is

the relatively low stability achieved with a single ion. Proposed
solutions of this problem include a development of clocks
with ion chains [15] and large ion crystals [16,17]. In the
recent paper [15] the authors have demonstrated a possibility to
control systematic frequency uncertainties at the 10−19 level in
linear Coulomb crystals for In+ clock sympathetically cooled
with Yb+ ions.

An important problem affecting both the neutral atom
and trapped ion clocks is the blackbody radiation (BBR)
shift [18]. Small BBR shift at room temperature is a highly
desirable feature that simplifies the clock design removing the
requirement to maintain either precise temperature control [13]
or cryogenic cooling [19].

A singly ionized lutetium was suggested as a promising
novel clock candidate, having a number of favorable properties
leading to low systematic shifts [16,17,20]. There are two clock
transitions with favorable systematics: the highly forbidden
6s2 1S0 − 5d6s 3D1 M1 transition at 848 nm and the 6s2 1S0 −
5d6s 3D2 E2 transition at 804 nm. A joint experimental and
theoretical investigation of the 6s2 1S0 − 5d6s 3D1,2 clock

transitions in the Lu+ was carried out in Ref. [21]. The dc and
ac polarizabilities of the clock states, lifetimes of the low-lying
states, hyperfine quenching rate of the 6s6p 3P o

0 state, and
other properties were reported. The BBR frequency shift of
the 1S0 − 3D1 clock transition was also calculated in Ref. [22].

In 2018 the differential scalar polarizabilities of these clock
transitions were measured at the wavelength λ = 10.6 μm
in Ref. [23] to be �α0(3D1 − 1S0) = 0.059(4) a.u. and
�α0(3D2 − 1S0) = −1.17(9) a.u.. From this, Arnold et al. [23]
extracted the fractional BBR frequency shift for the 1S0 − 3D1

transition to be −1.36(9) × 10−18 at 300 K. This shift is the
lowest of any established atomic optical clocks. In particular,
it is a factor of six smaller than the fractional BBR shift for the
1S0 − 3P o

0 transition in Al+ [24].
Another important systematic issue, crucial to an operation

of ion clocks, is the micromotion-induced shift. It is driven by
the rf-trapping field and leads to an ac Stark shift and a second-
order Doppler shift. If the differential scalar polarizability of
the clock transition is negative, there is a trap drive frequency
at which the ac Stark and second-order Doppler shifts cancel
each other and the micromotion shift vanishes [25,26]. A
suppression of this effect in a case of ion clock operating
with large ion crystals was discussed in Ref. [16]. Thus, the
negative sign of the 1S0 − 3D2 differential polarizability makes
this transition a good candidate for an implementation of the
micromotion cancellation scheme.

In a discussion of the experimental scheme in Ref. [21]
it was noted that an optical pumping via the 3P o

1 level leads
to an undesired population of the 1D2 state. A decay of this
state during optical pumping may be significant systematic
effect. The 1S0 − 1D2 transition can be used for diagnostic
measurements and potentially a clock transition [27]. As a
result, it is important to calculate its properties, in particulary
the polarizability and the quadrupole shift.

Thus, further investigations of the clock-related properties
of Lu+ and corresponding systematic shifts are urgently
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needed, which is the subject of this work. In Sec. II we
study relevant properties of the 5d6s 1D2 state, including E1
transition amplitudes and the static polarizability. In Sec. III
we discuss the systematic effect caused by the interaction of
external electric-field gradient with the quadrupole moment of
an atomic state. In Sec. IV we calculate dynamic corrections to
the BBR shifts of the 6s2 1S0, 5d6s 3D1,2, and 5d6s 1D2 energy
levels. Section V is devoted to study of sensitivity of Lu+ to
variation of the fine-structure constant, and Sec. VI contains
concluding remarks. If not specified otherwise, we use atomic
units.

II. METHOD OF CALCULATION
AND THE 5d6s 1D2 POLARIZABILITY

A detailed description of the 1S0 and 3D1,2 polarizability
calculations is given in Ref. [21]. Here we use the same
approach to calculate the static polarizability of the 5d6s 1D2

state of Lu+. We use the high-precision relativistic methods,
combining configuration interaction (CI) with the many-body
perturbation theory (MBPT) or with the linearized coupled-
cluster (all-order) method [28,29]. The energies and wave func-
tions are determined from the time-independent multiparticle
Schrödinger equation

Heff (En)|n〉 = En|n〉, (1)

with the effective Hamiltonian defined as

Heff (E) = HFC + �(E). (2)

HereHFC and � are the Hamiltonian in the frozen core approxi-
mation and the energy-dependent correction, respectively. The
latter takes into account virtual core excitations in the second
order of the perturbation theory (the CI+MBPT method) or in
all orders (the CI+all-order method).

The static electric dipole polarizability of the |0〉 state is
given by

α(0) = 2
∑

k

|〈k|D0|0〉|2
Ek − E0

, (3)

where D0 is the z-component of the effective electric dipole
operator, including the random-phase approximation (RPA),
core-Brueckner (σ ), two-particle (2P), structural radiation
(SR), and normalization corrections described in Ref. [30].

The scalar static polarizability α0 can be conventionally
separated into three parts:

α0 = αv
0 + αc + αvc. (4)

Here αv
0 is the valence polarizability, αc is the ionic core polar-

izability, and a small term αvc accounts for possible excitations
to the occupied valence shells. The valence part of the scalar
polarizability, αv

0 , as well as the tensor polarizability, α2, are
calculated by solving inhomogeneous equation in the valence
space. We use the Sternheimer [31] or Dalgarno-Lewis [32]
method implemented in the CI+all-order approach [21,33].
The αc and αvc terms are evaluated using the RPA. The αvc

term is calculated as a sum of contributions from the individual
electrons, i.e., αvc(5d6s) = αvc(5d ) + αvc(6s).

To establish the dominant contributions of the intermediate
states to the scalar polarizability, we substitute the electric-
dipole matrix elements (MEs) and energies according to the

TABLE I. Contributions to α0(0) of the 5d6s 1D2 state (in a.u).
The contributions of several lowest-lying intermediate states are
listed separately with the corresponding absolute values of E1
reduced MEs given (in a.u.) in column labeled “D.” The the-
oretical and experimental [34] transition energies are given (in
cm−1) in columns �Eth and �Eexpt. We present the contribution
of other (not explicitly listed in the table) intermediate states with
fixed total angular momentum Jn in rows labeled “Other (Jn =
1, 2, 3).” In rows labeled “Total (Jn = 1, 2, 3)” we give the total
contribution of all intermediate states with fixed total angular momen-
tum Jn. In the row “Total val.” we present the total value of αv

0 . The
dominant contributions to the polarizabilities, listed in columns α[A]
and α[B], are calculated with the experimental [34] and theoretical
energies, respectively.

Contribution �Eth �Eexpt D α[A] α[B]

1D2 − 6s6p 3P o
1 10 826 11 171 0.326 0.28 0.29

1D2 − 6s6p 1P o
1 20 615 20 891 0.994 1.38 1.40

1D2 − 5d6p 3P o
1 33 038 32 717 0.144 0.02 0.02

1D2 − 5d6p 1P o
1 41 967 41 790 2.790 5.45 5.43

Other (Jn = 1) 0.64 0.64

Total (Jn = 1) 7.77 7.78
1D2 − 6s6p 3P o

2 14 815 15 121 0.445 0.38 0.39
1D2 − 5d6p 3F o

2 24 230 23 892 2.289 6.42 6.33
1D2 − 5d6p 1Do

2 28 399 28 126 4.017 16.79 16.63
1D2 − 5d6p 3Do

2 29 793 29 572 0.125 0.02 0.02
1D2 − 5d6p 3P o

2 34 204 33 869 1.980 3.39 3.35

Other (Jn = 2) 0.79 0.79

Total (Jn = 2) 27.78 27.50
1D2 − 5d6p 3F o

3 28 010 27 586 1.187 1.50 1.47
1D2 − 5d6p 3Do

3 31 678 31 401 0.352 0.12 0.11
1D2 − 5d6p 1F o

3 36 369 35 747 3.341 9.14 8.98

Other (Jn = 3) 5.75 5.75

Total (Jn = 3) 16.49 16.32

αv
0 52.05 51.59

αc + αvc 3.74 3.74

Total 55.79 55.33

Recommended 55.3

sum-over-states formula, Eq. (3). Replacing the theoretical en-
ergies in the denominator of Eq. (3) for dominant contributions
by the experimental ones changes the polarizability by less than
1%. The contributions of several lowest-lying intermediate
states to α0(0) of the 1D2 state, calculated with the experimental
and theoretical energies, are listed in columns α[A] and α[B]
in Table I. The theoretical and experimental [34] transition
frequencies are given in columns �Eth and �Eexpt in cm−1.
Final absolute values of the corresponding reduced electric-
dipole MEs, calculated using the CI + all-order method and
including RPA, σ , 2P, SR, and normalization corrections are
listed in the column labeled “D” in a.u.

We also present the contribution of the intermediate states,
not explicitly listed in the table, with fixed total angular
momentum Jn = 1 − 3 in rows labeled “Other (Jn = 1, 2, 3).”
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TABLE II. The static scalar (α0) and tensor (α2) polarizabilities,
obtained in the CI+MBPT+RPA, CI+all-order+RPA, and CI+all-
order+AC approximations, are presented (in a.u.) in columns (1), (2),
and (3), respectively. The recommended values are listed in the last
column. The uncertainties are given in parentheses.

Polarizability (1) (2) (3) Recommend.

α0(6s2 1S0 )a 62.5 63.3 63.0 63.0(0.8)

α0(5d6s 1D2) 54.3 56.0 55.3 55.3(1.7)

α2(5d6s 1D2) 14.5 15.2 15.7 15.7(1.2)

α0(1D2) − α0(1S0 ) −8.2 −7.3 −7.7 −7.7(0.9)

aThese results were obtained in Ref. [21].

In rows labeled “Total (Jn = 1, 2, 3)” we give the total con-
tribution of all intermediate states with the fixed total angular
momentum Jn. The final value of αv

0 is found as the sum of the
values given in these rows.

The contributions from αc and αvc terms are listed together
in the respective row. Taking into account that the main contri-
bution to the 1D2 level comes from the 5d5/26s configuration
(73%), we determined αvc terms for the 1D2 polarizability as
αvc(5d5/2) + αvc(6s). In the row labeled “Total” we present
the total value of the scalar static 1D2 polarizability. The
result obtained with use of theoretical energies, considered as
recommended, is given in the row labeled “Recommended.”

To determine uncertainty of the polarizability we have
also calculated its value using two other approximations:
the CI+MBPT+RPA and CI+all-order+RPA. In both cases
only RPA corrections were included. The results obtained
in the CI+MBPT+RPA, CI+all-order+RPA, and CI+all-
order+AC approximations (where abbreviation “AC” means
all corrections, including RPA, σ , 2P, SR, and normalization)
are presented in Table II in columns (1), (2), and (3), cor-
respondingly. All calculations are performed with theoretical
energies. The uncertainties were estimated as the spread of the
values in columns (1)–(3).

We consider the values obtained in the CI+all-order+AC
approximation as the final ones. A comparison of columns (2)
and (3) in Table II shows that the corrections beyond RPA only
slightly change the value of the 1D2 polarizability. Our final
result for the 1D2 scalar static polarizability is α0(5d6s 1D2) =
55.3(1.7) a.u.

III. ELECTRIC QUADRUPOLE SHIFT

The Hamiltonian HQ describing the interaction of an exter-
nal electric-field gradient with the quadrupole moment of an
atomic state |γ J IFM〉 (where J is the total electronic angular
momentum, I is the nuclear spin, F = J + I is the total angular
momentum, M is the projection of F, and γ encapsulates all
other electronic quantum numbers) is given by [35]

HQ =
2∑

q=−2

(−1)q∇E (2)
q Qq. (5)

The q = 0 component of ∇E (2) can be written as [35,36]

∇E (2)
0 = −1

2

∂Ez

∂z
, (6)

TABLE III. The energy levels (in cm−1), reduced diagonal MEs
of the M1 (in μ0) and Q (in a.u.) operators, and electric quadrupole
moments � (in a.u.) for the 3DJ and 1D2 states.

Level Energy Operator ME �

6s5d 3D1 11 796 M1 −1.22
E2 −3.58 −1.31

6s5d 3D2 12 435 M1 −6.33
E2 −3.70 −1.77

6s5d 3D3 14 199 M1 −12.2
E2 −8.16 −3.98

6s5d 1D2 17 333 M1 −5.53
E2 0.047 0.022

and we can estimate the energy shift of the atomic state
|γ J IFM〉 as

�E � −1

2
〈Q0〉 ∂Ez

∂z
, (7)

where 〈Q0〉 ≡ 〈γ J IFM|Q0|γ J IFM〉.
Then, the fractional electric quadrupole shift of the clock

transition 3DJ − 1S0 (J = 1, 2) is

�ω

ω
≈ − 1

2ω
�〈Q0〉 ∂Ez

∂z
, (8)

where ω is the 3DJ − 1S0 transition frequency, and �〈Q0〉
is the difference of the expectation values of Q0 for the
upper and lower clock states. Taking into account that the
quadrupole moment of the 1S0 state is equal to 0, we have
�〈Q0〉 = 〈Q0(3DJ FM )〉.

The expectation value 〈Q0〉 is given by

〈γ J IFM|Q0|γ J IFM〉 = (−1)I+J+F [3M2 − F (F + 1)]

×
√

2F + 1

(2F + 3)(F + 1)F (2F − 1)

×
{

J J 2
F F I

}
〈γ J ||Q||γ J 〉,

(9)

where 〈γ J ||Q||γ J 〉 is the reduced ME of the electric
quadrupole operator.

In Table III we list the diagonal MEs of the magnetic
dipole (M1) and electric-quadrupole operators and the electric
quadrupole moments �, defined as

� = 2

√
J (2J − 1)

(2J + 3)(2J + 1)(J + 1)
〈γ J ||Q||γ J 〉 (10)

for the 3DJ and 1D2 states. The MEs of the M1 operator are
given in the Bohr magnetons, μ0 = |e|h̄/(2mc) (where e and
m are the electron charge and mass, h̄ is the Planck constant,
and c is the speed of light).

As an example, we estimate the magnitude of the
quadrupole shift for the 3D1 − 1S0 clock transition,
for the bosonic 176 isotope of Lu+ with I = 7. Since
J = 1 for the 3D1 state, the possible values of F = 6–8.

Putting F = 7,M = 0, using for an estimate
∂Ez/∂z = 1 kV/cm2 ≈ 1.029 × 10−15 a.u. [27] and
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〈3D1||Q||3D1〉 ≈ −3.58 a.u., we arrive at

�ν

ν
≈ 6.3 × 10−15. (11)

Thus, at typical electric field gradients of ∼ kV/cm2, the
quadrupole shifts for the 3DJ states are on the order of a few
Hz and should be accounted for. However, it can be suppressed
using various schemes [17,20,37]. Taking into account that

F∑
M=−F

[3M2 − F (F + 1)] = 0, (12)

we obtain from Eq. (9)∑
M

〈γ J IFM|Q0|γ J IFM〉 = 0. (13)

This is also true for the HQ operator, Eq. (5), as was shown
in Ref. [35]. So the quadrupole shift vanishes when averaged
over all M states of a given hyperfine state [37].

In the specific case of the Lu+ ion, for which I > J ,
averaging over all F states of a fixed |M| � I + J also cancels
the quadrupole shift [20]. An advantage of this approach is
that it allows to reduce significantly the number of transitions
involved and use magnetically insensitive M = 0 states.

It is worth noting that the 1D2 level has an extremely
small quadrupole moment. It is a factor of 2 smaller than the
quadrupole moment for the Yb+ upper, 2Fo

7/2, clock state [38].
In particular, the F = 8, M = 0 state would have a quadrupole
shift of just a few mHz for typical experimental conditions, and
averaging schemes for the quadrupole shift cancellation may
not even be necessary [27].

IV. BLACKBODY RADIATION SHIFT

The leading contribution to the multipolar BBR shift of the
energy level |0〉 can be expressed in terms of the electric dipole
transition matrix elements [39]

�E = − (αT )3

2J0 + 1

∑
n

|〈0||D||n〉|2F (yn). (14)

Here α ≈ 1/137 is the fine-structure constant, yn ≡ (En−E0)/
T , T is the temperature, J0 is the total angular momentum of
the |0〉 state, Ei is the energy of the |i〉 state, and F (y) is the
function introduced by Farley and Wing [39]; its asymptotic
expansion is given by

F (y) ≈ 4π3

45y
+ 32π5

189y3
+ 32π7

45y5
+ 512π9

99y7
. (15)

Equation (14) can be expressed in terms of the dc polariz-
ability α0 of the |0〉 state as [18]

�E ≡ �Est + �Edyn, (16)

where �Est and �Edyn are the static and dynamic parts,
determined as

�E = − 2
15 (απ )3T 4α0 [1 + η]. (17)

Here η represents a dynamic fractional correction to the total
shift that reflects the averaging of the frequency dependence of
the polarizability over the frequency of the blackbody radiation
spectrum.

The advantage of such a representation is a possibility to
accurately measure the static part �Est and generally small
contribution of the dynamic part. However, the recent mea-
surement [23] of the differential scalar dynamic polarizability
of the 3D1 − 1S0 transition at λ = 10.6 μm yielded a very small
value, �α0(λ) = 0.059(4) a.u. An extrapolation to dc [23]
leads to even smaller value of the static scalar differential
polarizability, �α0(0) = 0.018(6) a.u. Therefore it is essential
to evaluate the dynamic correction and its uncertainty.

The quantity η can be approximated by [18]

η ≈ η1 + η2 ≡ 80

63 (2J0 + 1)

π2

α0T

×
∑

n

|〈n||D||0〉|2
y3

n

(
1 + 21π2

5 y2
n

)
. (18)

Contributions of the intermediate odd-parity states to the
dynamic fractional corrections η1, η2, and η = η1 + η2 of
the 6s2 1S0, 5d6s 3D1,2, and 5d6s 1D2 states are presented
in Table IV. Since the energy denominators in the first term
of Eq. (18) are proportional to (En − E0)3, the sum over n

converges much more rapidly than for the polarizability [where
the denominators are ∼ (En − E0)], and the contribution of
the states not listed in Table IV is expected to be negligible.
Because the same matrix elements are involved in the calcula-
tion of η and the scalar polarizability α0 for a given state, we
estimate that η has the same relative uncertainly as α0.

The corresponding static (dynamic) contributions to the
BBR shift of a transition frequency are determined by the
differences of �Est(dyn) of the upper and lower states, and in
total

�ν = �νst + �νdyn. (19)

The static and dynamic BBR shifts for the 6s5d 1,3DJ −
6s2 1S0 transitions at T = 300 K are given in Table V.

The theoretical values of the 3D1,2 and 1S0 polarizabilities
are very close to each other. Taking into account the theoretical
uncertainties, we are unable to predict reliably the differential
polarizabilities and �νst for these transitions. For this reason
the values of �νst for the 3D1,2 − 1S0 transitions, presented
in Table V, are found using the experimental results for
�α0(3D1,2 − 1S0) [23]. The polarizabilities of the 1S0 and 1D2

states differ more significantly, and we obtain �νst = 66(17)
mHz for the 1D2 − 1S0 transition.

In contrast with the scalar static polarizabilities, the η

corrections for the ground and 3DJ states differ by a factor of
two, and we estimate the uncertainties of our values of �νdyn

for the 3,1DJ − 1S0 transitions to be 12%–18%.
We would like to emphasise that the 3D1 − 1S0 transition is

unique in the sense that the static BBR frequency shift is two
times (in absolute value) smaller than the dynamic BBR shift.
The total BBR frequency shift for this transition is very small,
�ν = −0.48 mHz. This value is in excellent agreement with
the result obtained in Ref. [23].

Since the differential scalar static polarizability of the 3D1 −
1S0 transition is close to zero, we have also considered the third-
order contribution to this quantity, involving two interactions
of the electric-dipole operator D with the external electric field
and one hyperfine interaction [40] (see also Ref. [41] for further
details). We estimated this contribution to be 10−4–10−5 a.u.,
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TABLE IV. Contributions of the intermediate odd-parity states
to the dynamic fractional corrections η1, η2, and η = η1 + η2 of
the 6s2 1S0, 5d6s 3D1,2, and 5d6s 1D2 states. The sums of individual
contributions are given in the rows labeled “Total.” The numbers in
brackets represent powers of 10.

State Contrib. η1 η2 η

6s2 1S0 6s6p 3P o
1 0.000055 1.22[−7] 0.000055

6s6p 1P o
1 0.000421 5.19[−7] 0.000421

5d6p 3Do
1 0.000013 1.15[−8] 0.000013

5d6p 3P o
1 0.000003 2.18[−9] 0.000003

5d6p 1P o
1 0.000017 8.68[−9] 0.000017

Total 0.000509 0.000001 0.000510

5d6s 3D1 6s6p 3P o
0 0.000372 2.80[−6] 0.000374

5d6p 3P o
0 0.000040 5.00[−8] 0.000040

6s6p 3P o
1 0.000223 1.44[−6] 0.000224

5d6p 3Do
1 0.000093 1.48[−7] 0.000094

5d6p 3P o
1 0.000049 6.03[−8] 0.000049

6s6p 3P o
2 0.000009 3.71[−8] 0.000009

5d6p 3F o
2 0.000185 3.85[−7] 0.000185

5d6p 1Do
2 0.000048 7.71[−8] 0.000049

5d6p 3Do
2 0.000074 1.08[−7] 0.000074

5d6p 3P o
2 0.000003 3.67[−9] 0.000003

Total 0.001097 0.000005 0.001102

5d6s 3D2 6s6p 3P o
1 0.000403 2.81[−6] 0.000406

6s6p 1P o
1 0.000015 4.03[−8] 0.000015

5d6p 3Do
1 0.000042 6.89[−8] 0.000042

6s6p 3P o
2 0.000071 3.21[-7] 0.000072

5d6p 3F o
2 0.000105 2.29[−7] 0.000105

5d6p 1Do
2 0.000000 1.70[−0] 0.000000

5d6p 3Do
2 0.000066 1.00[−7] 0.000066

5d6p 3F o
3 0.000156 2.67[−7] 0.000156

5d6p 3Do
3 0.000061 8.32[−8] 0.000061

Total 0.000920 0.000004 0.000924

5d6s 1D2 6s6p 3P o
1 0.000033 4.76[−7] 0.000033

6s6p 1P o
1 0.000047 1.94[−7] 0.000047

5d6p 1P o
1 0.000046 4.76[−8] 0.000046

6s6p 3P o
2 0.000025 1.95[−7] 0.000025

5d6p 3F o
2 0.000166 5.24[−7] 0.000167

5d6p 1Do
2 0.000314 7.14[−7] 0.000314

5d6p 3P o
2 0.000044 6.85[−8] 0.000044

5d6p 3F o
3 0.000029 6.88[−8] 0.000029

5d6p 3Do
3 0.000002 3.17[−9] 0.000002

5d6p 1F o
3 0.000106 1.49[−7] 0.000106

Total 0.000810 0.000002 0.000813

resulting in the BBR frequency shift below 1 μHz, negligible
at the present level of accuracy.

V. FINE-STRUCTURE CONSTANT VARIATION

Since frequencies of atomic clocks have different depen-
dencies on the fine-structure constant α, one can search for
the α-variation by precisely measuring ratios of two clocks
frequencies over time [1]. This subject recently became of even
higher interest, since the variation of the fundamental constants
was directly linked to the dark matter searches [4–6].

To evaluate the sensitivity of the particular clock to the
variation of α, one calculates the relativistic frequencies shifts,

TABLE V. The dynamic corrections �Edyn/h (h is the Planck
constant) and �νst (dyn) to the BBR shifts for the 5d6s 3,1DJ and 6s2 1S0

states and the 3,1DJ − 1S0 transitions, respectively, at T = 300 K.
Static scalar polarizabilities α0 are listed. The uncertainties are given
in parentheses.

α0 (a.u.) η �Edyn/h (mHz)

6s2 1S0 63.0(0.8)a 0.00051(1) −0.277(5)
5d6s 3D1 63.5(2.8)a 0.00110(5) −0.603(38)
5d6s 3D2 62.1(2.6)a 0.00092(4) −0.494(29)
5d6s 1D2 55.3(1.7) 0.00081(2) −0.387(17)

�νst (mHz) �νdyn (mHz)
3D1 − 1S0 −0.15(5)b −0.33(4)
3D2 − 1S0 10.1(8)b −0.22(3)
1D2 − 1S0 66(17) −0.11(2)

aThese values are taken from Ref. [21].
bExtracted from the experimental results [23].

determined by so-called q factors, according to

ω(x) = ω′ + qx, (20)

where ω′ is the present laboratory value of the frequency, x =
(α/α′)2 − 1, and the q factor is determined as

q = dω

dx

∣∣∣∣
x=0

. (21)

From Eq. (20) we can easily obtain

�ω

ω
≈ Q

�α

α
, (22)

where Q ≡ 2q/ω, �ω ≡ ω − ω′, and �α ≡ α − α′.

A. A simple estimate

In a single-electron approximation the relativistic energy
shift (in a.u.) can be estimated as [42,43]

�a =
√−εa

2
(αZ)2

[
1

ja + 1/2
− C(Z, ja, la )

]
, (23)

where a is the index for a single-electron state, εa is its energy,
ja and la are the total and orbital angular momenta of the state a,
and C(Z, ja, la ) is a parameter introduced to simulate the effect
of the Hartree-Fock exchange interaction and other many-body
effects. An accurate value of C(Z, ja, la ) can be obtained only
from many-body calculations, but C(Z, ja, la ) ≈ 0.6 [43] can
be used for a rough estimate.

If we approximate a transition between many-electron states
by a single-electron transition from state a in the lower level
to state b in the upper level, the q factor can be approximated
by [42]

q ≈ �b − �a. (24)

Using Eq. (24) we are able to roughly estimate the q (and
Q) factors for the 1S0 − 3,1DJ transitions. Taking into account
that the main relativistic configurations are 6s2 for 1S0, 6s5d3/2

for 3D1,2, and 6s5d5/2 for 1D2, we can approximate the 1S0 −
3D1,2 transitions by the single-electron 6s − 5d3/2 transition
and the 1S0 − 1D2 transition by the single-electron 6s − 5d5/2

transition.
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TABLE VI. The q and Q factors for the 1S0 − 3,1DJ transitions
are obtained in the CI, CI+MBPT, and CI+all-order approximations.

q Q

CI 1S0 —
3D1 −14 380 −2.44
3D2 −14 572 −2.34
3D3 −15 257 −2.15
1D2 −16 515 −1.91

CI+MBPT 1S0 —
3D1 −14 951 −2.54
3D2 −15 437 −2.48
3D3 −17 223 −2.43
1D2 −19 061 −2.20

CI+All 1S0 —
3D1 −14 854 −2.52
3D2 −15 294 −2.46
3D3 −16 873 −2.38
1D2 −18 633 −2.15

For an estimate we substitute the Hartree-Fock ener-
gies ε6s ≈ −0.73, ε5d3/2 ≈ −0.70, and ε5d5/2 ≈ −0.69 a.u. to
Eq. (23).

Then we obtain �6s ≈ 0.065, �5d3/2 ≈ −0.016, and
�5d5/2 ≈ −0.042 a.u.. It gives us the following transition q

factors:

q
(1
S0 − 3D1,2

) � �5d3/2 − �6s ≈ −0.081 a.u.

≈ −17 777 cm−1,

q
(1
S0 − 1D2

) � �5d5/2 − �6s ≈ −0.107 a.u.

≈ −23 484 cm−1.

Taking into account that ω(1S0 − 3D1,2) � 12 000 cm−1 and
ω(1S0 − 1D2) = 17 333 cm−1 we obtain the following esti-
mate:

Q
(1
S0 − 3,1DJ

) ≈ −3.

B. Full-scale calculation

We carried out calculations in three approximations: CI,
CI+MBPT, and CI+all-order. In each case three calculations
(withx = 0,±1/8) were done. Using Eqs. (20)–(22), we found
the q and Q factors for the transitions from the 3,1DJ states to
the ground state. The results are presented in Table VI.

The results obtained from the simple estimate above are
in good agreement with those obtained from the full-scale
calculation. Thus, if a high-accuracy calculation of theq factors

is not needed, Eq. (23) can be used for a quick estimate of these
quantities.

The factors |Q| ≈ 2–2.5 presented in Table VI, though
smaller than |Q| = 15 found recently for an optical transition
in Yb [44], are larger than the values for all currently operating
clocks with the exception of the Hg+ and octupole Yb+

clocks [45]. Thus, the clocks based on the 6s2 1S0 − 5d6s 3D1,2

transitions in Lu+ are good candidates for the search for the
α-variation.

VI. CONCLUSION

To conclude, we carried out the calculations of the
quadrupole moments and the corresponding quadrupole shifts,
demonstrating the need to accurately suppress these effects.
We provided the recommended value of the dc 5d6s 1D2

polarizability and established the dominant contributions of
the intermediate states to the polarizability. We determined the
dynamic BBR shifts for the 6s2 1S0, 5d6s 3D1,2, and 5d6s 1D2

energy levels. The values of the dynamic BBR shifts at T =
300 K for the clock transitions are determined with 12%–18%
uncertainties.

We note that the differential polarizability of the 6s2 1S0 −
5d6s 1D2 transition is negative (so the micromotion effect
can be canceled at the magic radio frequency). The 5d6s 1D2

state has very small quadrupole moment which may eliminate
a need for hyperfine averaging. These features make the
6s2 1S0 − 5d6s 1D2 transition a good candidate for creating a
clock in its own right.

We confirm the observation of Ref. [23] that the
Lu+ 6s2 1S0 − 5d6s 3D1 transition is the only known clock
transition where the dynamic part of the BBR frequency shift
is much larger than the static part. We also considered the
third-order contribution to this differential polarizability and
estimated that the resulting BBR frequency shift is negligible.
Finally, we calculated the sensitivity of the Lu+ clock transi-
tions to the variation of the fine-structure constant and related
dark matter searches.
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