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Correlation trends in the magnetic hyperfine structure of atoms:
A relativistic coupled-cluster case study
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The role of electron correlation in the hyperfine structure of alkali metals and alkaline earth metal monopositive
ions in their ground electronic configuration is investigated using the Z-vector method in a relativistic coupled-
cluster regime within the singles and doubles approximation. The systematic effects of core-correlating functions,
polarization of core electrons, and high-lying virtual functions on core electrons correlation are studied. The study
reveals that the core-correlating function plays a significant role in core polarization and thus is very important
for precise calculation of the wave function near the nuclear region. The inner-core electrons (1s-2p) require
very high virtual energy functions for proper correlation. Therefore, the all-electron correlation treatment and the
inclusion of higher-energy virtual functions are the key factors for precise calculation of the hyperfine structure
constant of atoms. Our calculated values are in excellent agreement with the available experimental values, which
also implies that the wave function produced by the Z-vector method is accurate enough for further calculation
of the parity- and time-reversal symmetry-violating properties in atoms and molecules.
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I. INTRODUCTION

Correlation effects of electrons are very important for pre-
cise calculation of the chemical and spectroscopic properties
of atomic and molecular systems. Similarly, the relativistic
effect is another key factor for accurate description of the
energy levels and various properties of atoms, ions, and
molecules. Usually relativistic effects are more prominent in
heavy systems. Accurate theoretical methods which properly
incorporate both effects have always been in demand in
the areas of quantum physics and chemistry. Although the
Dirac-Hartree-Fock (DHF) method can extensively take care
of the effect of relativistic motion of electrons, it misses the
static and dynamic correlation of the opposite-spin electrons
due to the single-determinant nature of the wave function.
For proper treatment of the missing electron correlation, a
number of correlation methods, viz., the multiconfigurational
self-consistent field theory [1,2], configuration interaction
(CI) [1,3], many-body perturbation theory [1], and coupled-
cluster (CC) method [4–6], are widely used. Of all these, the
single-reference coupled-cluster (SRCC) methodology, which
incorporates dynamic correlation effects to all orders and is
size extensive at any level of truncation, is perhaps the most
efficient and reliable tool for correlation calculation with the
best possible accuracy in many-electron systems. Normally,
CC equations are solved nonvariationally to obtain the energy,
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which is not necessarily upper bound to the exact energy of the
system [7]. Also, it does not satisfy the generalized Hellmann-
Feynman theorem. It is a well-known fact that the expectation
value method and energy derivative method to calculate first-
order properties are not identical in the nonvariational approach
[8,9]. The energy derivative method to calculate first-order
properties of atoms, molecules, or ions is found to be better
than the expectation value method. The Z-vector approach
[10] and the Lagrange multiplier method of Helgaker and
coworkers [11] within the nonvariational CC framework are
widely used to calculate the energy derivative. However, it is
worth mentioning that the CC energy equation can also be
solved variationally. The variational coupled-cluster approach
satisfies the generalized Hellmann-Feynman theorem, which
is very important for higher-order property calculations. The
expectation value coupled-cluster [12,13], unitary coupled-
cluster [14,15], and extended coupled-cluster [16–18] are well-
known variational CC methods in the literature.

The above-mentioned coupled-cluster CC-based methods
have been well developed as well as implemented in the
nonrelativistic framework to calculate various properties of
atoms, ions, and molecules. However, these methods need to be
introduced into the relativistic domain for accurate calculation
of the properties of heavy systems as well as for study of
properties such as parity nonconservation effects and the
electric dipole moment of the electron. Parity nonconservation
and the electric dipole moment can only be explained with the
help of relativistic theory. In recent times, many groups have
successfully extended these methods to the relativistic regime
for accurate investigation of the structure and properties of
many-electron atomic and molecular systems. For example,
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the Kramers-restricted closed-shell CC method with single
and double excitation (CCSD) developed by Visscher et al.
[19], Kramers-unrestricted open-shell CCSD method with the
inclusion of partial triple excitation [CCSD(T)] by Visscher
et al. [20], relativistic multi-reference Fock-space CC theory
[21], relativistic coupled-cluster-based linear response theory
[22], two-component Kramers-resticted CCSD and CCSD(T)
method using the effective core potential [23], and relativistic
Fock-space CC theory developed by Ishikawa and coworkers
[24–26] are widely used relativistic CC-based methods in the
literature. Moreover, a two-step relativistic correlation method
was also developed by Petrov et al. [27] especially to calculate
the symmetry-violating effects in heavy systems. This method
is primarily based on the generalized relativistic effective core
potential and relativistic CC methods. On the other hand,
Sasmal et al. recently implemented the relativistic extended
coupled-cluster method [28] and the Z-vector technique in the
relativistic coupled-cluster framework [29] to calculate various
first-order properties of atoms, ions, and molecules in their
ground states. Similarly, Saue and coworkers [30] have re-
ported the orbital-unrelaxed four-component relativistic SRCC
analytical technique based on the Lagrange multiplier method
of Helgaker, to calculate first-order one-electron properties.
So, it is evident from the literature that the relativistic CC
method in recent times has emerged as the most reliable and
efficient method to precisely investigate the structure of atoms
and molecules and their properties, especially the hyperfine
structure (HFS) interaction constant and various symmetry
violations [31–39]. Moreover, it is noteworthy that accurate
theoretical calculation of the magnetic HFS coupling constant
using relativistic CC-based methods has been a gateway to
study various important and interesting properties, especially
the parity nonconservation and electric dipole moment in atoms
and molecules.

The phenomenon of magnetic HFS interaction arises due
to the interaction of the nuclear magnetic moment with the
electromagnetic field generated by electrons. It plays a very
significant role in the accurate description of energy levels
of atoms, ions, and molecules. Accurate measurements of
HFS constants are essential from the point of view of atomic
and nuclear physics, as the knowledge of accurate energy
levels helps physicists enormously to study high-precision
spectroscopy, laser cooling, atomic clock and atom-trapping
experiments, ultracold collision, Bose-Einstein condensation,
and many more subjects [40–42]. Like the HFS constant, the
theoretical investigation of parity and time-reversal symmetry
violation (P,T-odd properties) requires precise wave function
in the near-nuclear region [43–45]. Explicit study of P,T-
odd interactions in atoms and molecules can explore “new
physics” beyond the standard model. As various P,T-odd
constants cannot be measured directly from the experiment,
they have to be calculated theoretically and the accuracy of
these calculations can be assessed by comparing the theoreti-
cally calculated HFS constant with the available experimental
value. Most alkali metal atoms and monopositive alkaline
earth metal ions are considered to be potential candidates in
many of the above-mentioned experiments. Thus, accurate
calculation of the magnetic HFS constants of these atomic
systems as well as study of the role of electron correlation in
these calculations is significantly important. As the hyperfine

structure interaction is very sensitive to the wave function
near the nuclear region, simultaneous inclusion of relativistic
effects and the electron correlation is extremely important for
precise calculation of the HFS constant. Therefore, theoretical
methods based on the coupled-cluster theory extended in the
relativistic regime would be the proper choice to deal with
HFS constant calculation. Angom and coworkers recently
calculated the HFS constants of Mg+, Ca+, Sr+, and Ba+

using the relativistic coupled-cluster theory [46]. The HFS
constant of alkali metals and alkaline earth metal monopositive
ions has also been successfully calculated using the relativistic
extended coupled-cluster method [28] and Z-vector technique
[47] in the relativistic CC framework.

In this paper, we demonstrate the correlation trends in the
HFS calculation of atoms or ions. We calculated the HFS
constant of alkali metal and alkaline earth metal monopositive
ions using the Z-vector technique in the relativistic coupled-
cluster regime. The calculated HFS values are compared with
the available experimental values to check the reliability of our
method in producing precise wave functions near the nuclear
region. The paper is organized as follows. A brief overview of
the Z-vector method in the CC framework including concise
details of the magnetic HFS constant is given in Sec. II.
Computational details are reported in Sec. III. We present and
discuss our calculated results in Sec. IV, before the conclusion
in Sec. V. Atomic units are used throughout unless otherwise
stated.

II. THEORY

A. Z-vector method

The Dirac-Hartree-Fock method is the most elegant way
to incorporate the relativistic effect in many-electron systems
and also to describe the ground state in a single-determinant
theory. Hence, the four-component DHF wave function is used
as a reference function for treatment of the dynamic electron
correlation. We have used the Dirac-Coulomb (DC) Hamilto-
nian, where the interelectronic repulsion term is approximated
as the Coulomb interaction and is given by

HDC =
∑

i

[
−c(�α · �∇ )i + (β − 14)c2 + V nuc(ri )

+
∑
j>i

1

rij

14

]
. (1)

Here, α and β are the conventional Dirac matrices, c is the
speed of light, and 14 is the 4 × 4 identity matrix. V nuc(ri )
is the nuclear potential function and here we have used the
Gaussian-type charge distribution. The DHF method misses
the correlation between opposite-spin electrons, as it approxi-
mates the interelectronic repulsion in an average way.

In this work, we have employed the SRCC (with the singles
and doubles approximation) method to include the missing
dynamic electron correlation. The SRCC wave function is
given by |�cc〉 = eT |�0〉, where �0 is the DHF determinant
and T is the CC excitation operator, which can be defined as

T = T1 + T2 + · · · + TN =
N∑
n

Tn, (2)
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with

Tm = 1

(m!)2

∑
ij ...ab...

t ab...
ij ... a†

aa
†
b . . . aj ai . (3)

Here, i, j and a, b are the occupied and unoccupied spinor
indices, respectively. tab...

ij ... is the cluster amplitude of the cluster
operator Tm. In the case of the coupled-cluster method within
the singles and doubles (CCSD) approximation, T = T1 + T2.
The respective amplitude equations for T1 and T2 are given by

〈�a
i |(HNeT )c|�0〉 = 0,

〈
�ab

ij

∣∣(HNeT )c|�0〉 = 0. (4)

Here, HN is the normal-ordered DC Hamiltonian. The sub-
script c in the expression means only that the connected terms
exist in the contraction between HN and T . This connectedness
ensures the size extensivity of the CCSD model. Once the
amplitude equations are solved, the correlation energy can be
calculated by the following equation:

Ecorr = 〈�0|(HNeT )c|�0〉. (5)

As we have adopted the nonvariational approach to solve the
CCSD energy equation, the CC energy is not optimized with
respect to CD and CM for a fixed nuclear geometry [8]. Here,
CD and CM are the determinantal coefficient and the molecular
orbital coefficient, respectively, in the expansion of the many-
electron correlated wave function. Therefore, for calculation
of the derivative of energy with respect to any external field
of perturbation, we must include both the derivative of the
energy with respect to CD and CM and the derivative of these
two parameters with respect to the external perturbation. The
equations for these derivative terms are linear but perturbation
dependent. However, in the so-called Z-vector technique, the
derivative terms which involve the determinantal coefficient
can be included by introducing a perturbation-independent
linear operator, � [10]. Thus, in the Z-vector approach, any
number of properties can be calculated with the solution of
just one set of T and � amplitudes. The second quantized

form of the deexcitation operator, �, is given as

� = �1 + �2 + · · · + �N =
N∑
n

�n, (6)

with

�m = 1

(m!)2

∑
ij ...ab...

λ
ij ...

ab...a
†
i a

†
j . . . abaa, (7)

where λ
ij...

ab... is the cluster amplitude of the operator �m.
Within the CCSD framework, � = �1 + �2 and the explicit
equations for the amplitudes of the �1 and �2 operators are
given by

〈�0|[�(HNeT )c]c
∣∣�a

i

〉 + 〈�0|(HNeT )c
∣∣�a

i

〉 = 0, (8)

〈�0|[�(HNeT )c]c
∣∣�ab

ij

〉 + 〈�0|(HNeT )c
∣∣�ab

ij

〉
+〈�0|(HNeT )c

∣∣�a
i

〉〈
�a

i

∣∣�∣∣�ab
ij

〉 = 0. (9)

Finally, the energy derivative can be obtained as

�E′ = 〈�0|(ONeT )c|�0〉 + 〈�0|[�(ONeT )c]c|�0〉, (10)

where ON is nothing but the derivative of the normal-ordered
perturbed Hamiltonian with respect to the external field of
perturbation.

B. Magnetic hyperfine structure constant

The magnetic moment of the nucleus interacts with the
internally generated electromagnetic field of electrons in an
atom, ion, or molecule. This interaction, which causes small
shifts and splitting of energy levels, is known as the magnetic
hyperfine structure interaction [48]. The magnetic vector po-
tential ( �A) of a nucleus (k) at a distance �r is given by

�A = �μk × �r
r3

, (11)

where �μk is the magnetic moment of the nucleus. The perturbed
HFS Hamiltonian of an atom or ion due to �A is defined in Dirac

TABLE I. Effect of core-correlation functions in the calculation of the magnetic HFS constant, AJ (in MHz), of atoms in the ground
electronic state. Basis used in the present work: dyall.ae3z for Rb, Fr, Sr+, and Ra+; dyall.ae4z for Li, Na, K, Cs, Be+, Mg+, Ca+, Ba+, and
the basis used in Ref. [47]: aug-cc-pCVQZ for Li, Na, Be+, and Mg+; dyall.cv3z for Rb, Fr, Sr+, and Ra+; and dyall.cv4z for K, Cs, Ca+, and
Ba+.

Virtual Z vector δ%

Atom cutoff (a.u.) This work Ref. [47] Expt. This work Ref. [47]

7Li 399.1 391.6 401.7 [55] 0.6 2.6
23Na 875.6 861.4 885.8 [55] 1.2 2.8
39K 500 226.6 226.6 230.8 [55] 1.9 1.9
85Rb 500 986.5 986.5 1011.9 [56] 2.6 2.6
133Cs 40 2218.2 2218.4 2298.1 [57] 3.6 3.6
223Fr 50 7584.5 7537.4 7654(2) [58] 0.9 1.5
9Be+ −622.9 −612.9 −625.0 [59] 0.3 2.0
25Mg+ −594.4 −584.8 −596.2 [60] 0.3 1.9
43Ca+ 500 −801.4 −801.5 −806.4 [61] 0.6 0.6
87Sr+ 100 −978.0 −977.9 −1000.5(1.0) [62] 2.3 2.3
137Ba+ 40 3930.7 3930.2 4018.9 [63] 2.2 2.3
223Ra+ 50 3464.8 3446.3 3404(2) [64,65] 1.7 1.2
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theory as

Hhyp =
n∑
i

�αi. �Ai. (12)

Here, n is the total number of electrons and �αi denotes the
Dirac α matrices for the ith electron.

The magnetic HFS constant (AJ ) of an atom or ion in the
J th electronic state can be obtained as

AJ = �μk

IJ
· 〈�J |

n∑
i

( �αi × �ri

r3
i

)
|�J 〉, (13)

where �J is the wave function of the J th electronic state and
I is the nuclear spin quantum number.

III. COMPUTATIONAL DETAILS

The DHF equation is solved by using the locally modified
version of the DIRAC10 [49] program package, and one- and
two-electron integrals along with the HFS property integrals
are extracted by using a locally modified version of the
same package. A finite-size nucleus with a Gaussian charge
distribution is considered in our calculation. The default values
of DIRAC10 are used for the nuclear parameters of the
respective atom [50]. The restricted kinetic balance condition
[51] is used to generate a small component basis from the
large component basis. The “no virtual pair approximation”
is considered when solving the DHF equation to remove the
negative-energy solutions. We have used the following uncon-
tracted all-electron multiple-zeta basis sets in our calculations:
triple-zeta (TZ) basis, dyall.ae3z [52–54]; and quadruple-zeta
(QZ) basis, dyall.ae4z [52–54].

IV. RESULTS AND DISCUSSION

The purpose of the present work is the precise calculation
of the magnetic HFS constant of alkali metal atoms as well
as monopositive alkaline earth metal ions in their ground-state
electronic configuration and the study of electron-correlation
trends in the hyperfine structure of these systems using the
Z-vector method in the relativistic CC framework. Recently,
Sasmal calculated the magnetic HFS constant of these systems

FIG. 1. Relative deviations of the HFS constant using the aeNz
and cvNz basis.

using the same method [47]. However, in his study the core-
valence multiple-zeta (cvNz) basis was used, which lacks some
important core-correlating functions. That is why in this study
we have used the all-electron multiple-zeta (aeNz) basis, which
is designed for all-electron calculation and can treat the core-
polarization effect more efficiently than the cvNz basis.

In Table I, we compare our aeNz basis results with the
core-valence basis results obtained from Ref. [47] using the
same cutoff as in the said reference. We also present the
relative deviation of the calculated magnetic HFS value from
the experimental value as δ%. A comparison of δ% values
is shown in Fig. 1. From Table I and Fig. 1, it is clear that
the inclusion of core-correlating functions does not show any
significant effect in the cases of 39K, 43Ca+, 85Rb, 87Sr+,
133Cs, and 137Ba+. But it is noticeable that relativistic all-
electron multiple-zeta-basis calculations significantly improve
our results compared to those in Ref. [47] in the cases of
7Li, 9Be+, 23Na, and 25Mg+. Also, in the heaviest atoms in
our study, viz., 223Fr and 223Ra+, HFS values are affected by
the inclusion of some core-correlating functions. Use of the

TABLE II. Magnetic HFS constant, AJ (in MHz), of atoms in the ground electronic state.

Virtual δ%
Atom Basis cutoff (a.u.) Z vector DHF Expt. (Z vector)

7Li dyall.ae4z 399.1 288.2 401.7 [55] 0.6
23Na dyall.ae4z 875.6 633.4 885.8 [55] 1.2
39K dyall.ae4z 5000 227.9 151.0 230.8 [55] 1.3
85Rb dyall.ae4z 4000 1001.0 666.9 1011.9 [56] 1.0
133Cs dyall.ae4z 1000 2266.1 1495.5 2298.1 [57] 1.4
223Fr dyall.ae3z 1000 7761.0 5518.0 7654(2) [58] 1.4
9Be+ dyall.ae4z −622.9 −506.6 −625.0 [59] 0.3
25Mg+ dyall.ae4z −594.4 −471.7 −596.2 [60] 0.3
43Ca+ dyall.ae4z 7000 −805.3 −606.2 −806.4 [61] 0.1
87Sr+ dyall.ae4z 3000 −1000.2 −760.9 −1000.5(1.0) [62] 0.02
137Ba+ dyall.ae3z 1000 4028.3 3061.9 4018.9 [63] 0.2
223Ra+ dyall.ae3z 1000 3538.0 2843.4 3404(2) [64,65] 3.8
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TABLE III. Effect of inner-core electrons at different cutoffs of virtual spinors.

Basis Cutoff (a.u.) Spinor Correlation AJ δ%

Name Nature Occupied Virtual Occupied Virtual energy (a.u.) (MHz)

85Rb
dyall.ae3z TZ 50.0 37 213 −1.1605359 961.8 5.2
dyall.ae3z TZ 1000.0 37 283 −1.5014829 990.9 2.1
dyall.ae3z TZ 10000.0 37 327 −1.5374646 996.1 1.6
dyall.ae3z TZ −50.0 50.0 27 213 −1.0159187 952.4 6.2
dyall.ae3z TZ −50.0 1000.0 27 283 −1.0512570 959.7 5.4
dyall.ae3z TZ −50.0 10000.0 27 327 −1.0513454 959.8 5.4
dyall.ae3z TZ −6.0 50 19 213 −0.68818907 922.7 9.7
dyall.ae3z TZ −6.0 1000 19 283 −0.69450181 925.9 9.3
dyall.ae3z TZ −6.0 10000 19 327 −0.69450430 925.9 9.3
87Sr+

dyall.ae3z TZ 50.0 37 215 −1.14620563 −968.0 3.3
dyall.ae3z TZ 1000.0 37 289 −1.51939462 −990.2 1.0
dyall.ae3z TZ 10000.0 37 329 −1.5577899 −998.5 0.2
dyall.ae3z TZ −50.0 50.0 27 215 −1.01635428 −958.8 4.3
dyall.ae3z TZ −50.0 1000.0 27 289 −1.06899997 −963.7 3.8
dyall.ae3z TZ −50.0 10000.0 27 329 −1.0691097 −963.9 3.8
dyall.ae3z TZ −7.0 50.0 19 215 −0.70568002 −928.9 7.7
dyall.ae3z TZ −7.0 1000.0 19 289 −0.71484442 −931.1 7.4
dyall.ae3z TZ −7.0 10000.0 19 329 −0.71484786 −931.1 7.4
133Cs
dyall.ae3z TZ 40.0 55 221 −1.47336828 2190.4 4.9
dyall.ae3z TZ 500.0 55 307 −2.23544909 2246.1 2.3
dyall.ae3z TZ 1000.0 55 339 −2.37355408 2256.1 1.9
dyall.ae3z TZ −100.0 40.0 45 221 −1.44526106 2186.1 5.1
dyall.ae3z TZ −100.0 500.0 45 307 −1.91396340 2223.9 3.3
dyall.ae3z TZ −100.0 1000.0 45 339 −1.92641235 2225.2 3.3
dyall.ae3z TZ −30.0 40.0 37 221 −1.32223526 2165.9 6.1
dyall.ae3z TZ −30.0 500.0 37 307 −1.55549141 2185.6 5.1
dyall.ae3z TZ −30.0 1000.0 37 339 −1.55955339 2186.0 5.1
137Ba+

dyall.ae3z TZ 40.0 55 219 −1.43005838 3926.0 2.4
dyall.ae3z TZ 500.0 55 315 −2.28562448 4012.9 0.1
dyall.ae3z TZ 1000.0 55 337 −2.38526100 4028.3 0.2
dyall.ae3z TZ −100.0 40.0 45 219 −1.41292899 3917.6 2.6
dyall.ae3z TZ −100.0 500.0 45 315 −1.94880958 3964.1 1.4
dyall.ae3z TZ −100.0 1000.0 45 337 −1.95870556 3965.8 1.3
dyall.ae3z TZ −35.0 40.0 37 219 −1.30837365 3877.9 3.6
dyall.ae3z TZ −35.0 500.0 37 315 −1.58809244 3895.7 3.2
dyall.ae3z TZ −35.0 1000.0 37 337 −1.59176867 3896.1 3.1

dyall.aeNz basis improves the result for 223Fr, whereas for
223Ra+, the HFS value deviates more from the experiment.
However, the cutoffs for the virtual spinors considered in
the above calculations are small in most cases. Therefore,
for proper correlation treatment of the inner-core electrons
we have performed another set of calculations using the all-
electron multiple-zeta (dyall.aeNz) basis at very high cutoffs
for virtual spinors. We have summarized these results in
Table II. It is clearly shown in this table that the HFS values
obtained by the Z-vector method are in excellent agreement
with the experiment. The relative deviations in our calculation
are less than 1.5% in all cases considered except for 223Ra+. As
we have used the all-electron multiple-zeta basis and explicitly
correlated all the electrons in our calculations, accuracy of this
kind is expected. However, it is worth mentioning that various

other effects such as a higher-order correlation, Breit and QED
effects, a negative energy spectrum, and the Bohr-Weisskopf
effect have not been taken into account, which could yield
some error in our calculations. This might be the reason that
the HFS value calculated in the better basis set deviates more
from the experiment, especially in the 223Ra+ case.

In Table III, we present the AJ and δ% values for 85Rb,
87Sr+, 133Cs, and 137Ba+ systems with different numbers of
correlating electrons and virtual cutoffs to understand the
effect of virtual orbitals on the core-correlation effect. For this
purpose, we have performed three sets of calculations: first,
by correlating all the electrons; second, by freezing the 10
lowest-occupied spinors (1s-2p); and, finally, by freezing the
18 lowest-occupied spinors (1s-3p). Furthermore, in each set,
we have performed calculations with three different cutoffs
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FIG. 2. Relative deviations of the HFS constant of 85Rb.

for the virtual spinor. The δ% of the magnetic HFS value for
85Rb, 87Sr+, 133Cs, and 137Ba+ of these calculations is shown
in Figs. 2, 3, 4, and 5, respectively. Now, from Table III and
Figs. 2–5 it is clear that when we increase the cutoff of the
virtual orbital while keeping the number of electrons in the
correlation calculation constant, the δ% decreases. This is due
to the fact that by increasing the virtual cutoff, we are adding
more and more correlation space, and thus, the associated
error decreases. It is also evident that with the same cutoff,
as we correlate more core electrons, the δ% decreases. This is
expected as, by correlating more core electrons, we are treating
the core-polarization effect more explicitly, and hence, this
results in a better agreement with the experimental result.

FIG. 3. Relative deviations of the HFS constant of 87Sr+.

FIG. 4. Relative deviations of the HFS constant of 133Cs.

It is interesting to see that the effect of virtual orbitals is
more prominent when the core electrons are present in the
correlation calculation. For example, the virtual orbitals having
an energy between 1000 and 10 000 a.u. for 85Rb and 87Sr+

and between 500 and 1000 a.u. for 133Cs and 137Ba+ have
no or a very insignificant effect on the electrons except for
1s-2p electrons. This is evident from the fact that δ% does
not change when we increase the virtual cutoff by the said
amount of these systems except for all-electron calculations.
On the other hand, this effect is significant when 1s-2p
electrons are correlated in those systems. These observations
lead us to conclude that to properly correlate 1s-2p elec-
trons, we need high-energy virtual orbitals in the correlation
calculation.

FIG. 5. Relative deviations of the HFS constant of 137Ba+.
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V. CONCLUSION

In conclusion, we have implemented the Z-vector method in
the relativistic coupled-cluster framework for calculation of the
magnetic HFS constant of alkali metals and alkaline earth metal
monopositive ions. We have demonstrated the importance of
the electron correlation and studied the correlation trends in
the hyperfine structure calculation. Our calculated values are
in excellent agreement with the corresponding experimental
values, which means that the Z-vector technique can produce
a precise wave function near the nuclear region. Thus, this
method is very reliable for studying parity and time-reversal
symmetry violations in atomic systems to explore the physics
beyond the standard model. Our calculation also shows that
core-correlation effects of electrons play a very significant
role in the calculation of the HFS constant of atoms and ions.

Furthermore, our study infers that inner-core (1s-2p) electrons
need higher-virtual-energy functions for proper correlation,
which is obvious due to the fact that the higher-virtual-energy
functions are localized in the same area as spanned by the
inner-core (1s-2p) spinors.
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