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Intrinsic quantum chaos and spectral fluctuations within the protactinium atom
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Recently, spectroscopic investigations of the protactinium atom applying resonant laser ionization spectroscopy
revealed high-resolution data of the single-excitation spectrum of protactinium, reaching slightly beyond the first
ionization potential [P. Naubereit et al., preceding paper, Phys. Rev. A 98, 022505 (2018)]. The more than 1500
recently detected energy levels contain several complete sequences of levels. In this work we study the spectral
fluctuations of these data exhibiting clear signatures of intrinsic quantum chaos within the protactinium atom. In
order to obtain an estimate on possibly missing levels, simulations were performed based on large ensembles of
random matrices from the Gaussian orthogonal ensemble. Our experimental results show that tabulated data in
the literature are far from completeness and atomic structure calculations severely underestimate the density of
states in the spectral range of highly excited states. However, the statistical analysis of our data as well as of the
data from literature and calculations predict a level statistics close to that of fully developed chaos at energies
well below the single-ionization threshold.
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I. INTRODUCTION

As much as classical systems, like, e.g., the double pendu-
lum, can exhibit a transition from regular to chaotic dynamics,
the spectral properties of quantum systems can change drasti-
cally [1]. This is well established by now both theoretically and
experimentally for few-degrees-of-freedom systems [2–11].
In contrast, evidence for quantum chaos in systems existing
on higher-dimensional (classical) phase spaces which also
have a much more intricate topology, giving rise, e.g., to
Arnold diffusion [12–15], and likely are at the origin of
many-body localization [16,17], is rather scarce, with only a
few systematic results [18–24] so far. This fact is due to the
unfavorable scaling properties of the density of states with
increasing excitation energy, accompanied by strong coupling
between the various degrees of freedom. On the theoretical
as well as on the experimental side, this defines substantial
challenges for the resolution of the relevant spectral structures
[7]. Atomic many-body systems constitute ideal, naturally
occurring test cases for such proliferation of complexity, where
the generic presumption holds that the chaotic proportion of
phase space increases with the excitation energy, while an
unambiguous designation of the demarcation line between
regularity and chaos has so far remained elusive [15,20,25–27].
In truly complex many-body systems, e.g., an actinide atom,
the transition point from regularity to significant chaoticity is
expected already at low excitation energies. A proof is pending,
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because complete high-resolution spectroscopic data from the
ground state up to the first-ionization potential were and still
are unavailable. Even for lighter elements, very few cases
of investigation of intrinsic quantum chaos (IQC), meaning
without outer influence of artificially applied electromagnetic
fields or scattering processes by specific projectiles, in complex
atomic systems are available [28–30].

Here we analyze spectral fluctuation properties in the recent
spectroscopic data collected for protactinium and presented in
Ref. [31] using as statistical measures the nearest-neighbor
spacing distribution (NNSD), the number variance �2, and
the spectral rigidity �3. For further explanations see Sec. II.
According to the Bohigas-Giannoni-Schmit conjecture [32],
the spectral fluctuation properties are universal and coincide
with those of uncorrelated random numbers exhibiting Poisson
statistics for classically integrable systems and with those
of random matrices from the Gaussian orthogonal ensemble
(GOE) if the classical dynamics is fully chaotic. For a proper
analysis we have to deal with problems stemming primarily
from missing or spurious levels. Therefore, large ensembles
of random matrices from the GOE were generated and a
certain fraction of eigenvalues was randomly deleted in order to
simulate missing levels. The resulting statistics are compared
to the experimental data.

Recently [31], about 1500 hitherto unknown resonances
were detected in the bound spectrum of the Pa atom, covering
selected energy ranges, different total angular momentum
states, and both parities have been tabulated. An exemplary
spectrum, corresponding to scheme (iii) of [31], is shown in
the top panel of Fig. 1, covering excitation energies from below
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FIG. 1. The top graph shows the highly resolved excitation spectrum of protactinium for excitation scheme (iii) of [31], complemented by
the corresponding level distribution (black lines above spectrum). The bottom graph shows the staircase functions for the cumulative number
of resonances, as inferred from the literature (purple) [33], simulation (light gray) [34], and the present experimental data sets (green and blue)
around EC and ED , respectively. The dashed red line represents the self-consistent fit to the spectral density over the entire energy range; see
the main text for details. The orange vertical line in all plots indicates the estimated ionization potential, with its uncertainty range identified
by the orange-shaded region [35]. For further explanations also on the three insets, see the text.

to slightly above the first ionization potential. The data of [31]
serve as a basis for the analysis of intrinsic quantum chaos
and its spectral characteristics in this highly complex atomic
system.

II. LEVEL STATISTICS AND LEVEL DENSITY
FLUCTUATIONS

A. Level density in general

Let us first compare the density of states of the experimental
data, the available literature, and simulation data. The bottom
panel of Fig. 1, together with the insets which zoom into three
selected energy ranges, shows the cumulated number of energy
levels

Nc(E) =
∫ E

0

∑
i

δ(E′ − Ei )dE′ (1)

as a staircase function of the excitation energy, with Ei the
energy of the ith resonance. As explained in Ref. [31], our
experimental data are limited to a range of three subsequent
total angular momenta. Therefore, we took into account in the
analysis of the simulated and the literature data only energy
levels with J = 9

2 , . . . , 13
2 . The apparent significant decrease

of the level density just above the first ionization potential,
as evident in the rightmost inset, can be explained by our
experimental method: While resonances in the continuum still
may bind all five electrons, many of these resonances are
hidden by a continuum background due to broad autoionizing
or ionic resonances, which becomes manifest in the top panel
of Fig. 1 as a clearly visible broadening of the resonances
above approximately 6.07 eV. This behavior was generally
observed for all scans reaching beyond the expectation value
of the ionization potential. A second reason is the termination
of various Rydberg series converging towards the ionization
potential.

For the simulation data, a loss of accuracy and completeness
is anticipated already well below threshold, because only
low-energy configurations had so far been included in these
calculations [34]. In addition, the model neglects correlations
between core and valence electrons, which are known to
contribute substantially at higher excitation energies. Conse-
quently, the experimental staircase function is expected to grow
faster than the one predicted by the simulation, which exhibits
an approximately quadratic energy dependence (see the gray
line in the leftmost inset of the bottom panel of Fig. 1).

In order to compare the level densities of the experimental
data [31] with those of the literature and simulation data and to
localize strong deviations between them we performed a fit of
N tot

c (E) to the overall experimental density using the prediction
for its average

d

dE
N ′

c(E) = ρ0e
a
√

E (2)

for the density of states of an interacting many-body spectrum
[29], which neglects Rydberg excitations of either one of the
electrons. Thus, in the ansatz for N tot

c (E), a phenomenological
Rydberg term is included:

N tot
c (E) = N ′

c(E, ρ0, a) + r

√
hcR

EIP − E
. (3)

Here hcR is the mass-reduced Rydberg energy and ρ0, a, r , and
EIP are free fitting parameters, where r could be interpreted
as the number of Rydberg series involved and EIP as the
ionization potential. This procedure is legitimate since no
chaotic perturbation is expected for high principal quantum
numbers of single-electron Rydberg levels according to [36].
However, the data sets of scans in the energy range between
4.48 and 6.05 eV, denoted by SES (for second excitation step)
and (iii), which are exemplarily considered from [31] and
shown in the middle and right insets of the bottom panel
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of Fig. 1, provide no information on how many levels lie
below and between these associated energy ranges. To extract a
consistent offset for the disjoint data sets, we fit ∂N tot

c (E)/∂E

to the slopes of the cumulated density of states, as visualized
in Fig. 1, within four predefined energy intervals EA, EB , EC ,
and ED , centered around the excitation energies 0.46, 1.52,
4.48, and 6.05 eV, respectively. These regions most optimally
incorporate the different available data sets, stemming either
from the literature at low excitation energies (EA and EB ,
where only the three J values studied in the experiment
are accounted for) or from the experimental data of [31] at
medium or high excitation energies (EC and ED). By this
procedure, initially the offsets of the SES and (iii) scans were
determined and the specific subsets of the three different data
sets depicted in the three insets, now properly leveled, were
fitted by Nfit

c (E). The resulting fitting parameters are reason-
able: A value of r = 16(6) for the different involved Rydberg
series is realistic and EIP = 6.11(1) eV matches the estimate
of 6.075(14) eV for the ionization potential derived from
systematics [35].

The resulting curve for the overall level density is shown
as a red dashed line in the bottom panel of Fig. 1 as
well as in the close-ups of the three insets. The com-
parison to the experimental data reveals three remarkable
facts.

(a) The theoretical simulations, which only incorporate
low-energy configurations, give correct and complete level
densities up to excitation energies around 1.5 eV and slowly
start to deviate at higher energies.

(b) Literature data appear to be complete up to energies
around 2 eV, with a sharp cutoff at this value.

(c) The experimental data taken around EC and ED are well
matched by the fit. Both data sets thus confirm the completeness
of the levels detected in these energy ranges.

The issue of missing levels will be addressed Sec. III. Here
“completeness” refers to unexpected deviations of the level
density from its energy-dependent average, for example visible
in the bottom panel of Fig. 1 for the literature data above
2 eV or for scheme (iii) above 6.07 eV. The slight deviations
observed at the edges of both data sets (middle and right
inset) are ascribed to a signal depletion at the edges of our
laser scan ranges, due to decreasing laser power, as well as
to the emerging continuum background discussed above for
the energy range beyond the ionization threshold. Therefore,
only the following parts of the individual data sets were
employed in our subsequent analysis: For the even literature
data a range of 0.00, . . . , 2.00 eV, for the SES scheme a
range of 4.44, . . . , 4.51 eV, and for scheme (iii) a range of
5.96, . . . , 6.08 eV were evaluated.

B. Nearest-neighbor spacing distribution

Based on the above confirmation of the essential com-
pleteness of our experimental spectra in the inspected en-
ergy intervals, we can now proceed towards an analysis of
the spectral structure of protactinium in terms of statistical
measures commonly used in random matrix theory (RMT).
We extract the nearest-neighbor spacing distribution, as one of
the fundamental quantifiers of regularity-to-chaos transition in
complex quantum systems [37], as area-normalized histograms

of normalized, dimensionless energy spacings

si = ξi+1 − ξi, (4)

with the unfolded energy

ξi = Nfit
c (Ei ), (5)

obtained by utilizing the smooth part of the staircase function,
i.e., its fit function Nfit

c (E) [38]. Second-order polynomials
serve as fit functions for the unfolding of all experimental level
sets as well as of the numerically simulated spectral data from
[34].

Random matrix theory predicts a Poisson distribution

PP(s) = e−s (6)

for the individual si in the limit of regular spectra, i.e., in
systems of well-preserved quantum numbers, and a Wigner-
Dyson distribution [39]

PWD(s) = π

2
se−(π/4)s2

(7)

in the limit of fully broken integrability, synonymous with
the complete destruction of good quantum numbers, within
subspaces defined by one specific value J of the total angular
momentum [37]. Both these idealized limits are interpolated
by the Brody distribution

PB(s, η) = asηe−bsη+1
, a = (η + 1)b, b = �

(
η + 2

η + 1

)η+1

,

(8)

with Euler’s Gamma function �. The Brody parameter η

controls this interpolation, with the limiting cases η = 0 for
the Poisson and η = 1 for the Wigner-Dyson distribution [40].

Since our experimental spectra are superpositions of three
independent J manifolds, we furthermore need to account for
the thereby induced convolution of distinct distributions. This
can be achieved with the help of the superposition formula
initially suggested by Rosenzweig and Porter [28]. Here we
utilize Eq. (3.69) from [38], giving the spacing distribution
P3B(s, η) for superpositions of three independent subspectra.
In doing so, we make two assumptions.

(i) The level density in all three J manifolds is equal.
(ii) The manifolds exhibit the same energy dependence of

η(E).
A comparison with simulation and literature data validates

both assumptions as reasonable first-order approximations
[33,34]. A second interpolating function applicable to super-
imposed spectra is the Abul-Magd distribution [24,41]

PAM(s, f ) =
(

1 − f + π

2
Q(f )s

)
e−(1−f )s−(π/4)Q(f )s2

, (9)

with Q(f ) = 0.7f + 0.3f 2. The parameter f of this descrip-
tion similarly approaches the Poisson distribution for f → 0
and the Wigner-Dyson distribution for f → 1, but the meaning
is different as for the superposition of three Brody distributions:
While the η parameter of the Brody convolution gives a
hint at a close-to-GOE behavior of the three independent
subspectra, the f parameter expresses a prediction for the
number of superimposed fully chaotic GOE spectra. Thus, the
number of independent GOE subspectra is given by n = 1

f
.
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FIG. 2. (a) Nearest-neighbor spacing distribution P (s ) and
(b) corresponding cumulative NNSD I (s ) for simulated data with
J = 9

2 , . . . , 13
2 . The Poisson and Wigner-Dyson distributions are

shown as gray dash-dotted and dashed lines, respectively. The fitted
Abul-Magd distribution is displayed as a blue line and the convoluted
Brody distribution as a dotted red line.

The special case of three superimposed subspectra yields
P3B(s, 1) ≡ PAM(s, 1

3 ).
To determine the best-fit Brody parameter η or Abul-Magd

parameter f , the maximum-likelihood (MLH) method [42]
was used. This method is, in contrast to a least-squares-fitting
method, completely independent from the binning procedure,
since it is directly applied to the raw data. The uncertainty of
η and f is conservatively approximated by the half-width at
half maximum (HWHM) of the likelihood distribution.

Figure 2(a) shows an exemplary NNSD. Especially for
small spacings and/or a small number of spacings, the cumu-
lative nearest-neighbor spacing distribution (CNNSD)

I (s) =
∫ s

0
P (s ′)ds ′ (10)

is more reliable for comparing the fits with the data. In Fig. 2(b)
the CNNSD is shown. The NNSD is obtained from the simu-
lated data with superimposed subspectra with J = 9

2 , . . . , 13
2 .

Besides the two fitted distributions P3B and PAM for the NNSD
and I3B and IAM for the CNNSD, the curves for Poisson (PP

and IP) and Wigner-Dyson (PWD and IWD) distributions are
indicated as gray dash-dotted and dashed lines, respectively.
The histograms are depicted for illustration; however, they
were not used for the fitting procedure. The NNSD and
CNNSD for the simulated data show a level repulsion close
to that of chaotic GOE spectra. Both repulsion parameters
η = 1.02(30) and f = 0.35(14) match the expected values
of η = 1 and f = 1

3 , respectively, for a convolution of three
GOE spectra very well. The rather large uncertainties of these
values are caused by a broad likelihood distribution because the
convoluted Brody distribution and the Abul-Magd distribution
barely change in their shapes when varying the parameters η

and f around a given value.
For an estimation of the quality of the fits for the CNNSD,

the residuals I3B − I (s) and IAM − I (s) are shown in Fig. 3
as the difference between the resulting fit curves and the data.
This form of presentation gives an idea of the shape of the
NNSD and CNNSD by regarding the distribution parameters
η and f and therefore a hint of the chaotic repulsion of the
neighboring energy levels. In addition, it provides information
on the quality of the individual fits of the CNNSD. Thus, in the
following analysis only these residuals will be discussed when
analyzing the level repulsion in the experimental data sets as
short-range correlation.
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FIG. 3. Residuals of the fitted curves for the CNNSD. Here I3B −
I (s ) is given as a dotted red line and IAM − I (s ) as a blue solid line.

For the experimental data, the NNSDs are conclusive only
after accounting for missing levels. Because of that, we proceed
similarly in the following two sections about the statistical
measure’s number variance and spectral rigidity and explain
them by means of the simulated data first. The experimental
measurements will be discussed afterward in detail in Sec. IV
involving all statistical measures.

C. Number variance �2(L)

The NNSD gives information on the repulsion of energy
levels and shows correlations on the shortest possible scale,
namely, on the scale of one or two mean spacings. Accordingly,
the NNSD is sensitive with respect to the unfolding procedure,
missing levels and the fitting procedure used for its description,
however, by far not as sensitive as long-range correlations.
Thus the NNSD itself does not serve as a significant measure
for GOE or Poisson behavior. One additional measure for
spectral statistics, which gives information on long-range
correlations, is given by the variance �2(L) of the number
ν(L) of unfolded levels in an interval with length L [38],

�2(L) = 〈ν2(L)〉 − 〈ν(L)〉2. (11)

Here the angular brackets stand for a spectral average. Like a
variance in stochastics, also the quantity�2(L) gives the mean-
square deviation of the number of energy levels in an interval
L from their mean L. For uncorrelated Poissonian spectra,
�2

P(L) grows linearly with the correlation length L. For highly
correlated GOE spectra, the variance �2

GOE(L) grows slower
according to a logarithmic slope for large L. For our case of
three superimposed subspectra, the spectral correlation is lower
as in the GOE case. The resulting curve for�2

3GOE(L) can easily
be calculated [38]:

�2
3GOE(L) =

3∑
m=1

�2
GOE

(
L

3

)
. (12)

Figure 4(a) shows the level number variance for the simulated
data with J = 9

2 , . . . , 13
2 and the theoretical curves for the cases

of Poissonian statistics, GOE statistics, and the statistics of
three convoluted GOE spectra. The data matches the expected
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FIG. 4. (a) Number variance �2(L) and (b) spectral rigidity
�3(L) for the simulated data with J = 9

2 , . . . , 13
2 . The error bars

display the standard deviation of the binning process. The theory
curves for Poissonian, GOE, and 3GOE statistics are given as gray
lines.

curve for three superimposed GOE spectra (3GOE) perfectly
up to a correlation length of L � 3.5. Only for higher L,
the data points gradually start to deviate from the theoretical
expectation of 3GOE, but still are significantly off from the
Poissonian curve. This finding can be interpreted as GOE-like
statistics for each of the involved J subspectra as already
predicted in [34]. Nevertheless, another observable for long-
range correlation statistics, the spectral rigidity �3(L), will be
investigated as a further preparation step for the data analysis
presented in Sec. IV.

D. Spectral rigidity �3(L)

The spectral rigidity or Dyson-Metha statistic �3(L) is
defined as the least-squares deviation of the unfolded staircase
function ν(ξ ) from the best linear fit. Note that after proper
unfolding the smooth part of the staircase function is by
definition a straight line. The spectral rigidity �3(L) is given
as

�3(L) = 1

L

〈
min
A,B

∫ ξs+L

ξs

[ν ′(ξ ) − Aξ − B]2dξ

〉
, (13)

where ξs defines the first unfolded level energy of an interval
of length L [38,39]. Due to its definition, the spectral rigidity
is comparable to a χ2 depending on the correlation length L.
Since �3 is rather similar to �2, the spectral rigidity can also
be expressed as an integral transform of the number variance
[38]

�3(L) = 2

L4

∫ L

0
(L3 − 2L2r + r3)�2(r )dr. (14)

Similar to the number variance, for the Poissonian case of
noncorrelated spectra (14) also leads to a linear expression of
�P

3 (L) = L
15 , while �GOE

3 (L) for correlated GOE spectra again
follows a logarithmic trend for large L. The resulting curve
for three superimposed GOE spectra is simply calculated in
analogy to Eq. (12) by [38]

�3GOE
3 (L) =

3∑
m=1

�GOE
3

(
L

3

)
. (15)

Figure 4(b) shows the spectral rigidity for the three super-
imposed simulated subspectra with J = 9

2 , . . . , 13
2 as well as

the theory curves for Poisson, GOE, and convoluted GOE
statistics. The rather small error bars again stem from the

standard deviations of each bin. Like the number variance,
also the spectral rigidity confirms chaotic GOE behavior of
the simulated data for every involved J subset. The data fit the
expected theory curve up to correlation lengths of L � 5 and
start to slightly deviate above.

As described earlier in this section, the spectral rigidity
is calculated from the number variance, which makes both
quantities very similar by definition. Therefore, and because
of its more smooth character due to the “smoothing” integral
transform in Eq. (14), only �3(L) will be utilized as a measure
for long-range correlations of the energy levels in the following
analysis of the experimental data.

III. MISSING LEVELS

For an accurate analysis of the experimental data sets it is
mandatory to take into account the possibility of missing levels
leading to incomplete spectra. The incompleteness of a spec-
trum will influence the spectral statistics leading to either more
GOE-like or more Poissonian-like behavior. Imagine levels are
“overlooked” due to the obviously finite spectral resolution
of the experiment, where two or more levels may overlap,
especially with increasing level density. Also resonances with
intensities below the detection threshold may be missed. If
levels are randomly extracted from the spectra, all statistical
measures for the spectral properties of such incomplete spectra
will show a displacement towards Poissonian statistics, simply
because the correlation between levels is decreased. In our
experiment, which utilizes resonance ionization spectroscopy,
such situations cannot be avoided. In addition, especially
as three J submanifolds are superimposed, the strength for
transitions in subspectra of one specific J value might be
significantly suppressed compared to the others. This causes
the missing of levels in the respective J submanifold. In this
case, the fluctuation properties would exhibit a displacement
towards GOE-like behavior for every subspectrum, if the
complete spectra exhibit GOE, because the correlations in each
independent subspectrum seem to be higher if levels from
only one J submanifold are missing. One possible method
for characterizing the consequences for a certain number of
missing levels in the experimental data is to randomly delete
a specific percentage of levels from a set of levels from which
we know that it shows GOE statistics.

A. Random matrices

The members of the Gaussian orthogonal ensemble are
real symmetric matrices with Gaussian-distributed entries that
are invariant under real orthogonal transformations [43]. We
generated such matrices with dimension N = 300. In order to
simulate the experimental situation, where the level sequences
are composed of three independent subspectra corresponding
to different values of J , we merged the eigenvalues of three
random matrices into one sequence before applying the unfold-
ing procedure. In order to improve the statistical significance
we considered ensembles composed of five such sequences,
thus yielding a set of 4500 levels.

Figure 5 shows the statistical measure for long-range
correlation �3(L) as well as the residuals from fitting the
CNNSD with the convolution of three Brody functions and
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the Abul-Magd distribution for this set of eigenvalues. In the
inset of Fig. 5, a Brody parameter of η = 1.00(23) and an
Abul-Magd parameter of f = 0.34(4) illustrate the expected
repulsion of the nearest neighbors in a convolution of three
GOE spectra. Even though the fits are lying at slightly higher
values than the data, the small residuals also confirm the
two extracted repulsion parameters and their uncertainties. In
addition, the RMT data coincide perfectly with the theoretical
results for the spectral rigidity. Thus, the dimension of the
random matrices is large enough to ensure good agreement
of the numerical simulations with the theoretical results for
correlation lengths in ranges relevant for the experimental data.

B. Missing level statistics

As mentioned above, we have to take care of two types of
missing levels. First, there may be randomly missing levels
regardless of the subset, or in our case of the J value. Second,
levels of a specific subset, or synonymous J manifold, might
be suppressed at random and thus not detected. There actually
exist exact analytical results for incomplete eigenvalue spectra
of random matrices from the Gaussian ensembles [44] which
can be generalized to the case of a superposition of three
independent GOE matrices. However, because of the fact that
we here have to deal with the above-mentioned cases of missing
levels, the chosen way of using random matrix ensembles
is more straightforward. In the following we will focus on
the first case. The second case will be analyzed in detail in
Sec. III C.

We simulated the first case by removing a specific percent-
age of randomly chosen levels from the total set of eigenvalues.
To match the experimental situation, this has to be done before
the unfolding process takes place. We created an ensemble of
random matrices which will have slightly differing spectral
properties. To extract the universal fluctuation behavior for
a specific percentage of missing levels, we analyzed the
distributions of the Brody and Abul-Magd parameters deduced
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FIG. 6. Dependence of (a) the Brody parameter and (b) the Abul-
Magd parameter on the percentage of missing levels regardless of the
level subset. For each data point the distribution of the parameters for
100 different level sets has been evaluated. The red lines show linear
fits to the data with fit parameters of (a) 0.9902(54) and −0.0095(1)
and (b) 0.3474(21) and −0.0027(1) for the intercepts and slopes,
respectively.

from fits to the NNSD of 100 level sets for various values of
the percentage of missing levels. The resulting distributions
are of Gaussian shape and the center positions together with
the HWHM values as uncertainties are displayed in Fig. 6 for
various percentages of missing levels reaching from 2% to
90%. Both parameters are linearly decreasing as a function
of omission percentage. Thus, as expected, the correlations
between the remaining neighboring levels are reduced with
increasing fraction of missed eigenvalues.

For each fraction of missing levels a representative set of
eigenvalues was identified for which a fit of the convoluted
Brody and Abul-Magd distributions to the NNSD yields values
of η and f as evaluated via Fig. 6. For these data sets also the
dependence of the spectral rigidity �3(L) on the fraction of
missing levels has been obtained. Figure 7 shows the spectral
rigidity for a choice of percentages of missing levels regardless
of their J value, i.e., subset. The plots concerning that type of
missing level are labeled with “All J missing.” The data for the
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FIG. 7. Spectral rigidity for different percentages of missing
levels from all subsets as colored dashed lines with increasing
percentages from top to bottom. The colored solid lines represent the
spectral rigidity for different percentages of missing levels from one
certain subset with increasing percentages from bottom to top. The
curves for Poissonian, GOE, 2GOE, and 3GOE behavior are given as
gray dotted lines. For more information see the text.
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FIG. 8. Dependence of (a) the Brody parameter and (b) the Abul-
Magd parameter on the percentage of missing levels in one specific
level subset. For each data point the distribution of the parameters for
100 different level sets has been evaluated. The red lines show a cubic
fit to the data.

different percentages of missing levels are given as differently
colored dashed lines, while the curves for Poissonian and
convoluted GOE behavior are given as gray dotted lines. The
error bars are omitted in these graphs for the sake of clarity. The
remaining graphs will be discussed in Sec. III C. As expected
from the features of the NNSDs, the correlations between the
remaining levels dwindle the more levels have been taken out,
thus the corresponding spectral rigidity approaches the curve
for Poissonian statistics accordingly. In contrast to the NNSDs,
this approach does not take place in a linear manner: A clear
deviation of �3(L) from the 3GOE curve is observed not
before approximately 30% of missing levels, at least within
these rather short correlation lengths.

C. J suppression

Comparable to the approach in Sec. III B, here also specific
amounts of levels are deleted, but now from only one subset
in order to simulate the suppression of levels with a specific
J value. We proceeded as in Sec. III B and thus obtained for
the NNSD parameters a dependence on η and f as illustrated
in Fig. 8. Unlike in Fig. 6, here the parameters η and f

are well described by a cubic increase with an increasing
number of missing levels.1 Both starting at the values for
NNSDs of three convoluted GOE spectra around η = 1 and
f = 1

3 , the parameters remain fairly unchanged until about
30% of missing levels. From this point on the parameters
are quickly approaching their final values of η = 1.71(2) and
f = 0.51(0.2) at 99% missing levels. Of course, a Brody
parameter larger than η = 1 is not very meaningful if a single
spectrum is evaluated. Contrarily, it accentuates in our case
the increase in level correlation due the reduced influence of
one of the independent subsets. Also the Abul-Magd parameter

1Cubic and quadratic fits have been tested, both with an fixed
apex at 0% missing levels to guarantee a monotonically increasing
function. Because of the worse adjusted R2 for the quadratic fits
of R2

η = 0.9972 and R2
f = 0.9955, respectively, in addition to larger

residuals in comparison to the cubic fits—here the adjusted R2 were
R2

η = 0.9975 and R2
f = 0.9999, respectively—we decided to rely on

the cubic fits. We presume that the dependence would be described
best by a quadratic function if levels from two subsets, not one or all
three, would be taken out. A proof for that conjecture as well as a
reason for the found dependences is pending.

delivers the expected value for a convolution of now only two
GOE subspectra with n = 1

f
≈ 2.

Again, representative level sets are found with NNSDs
predicted by the distribution of η and f as given in Fig. 8.
From these representative sets the spectral rigidity �3(L) was
calculated for several percentages of missing levels. Figure 7
illustrates the results for this type of missing levels as graphs
labeled with “One J missing.” The theory curves for one,
two convoluted, and three convoluted GOE spectra are given
together with the curve for the Poissonian case as gray dotted
lines. The analyzed data are given as solid lines, differently
colored according to the number of missing levels. At first
sight it is recognizable that the colored solid lines of Fig. 7 lie
between the theory curves of 2GOE and 3GOE. Accordingly,
the spectral rigidity �3(L) shows the expected trend: Starting
at the 3GOE curve, it approaches the 2GOE curve where it
finally ends up. Note that the curve for 99% missing levels
also fully agrees with the 2GOE curve within its uncertainty
range, which was omitted here for the sake of clarity. That
behavior corresponds to the increase of spectral correlation as
seen before in the NNSDs of Fig. 8. Remarkably, �3(L) does
not change very much for percentages of missing levels below
40%–50%, like it was already suggested by the behavior of the
NNSD parameters in Fig. 8.

Note that in a spectroscopic experiment, naturally a mixture
of both types of missing levels will occur. As described in
Secs. III B and III C, either type has a more or less opposite
influence on the measures for spectral correlations. Thus, a
specific ratio of the occurrence of both types might lead to
a compensation of the effects on one of the measures for
spectral correlations. Since the effects caused by missing levels
are strongly nonlinear for the various statistical measures, we
expect that a simultaneous cancellation for all of them is not
possible. Hence, in the following analysis of experimental data,
always the residuals of the fits for the CNNSD and the spectral
rigidity are evaluated.

IV. SPECTROSCOPIC DATA

Based upon the statistical measures for spectral fluctuation
properties introduced in Sec. II and the results on missing
level statistics presented in Sec. III, we can now begin with
a detailed analysis of the vast spectroscopic data of the pro-
tactinium atom. We will analyze several spectra composed of
mainly three subspectra with individual total angular momenta
covering different ranges of excitation energy and both parities.

A. Literature data

Data available in the literature [33] cover excitation energies
from the ground state at 0 eV up to about 4.5 eV and both
parities. We furthermore merged the levels with total angular
momenta of J = 9

2 , . . . , 13
2 into one data set. Even-parity levels

with an excitation energy above 2 eV have been omitted be-
cause of incompleteness indicated by the sharp cutoff observed
in Fig. 1 in the left inset. For odd-parity levels we proceeded
similarly by also omitting levels for energy ranges where
obviously levels are missing according to the level density;
in this case levels with excitation energies above 3.7 eV are
neglected. Due to the low total count of only 46 energy levels,
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FIG. 9. Spectral rigidity for low-energy odd-parity levels of [33].
The error bars display the standard deviation of the binning process.
The theory curves for Poissonian, GOE, and 3GOE statistics are given
as gray lines. The inset comprises the residuals of the CNNSD for the
fitted Brody convolution (red dashed line) and the fitted Abul-Magd
distribution (blue solid line).

the even spectrum is not significant and is thus only discussed
in Appendix A.

Within the superimposed odd-parity spectrum, we analyzed
a total of 217 levels. Figure 9 shows the results of this
analysis. The parameters of the Abul-Magd function and
the composition of three Brody functions of f = 0.33(9)
and η = 1.45(49), respectively, predict 3GOE level statistics
of these energetically low-lying energy levels. However, the
MLH fit somewhat overestimated the Brody parameter. This is
probably caused by the midsize level spacings, where both
functions have problems to fit the data as visible in the
residual plot of the CNNSD in the inset of Fig. 9. The spectral
rigidity �3(L) perfectly coincides with the 3GOE curve up
to correlation lengths of about L = 4.5, which is comparable
to the correlation length of the simulated data as analyzed in
Fig. 4.

From these level statistics we learn two important things.
(i) The analyzed level sequence tabulated in [33] shows

no apparently missing levels. This seems to be the fact
also for the case of the even-parity levels analyzed in
Appendix A.

(ii) Already at these very low energies (the spectrum
reaches from 0.8 to 3.7 eV) the level fluctuations are not
distinguishable anymore from 3GOE statistics, at least within
the correlation lengths mentioned above.

Especially the second point is remarkable, as it affects a
detailed investigation of the transition region into the chaotic
regime. As pointed out in Sec. I, regularity and intrinsic
quantum chaos are coexisting in a specific energy region until
the chaotic behavior finally becomes prevalent above. In order
to analyze the spectral statistics in this region, the spectrum
has to be divided into several parts which need to be analyzed
separately. Unfortunately, the transition is apparently located
at such low excitation energies that the number of levels in
the individual parts of the spectrum is too low to extract
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FIG. 10. Spectral rigidity for the midenergy even-parity levels
of the SES scheme from [31]. The error bars display the standard
deviation of the binning process. The theory curves for Poissonian,
GOE, 2GOE, and 3GOE statistics are given as gray lines. The
inset comprises the residuals of the CNNSD for the fitted Brody
convolution (red dashed line) and the fitted Abul-Magd distribution
(blue solid line).

statistically significant information on the spectral properties
of this region.

B. The SES scheme

In the following we discuss the spectral statistics of
three representative spectra of even-parity levels identified in
Ref. [31], covering different energy ranges and both types of
missing levels; an example of spectral statistics for odd-parity
levels is additionally given in Appendix B. The spectrum
of the SES scheme of [31], also shown in Fig. 1, covers a
medium-energy range around 4.5 eV. Since excitation starts
from an excited level with J = 11

2 , the detected levels may
have values for total angular momentum in the range J =
9
2 , . . . , 13

2 . With 28 energy levels this spectrum constitutes the
shortest level sequence evaluated here and thus suffers from
low statistical significance, which also results in very large
uncertainties. Nonetheless, the analysis of the observables for
level fluctuations, as comprised in Fig. 10, reveals spectral
statistical properties that can be well understood if missing
levels are taken into account. Already the η and f parameters of
the CNNSD, η = 1.46(103) and f = 0.58(29), respectively,
predict an overestimation of chaotic behavior which would be
caused by missing levels of one specific submanifold, even
though the large residuals as shown on the inset of Fig. 10
suffer by the low statistical significance. Comparing the data
in Fig. 10 with the curves in Figs. 7 and 8, one can estimate
that a very high percentage of one J manifold of more than
80% must be missing due to the J suppression discussed in
Sec. III C. Most important for the SES scheme is that the data
clearly deviate from nonchaotic Poissonian behavior, which
testifies again to the presence of IQC in the protactinium atom
already at low excitation energies.
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FIG. 11. Spectral rigidity for the high-energy even-parity levels of
scheme (iii) from [31]. The error bars display the standard deviation of
the binning process. The theory curves for Poissonian, GOE, 2GOE,
and 3GOE statistics are given as gray lines. The inset comprises the
residuals of the CNNSD for the fitted Brody convolution (red dashed
line) and the fitted Abul-Magd distribution (blue solid line).

C. Scheme (iii)

The spectrum of excitation scheme (iii) in [31] with a total
of 226 spectrally investigated energy levels involving total
angular momenta of J = 9

2 , . . . , 13
2 is much more significant

in terms of statistics. The spectral properties of this scheme
covering high-energy regions just below the ionization poten-
tial are summarized in Fig. 11. The spectral rigidity follows the
curve for 2GOE similarly to the SES midenergy scheme up to
correlation lengths around L = 5. For higher L the spectral
rigidity starts to slowly fluctuate between the curves for 2GOE
and 3GOE. Regarding the inset of Fig. 11, the CNNSD is
well described by the fitted distributions with η = 1.19(44)
and f = 0.49(10), also predicting a slight overestimation of
the GOE behavior of each involved J subset. Only for the
smallest spacings, the residuals are somewhat larger, which can
be explained by missing levels. Once again, the observables
for the CNNSD and �3(L) clearly deviate from Poissonian
statistics consistently exhibiting an overestimation of GOE
statistics due to suppression of transitions leading into levels
with a certain total angular momentum J .

D. Scheme (vi)

For scheme (vi) from [31] with a total of 173 analyzed
energy levels also lying in an energy range just below the
ionization potential and having total angular momenta of
J = 9

2 , . . . , 13
2 , the situation regarding the spectral properties

is consistent and convincing, although it is not satisfactory
for the applied spectroscopic method: Inspecting the spectral
fluctuation properties in Fig. 12, the results imply a high
number of missing levels in this scan, here regardless of
J . A Brody parameter of η = 0.64(28) and an Abul-Magd
parameter of f = 0.27(11) already suggest a percentage of
more than 30%−40% missing levels if compared to Fig. 6. In
addition, the residuals depicted on the inset of Fig. 12 show
strong deviation of both fitted distribution only for very small
spacings, which is also clearly provoked by missing levels. The

0 1 2 3 4 5

0

5

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

I3B(s, 0.64)

C
N
N
S
D
R
es
.(
%
)

s

IAM(s, 0.27)
70
%

80
%

Po
iss
on

Δ 3
(L
)

L

3GOE

GOE

FIG. 12. Spectral rigidity for the high-energy even-parity levels
of scheme (vi) from [31]. The error bars display the standard deviation
of the binning process. The theory curves for Poissonian, GOE, and
3GOE statistics are given as gray solid lines. Additionally, the curves
for 70% and 80% of missing levels regardless of their total angular
momentum are included as gray dashed lines. The inset comprises the
residuals of the CNNSD for the fitted Brody convolution (red dashed
line) and the fitted Abul-Magd distribution (blue solid line). For more
information see the text.

result for �3(L) in Fig. 12 lies exactly between the two gray
dashed curves for 70%−80% missing levels as evaluated in
Sec. III B. The very long correlation lengths of this coincidence
together with the consistency of the distribution parameters η

and f , the corresponding residuals, and the evaluated spectral
rigidity validates the applied methods of analysis. Despite the
rather large amount of missing levels obtained in this excitation
scheme (vi), a full expression of intrinsic quantum chaos seems
nonetheless confirmed.

V. CONCLUSION AND OUTLOOK

We have analyzed several sets of energy levels of the
protactinium atom concerning their spectral fluctuation prop-
erties. The sets are of different origins, stemming from the
literature [33], calculations [34], and recent experimental data
[31]. Since the experimental data were not separable into sets
with only one total angular momentum J , all analyzed data,
separable for J or not, were composed for incorporating the
same range of J levels as the experimental data. Moreover,
for the spectroscopic data, it was essential to investigate the
influence of missing levels on the spectral fluctuations, which
was performed accurately. Therefore, randomly levels were
taken out either from the whole spectrum or only from one
subspectrum of three superimposed submanifolds simulated
by three GOE matrices in order to correctly simulate the
experimental situations. In addition, the mathematical analysis
of the statistical measures had to be customized for the special
difficulty of nonseparability for the “good” numbers, or at least
for the total angular momentum J .

As already suggested in [34], besides the short-range
correlation of the therein investigated NNSD, �3(L) clearly
indicate agreement with GOE behavior. This was confirmed
using the available data from the literature [33] for odd-parity
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levels as well as even-parity levels with lower significance.
For the experimental data recently obtained in [31], it was
possible with extensive analysis of the missing level problem
also to extract level statistics that coincide well with those of
a composition of three independent GOE spectra. The spectral
statistics for all cases studied strongly deviate from Poissonian
statistics, or nonchaotic behavior, and therefore emphasize
the prognosticated occurrence of IQC in the protactinium
atom.

At excitation energies below 2 eV the energy levels avail-
able in the literature [33] already show chaotic level statistics.
This means that the onset of chaos, or synonymously the
transition point from regular to chaotic behavior, must be
located at even lower energies. In such low-energy regimes,
the level density is too small to extract the spectral properties
of this transition region with high statistical significance. As a
future prospect, one approach to account for the low number
of energy levels is to combine several unfolded level sets with
excitation energies centered in this region of different elements
with comparable atomic properties, i.e., a similar number of
open shells and active electrons.

For a quantification of the missing levels of either type,
an empirical function that describes the influence of missing
levels on the fluctuation laws would be the method of choice.
Fitting such a function to the NNSD and the spectral rigidity
of experimentally determined data sets could unveil even
more details of the spectral properties of the underlying level
subsets.
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APPENDIX A: SPECTRAL STATISTICS OF EVEN-PARITY
LITERATURE DATA

Figure 13 shows the spectral statistics for the even-parity
energy levels that can be found in the literature [33]. Even
though the results are not significant due to too few levels (only
46) involved, the observables for the short-range correlation
between the energy levels promise a full expression of chaos:
While the parameters of the composition of three Brody
functions and the Abul-Magd function of η = 0.91(78) and
f = 0.31(21), respectively, are close to the ideal values of
f = 1

3 and η = 1 and thus already suggest GOE behavior,
the spectral rigidity is more sensitive to non-GOE features.
Here, similar to the short-range correlation due to their large
uncertainties, also the spectral rigidity is not very conclusive,
which is also confirmed by the rather large residuals in the
inset of Fig. 13: Regarding small correlation lengths L, it might
coincide with regular just as well as with 3GOE statistics. Only
for larger L, the spectral rigidity starts to deviate more strongly
from the Poissonian statistics. Despite the poor statistics, the
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FIG. 13. Spectral rigidity for low-energy even-parity levels of
[33]. The error bars display the standard deviation of the binning
process. The theory curves for Poissonian, GOE, and 3GOE statistics
are given as gray lines. The inset comprises the residuals of the
CNNSD for the fitted Brody convolution (red dashed line) and the
fitted Abul-Magd distribution (blue solid line).

results seem to be consistent with those for the odd-parity
energy levels of [33] in Sec. IV A.

APPENDIX B: SPECTRAL STATISTICS OF ODD-PARITY
LEVELS FROM SCHEME (viii)

With scheme (viii) from [31], a spectrum with 168 odd-
parity energy levels lying in the energy region just below the
ionization potential is investigated regarding level correlations
and spectral statistics. The corresponding observables for the
spectral statistics, namely, the η and f parameters for fitting
the CNNSD with the corresponding residuals and the spectral
rigidity �3(L), are comprised in Fig. 14. For the explanation
of the results, the consideration of missing levels is again
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FIG. 14. Spectral rigidity for the high-energy odd-parity levels of
scheme (viii) from [31]. The error bars display the standard deviation
of the binning process. The theory curves for Poissonian, GOE, 2GOE,
and 3GOE statistics are given as gray lines. The inset comprises the
residuals of the CNNSD for the fitted Brody convolution (red dashed
line) and the fitted Abul-Magd distribution (blue solid line).
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mandatory. The spectral rigidity �3(L) exhibits a behavior
very close to the curves for 2GOE, which would be explained
by the case of missing levels from only one J manifold. In
addition, the results for the distribution parameters, which
are with η = 1.18(38) and f = 0.64(13) close to a 2GOE
behavior, testify to this overestimation of chaoticity due to

the missing levels. Even though the residuals shown in the
inset of Fig. 14 are at least for small spacings quite large,
also here the spectral statistics clearly deviate from pure
Poissonian behavior and therefore also these data seem to
prove the quantum chaotical behavior of the protactinium
atom.
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