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The original formulation [M. Piris, Phys. Rev. Lett. 119, 063002 (2017)] of the natural-orbital-functional
second-order-Møller-Plesset (NOF-MP2) method is based on the MP2 that uses the canonical Hartree-Fock
molecular orbitals. The current work presents a reformulation of the dynamic energy correction based on the
orbital-invariant MP2, which allows one to attain both dynamic and static correlations even for those systems
with strong orbital localizability and significant multiconfigurational character. To improve the reference Slater
determinant formed with natural orbitals, the natural orbital functional that generates them is also modified to
take into account only the interpair static correction. This more general NOF-MP2 is able to dissociate properly
noble-gas dimers, which remain as nonbound species within the canonical formulation. Test calculations in a
selected set of 30 polyatomic molecules demonstrate a substantial improvement not only of the relative energies,
but also of the total energies calculated with the NOF-MP2 method.

DOI: 10.1103/PhysRevA.98.022504

A reliable electronic structure method must be able to
describe, in a balanced way, both static (nondynamic) and
dynamic electron correlation [1,2]. Recently [3], a single-
reference global method for electron correlation was intro-
duced, taking as reference the Slater determinant of natural
orbitals (NOs) obtained from an approximate natural orbital
functional (NOF) [4]. In this approach, the total energy is
formed as Ẽhf + Edyn + Esta, where Ẽhf is the Hartree-Fock
(HF) energy obtained with NOs, the dynamic energy (Edyn) is
derived from a modified second-order-Møller-Plesset pertur-
bation theory (MP2), while the nondynamic energy (Esta) is
obtained from the static component of the NOF.

The success of the method, called NOF-MP2, is determined
by the NOs used to generate the reference. In [3], orbitals were
obtained from the Piris natural-orbital-functional 7 (PNOF7)
there proposed: an interacting-pair model that recovers the
intrapair but only static interpair correlation. As a consequence,
PNOF7 NOs can be localized in certain regions of space,
depending on the degree of interaction between the electron
pairs. When the interpair nondynamic correlation is negligible,
these orbitals turn out to be close to the known NOs of the
independent-pair model (PNOF5) [5]. In general, NOs will be
located in those regions where their atomic orbitals responsible
for the intrapair and static correlation are found. It is worth
noting that localized NOs provide an orbital picture with a
clear chemical meaning [6] that is not easy to obtain using
canonical orbitals.

On the other hand, Edyn was formulated [3] from traditional
MP2 energy that involves the use of canonical HF molec-
ular orbitals; therefore, a reformulation of dynamic energy
correction is necessary so that any type of orbital can be
used. Perturbation theory with noncanonical orbitals (in most
cases, localized orbitals) has been formerly used [7,8] in order
to speed up processing times. As Pulay pointed out [9], the

increase in computational cost associated with the increase in
the number of electrons is not justified and is mainly due to the
use of canonical orbitals. In the last three decades, the orbital
localizability has been exploited by several approaches known
as linear-scaling methods [10]. The latter have extended the
applicability of wave-function-based correlation methods to
larger electronic systems. Consequently, an additional motiva-
tion for a reformulation of Edyn is the possibility of computer
savings.

The present work pursues two objectives: on the one hand,
improve NOs with which the reference determinant is built
and, on the other hand, propose a correction Edyn based on the
orbital-invariant (OI) MP2 energy. As a result, a variant of the
method we will call NOF-OIMP2 emerges, whereas from now
on we will refer to the original version as NOF-canonical MP2
(NOF-cMP2).

In NOF theory [11,12], the ground-state electronic energy
(E) is given in terms of the NOs {φi} and their occupation
numbers (ONs) {ni}. Unfortunately, the exact reconstruction
E[{ni, φi}] has been an unattainable goal so far; therefore
we are talking about orbitals that diagonalize the one-particle
reduced density matrix (1-RDM) corresponding to an ap-
proximate ground-state energy, and it is more appropriate to
talk about NOF instead of a 1-RDM functional due to the
existing dependence on the reconstructed two-particle RDM
(2-RDM).

Restrictions on the ONs in the range 0 � ni � 1 repre-
sent the necessary and sufficient conditions for ensemble N-
representability of 1-RDM [13] under the normalization condi-
tion

∑
i ni = N . Note that we focus on the N-representability

problem for statistical one-matrix ensembles since to guarantee
the pure-state N-representability conditions [14,15], only 1-
RDM ensemble constraints are necessary if E[{ni, φi}] is a
pure N-representable functional [16,17].
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In approximate one-particle theories, the 2-RDM plays a
dominant role that determines the functional N-representability
[4]. The use of 2-RDM ensemble N-representability conditions
[18] for generating a reconstruction functional was proposed in
Ref. [19], where auxiliary matrices � and � were introduced
to reconstruct the two-particle cumulant [20]. In this paper, we
address only singlet states and adopt a restricted spin theory,
so that energy reads

E = 2
∑

p

npHpp +
∑
qp

�qpLpq

+
∑
qp

(nqnp − �qp )(2Jpq − Kpq ), (1)

where Hpp denotes the diagonal elements of the core Hamil-
tonian, while Jpq , Kpq , and Lpq are the direct, exchange, and
exchange-time-inversion [21] integrals. Appropriate forms of
matrices � and � lead to different implementations known
in the literature as PNOFi (i = 1−7) [3,22,23]. The case of
PNOF5 [24,25] is remarkable, which turned out to be pure
N-representable [26,27].

The conservation of the total spin allows one to derive the
diagonal elements �pp = n2

p and �pp = np [28]. The 2-RDM
N-representability D and Q conditions lead to inequalities
�qp � nqnp and �qp � hqhp [19], where hp = 1 − np. To
fulfill the G condition, the off-diagonal elements of the �

matrix must satisfy the constraint [29]

�2
qp � (nqhp + �qp )(hqnp + �qp ). (2)

For a given approximation of �qp, it is evident that the
modulus of �qp is determined from Eq. (2) assuming the
equality; however, there is no hint to determine the sign of
�qp. The requirement that for any two-electron singlet the
NOF (1) yields the accurate energy expression obtained from
the exact wave function [30] implies [29] that �qp = nqnp and
|�qp| = √

nqnp, respectively. Furthermore, the phase factor of
�qp can be +1 if q, p ∈ (1,∞), and −1 otherwise.

To achieve a model of independent pairs with N > 2,
the orbital space � is divided into N/2 mutually disjoint
subspaces �g , so each subspace contains one orbital g below
the level N/2, and Ng orbitals above it, which is reflected
in additional sum rules for the ONs (

∑
np = 1, p ∈ �g). In

what follows, let us consider Ng equal to a fixed number
that corresponds to the maximum value allowed by the basis
set that is used. Keeping �qp = nqnp and generalizing the
two-electron expression for off-diagonal elements of the �

matrix, namely, �
g
qp = √

nqnp if q, p > N/2, and �
g
qp =

−√
nqnp if q = g or p = g, we obtain the extended PNOF5

[25].
In Ref. [3], nonzero �qp elements were considered among

orbitals belonging to different subspaces [3], whereas �qp = 0.
From Eq. (2) follows that provided the �qp vanishes, |�qp| �
�q�p with �q = √

nqhq . Assuming equality, and generaliza-
tion of the sign convention adopted for extended PNOF5, i.e.,
��

qp = �q�p if q, p > N/2, and ��
qp = −�q�p otherwise,

led to PNOF7 [3].
Another possible option, which favors decreasing of the

energy (1), is to consider all the interpair factors to be negative,
ergo, ��

qp = −�q�p. Recently [31], we have analyzed several
examples with strong static correlation, specifically the one-

dimensional Hubbard model with up to 14 sites and rings with
up to 16 hydrogens. Compared with accurate diagonalization
calculations, our results indicate that all-negative interpair
factors is a better option.

In addition, it would be convenient to take into account
the interpair static correction in the NOF from the outset,
thus preventing the ONs and NOs from suffering an interpair
nondynamic influence, however small, in the dynamic corre-
lation domains. Taking into account the fg-th interpair static
correlation energy [3],

Esta
fg =

∑
p∈�f

∑
q∈�g

4�p�q ��
qp Lpq =

∑
p∈�f

∑
q∈�g

�s
qp Lpq, (3)

we attain the following NOF:

E =
N/2∑
g=1

∑
p∈�g

⎡
⎣np(2Hpp + Jpp ) +

∑
q∈�g,q �=p

�g
qpLpq

⎤
⎦

+
N/2∑
f �=g

∑
p∈�f

∑
q∈�g

[
nqnp(2Jpq − Kpq ) + �s

qpLpq

]
, (4)

where �s
qp = −4nqhqnphp. This approach will henceforth be

referred to as PNOF7s and will provide the reference NOs to
form Ẽhf in the NOF-OIMP2 method. The “s” in PNOF7s
emphasizes that this interacting-pair model takes into account
only the static correlation between pairs, and therefore avoids
double counting in the regions where the dynamic correlation
predominates, already in the NOF optimization.

Like PNOF7, PNOF7s produces qualitatively correct
potential-energy curves (PECs) for the dozen diatomic
molecules studied in Ref. [3]. These systems cover a wide range
of values for binding energies (De) and bond lengths (Re);
however, in all cases, the correct dissociation limit implies
a homolytic cleavage of the bond with a high degree of
degeneracy effects. In Table I, a comparison between both
functionals is shown. The experimental bond lengths are

TABLE I. Comparison between PNOF7 and PNOF7s using the
cc-pVTZ basis set.

Re (Å) De (kcal/mol)

Molecule PNOF7 PNOF7s Expt. PNOF7 PNOF7s Expt.

H2 0.743 0.743 0.743 108.6 108.6 109.5
LiH 1.604 1.603 1.595 56.1 56.4 58.0
Li2 2.667 2.644 2.673 23.3 23.4 24.4
BH 1.232 1.228 1.232 75.7 81.0 81.5
OH−a 0.966 0.961 0.964 87.0 93.6
HF 0.915 0.918 0.917 106.7 114.4 141.1
LiF 1.576 1.561 1.564 95.4 104.6 139.0
N2 1.097 1.089 1.098 188.9 181.2 228.3
CN−a 1.186 1.169 1.177 212.0 202.7 240.7
CO 1.120 1.115 1.128 178.1 191.4 259.3
NO+ 1.056 1.048 1.063 179.9 189.8
F2 1.579 1.502 1.412 2.6 10.1 39.2

aaug-cc-pVTZ was used.
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taken from the National Institute of Standards and Technology
(NIST) Database [32], whereas the experimental dissociation
energies result from a combination of Refs. [32] and [33].
The correlation-consistent valence triple-ζ basis set (cc-pVTZ)
developed by Dunning [34] was used throughout, except for the
anionic species where the augmented basis set (aug-cc-pVTZ)
was used.

Table I shows a slight shortening of the equilibrium dis-
tances obtained with PNOF7s compared to those obtained with
PNOF7, whereas the dissociation energies experience a slight
increase, except in the cases of N2 and CN−. These minor
effects are related to the prevention of considering nondynamic
correlation between pairs in the equilibrium regions where the
dynamic correlation prevails, and should lead to an improve-
ment in the Re and De calculated with the NOF-MP2 method.
As was pointed out in [3], the results are in good agreement
with the experiment for the smaller diatomics, for which the
electron-correlation effect is almost entirely intrapair. When
the number of pairs increases, the theoretical values deteriorate,
especially for the dissociation energies. This is related to a
better description of the asymptotic region with respect to the
equilibrium, and therefore it is necessary to add the dynamic
electron correlation between pairs.

Now we focus on the reformulation of Edyn. In the 1980s,
Pulay and Saebø introduced an orbital-invariant formulation
of MP2, the details of which can be found elsewhere [7,35].
The first-order wave function is a linear combination of all
doubly excited configurations, and their amplitudes T

fg
pq are

obtained by solving the equations for the MP2 residuals. The
MP2 energy correction takes the form

E(2) =
N/2∑

g,f =1

M∑
p,q>N/2

〈gf |pq〉[2T gf
pq −T fg

pq

]
, (5)

where M is the number of basis functions and 〈gf |pq〉 are the
matrix elements of the two-particle interaction.

In NOF-cMP2, Edyn is obtained as the canonical E(2)

modified to avoid double counting of the electron correlation
[3]. The latter is divided into intra- and interpair contributions,
and the amount of dynamic correlation in each orbital p is
defined by functions Cp of its occupancy, namely,

C intra
p =

{
1 − 4h2

p, p � N/2

1 − 4n2
p, p > N/2,

(6)

C inter
p =

{
1, p � N/2

1 − 4hpnp, p > N/2.

According to Eq. (6), fully occupied and empty orbitals yield a
maximal contribution to dynamic correlation, whereas orbitals
with half occupancies contribute nothing. It is worth noting that
Cinter

p is not considered if the orbital is below N/2. Using these
functions as the case may be (intrapair or interpair), we define
modified off-diagonal elements of the Fock matrix (F̃) as

F̃pq =
{

C intra
p C intra

q Fpq, p, q ∈ �g

C inter
p C inter

q Fpq, otherwise,
(7)

3 4 5 6
R (Å)

-0.08

-0.06

-0.04

-0.02

0.00

E
ne

rg
y 

(h
ar

tr
ee

)

He2
HeNe
Ne2

FIG. 1. Potential-energy curves of noble-gas dimers calculated at
the NOF-OIMP2/aug-cc-pVTZ level of theory. The zero-energy point
has been set at 10 Å for each system.

as well as modified two-electron integrals,

˜〈pq| rt〉 =
{

C intra
p C intra

q C intra
r C intra

t 〈pq| rt〉, p, q, r, t ∈ �g

C inter
p C inter

q C inter
r C inter

t 〈pq| rt〉, otherwise,
(8)

where the subspace index g = 1, . . . , N/2. This leads to the
following linear equation for the modified MP2 residuals:

R̃
ij

ab = ˜〈ab| ij 〉 + (Faa + Fbb − Fii − Fjj )T ij

ab

+
∑
c �=a

F̃acT
ij

cb +
∑
c �=b

T ij
ac F̃cb −

∑
k �=i

F̃ikT
kj

ab

−
∑
k �=j

T ik
ab F̃kj = 0, (9)

where i, j, k refer to the strong occupied NOs, and a, b, c to
weak occupied ones. It should be noted that diagonal elements
of the Fock matrix (F) are not modified.

By solving the linear system of Eqs. (9), the amplitudes
T

fg
pq are obtained, which are inserted into Eq. (5) to achieve

Edyn = E(2). Following Ref. [3], the total energy of the system
will be given by

E = Ẽhf + Ecorr = Ẽhf + Esta + Edyn, (10)

TABLE II. Comparison of Re(Å) and De(kcal/mol) calculated
at the MP2 and NOF-OIMP2 levels of theory with the experimental
values. The aug-cc-pVTZ basis set was used.

MP2 NOF-OIMP2 Experiment

Dimer Re De Re De Re De

He2 3.09 0.013 3.12 0.013 2.97 0.022
HeNe 3.12 0.038 3.17 0.035 3.03 0.041
Ne2 3.18 0.076 3.21 0.074 3.09 0.084
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FIG. 2. Potential-energy curves with homolytic cleavage of the
bond calculated at the NOF-OIMP2/cc-pVTZ level of theory. The
zero-energy point has been set at 10 Å for each system.

where Ẽhf is the HF energy obtained with the NOs of PNOF7s,
given by Eq. (4), and Esta is the sum of energies (3),

Esta
inter =

N/2∑
f �=g

Esta
fg =

N/2∑
f �=g

∑
p∈�f

∑
q∈�g

�s
qp Lpq, (11)

plus the static intrapair electron correlation energy [3],

Esta
intra =

N/2∑
g=1

∑
q �=p

√
�q�p �g

qp Lpq. (12)

In Eq. (12), note that q, p ∈ �g , and �p = 1 − |1 − 2np| is the
amount of intrapair static electron correlation in each orbital
p as a function of its occupancy.

The performance of NOF-OIMP2 has been tested in several
examples. Let us start with noble-gas dimers, which are held
together by dispersion, a manifestation of long-range dynamic
correlation. These species are not bound at the PNOF7 level
of theory, and they remain so even after adding Edyn using the
canonical formulation. With the formulation of Edyn based on
the orbital-invariant MP2, the orbital localizability in noble-gas
atoms can now be taken into account, so that NOF-OIMP2
predicts bound species.

The potential-energy curves (PECs) of He2, HeNe, and Ne2

are depicted in Fig. 1. For each of the curves, the zero-energy
point has been set at their corresponding energy at 10 Å. It can
be seen that NOF-OIMP2 produces qualitatively correct PECs.

In Table II, the equilibrium bond lengths (Re) and dissociation
energies (De) at the MP2 and NOF-OIMP2 levels of theory can
be found. The experimental values were taken from Ref. [36].
The augmented correlation-consistent valence triple-ζ basis set
(aug-cc-pVTZ) [37,38] was used in theoretical calculations. It
is worth noting that a larger basis set is needed to adequately
compare them with the experiment. In addition, only valence
electrons have been included in the correlation treatment. It
can be observed that both methods underestimate the binding
energies and overestimate the equilibrium distances since these
effects are more perceptible for the NOF-OIMP2. He2 is the
worst case since only 60% of the binding energy is recovered,
while for the other two systems it is between 85 and 92%.

There are no significant differences between the results
obtained with the NOF-cMP2 and NOF-OIMP2 methods for
diatomic systems analyzed in Table I. Representative PECs of
these molecules are depicted in Fig. 2. Table III collects the
electronic properties previously analyzed for systems shown
in Fig. 2. The data reveal an outstanding improvement in the
dissociation energies with respect to PNOF7 and PNOF7s, re-
spectively. A slight improvement of the theoretical equilibrium
distances calculated with NOF-OIMP2 is also observed over
those obtained with NOF-cMP2.

The situation is quite different in polyatomic systems where
the orbital localizability drastically changes the results ob-
tained with NOF-cMP2 and NOF-OIMP2. Both methods have
been tested on a set of 30 selected molecules with a dominant
dynamic electron correlation to compare with reliable MP2
energies. We must be aware that the applicability of standard
MP2 is restricted to cases without static correlation; otherwise,
we obtain an excess of correlation energy. An example is the
case of ozone which has an important multiconfigurational
character. In this case, NOF-OIMP2 predicts a total energy
that is about 57 kcal/mol higher than the MP2 value for the
cc-pVTZ basis set [34]. Consequently, an upper bound to the
total MP2 energy can be expected in most cases since a fraction,
however small, of nondynamic correlation is present.

The collection of total energies for the selected set of
molecules, calculated at their experimental geometries [39]
using the cc-pVTZ basis set [34], can be found in Table IV. For
the whole set, the average differences in the NOF-cMP2 and
NOF-OIMP2 energies from MP2 are 34.5 and 6.3 mHartree,
respectively. The data reveal an outstanding improvement in
the total energies of the NOF-OIMP2 over the NOF-cMP2.

To summarize, it has been shown that a reformulation of
the dynamic electron-correlation energy based on the orbital-
invariant MP2 allows one to extend the NOF-MP2 method to

TABLE III. Comparison between NOF-cMP2 and NOF-OIMP2 using the cc-pVTZ basis set.

Re (Å) De (kcal/mol)

Molecule NOF-cMP2 NOF-OIMP2 Expt. NOF-cMP2 NOF-OIMP2 Expt.

F2 1.397 1.382 1.412 34.5 46.0 39.2
HF 0.924 0.916 0.917 139.4 140.9 141.1
LiF 1.614 1.579 1.564 140.7 141.1 139.0
N2 1.084 1.098 1.098 224.2 230.7 228.3
CN−a 1.180 1.180 1.177 238.6 239.0 240.7

aaug-cc-pVTZ was used.
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TABLE IV. Comparison of total electronic energies, in Hartrees, calculated using the cc-pVTZ basis set at the experimental geometry.

No. Molecule NOF-cMP2 NOF-OIMP2 MP2

1 H2O −76.316438 −76.317906 −76.320480
2 NH3 −56.447022 −56.452165 −56.454549
3 CH4 −40.404095 −40.411188 −40.412721
4 HCN −93.212795 −93.216612 −93.223664
5 C2H2 −77.148255 −77.154876 −77.160778
6 PH3 −342.643167 −342.657773 −342.661029
7 Si2H6 −581.624090 −581.641714 −581.643376
8 H2CO −114.288902 −114.301503 −114.309339
9 H2S −398.885411 −398.903604 −398.907289
10 C2H4 −78.378826 −78.397165 −78.401267
11 CH3OH −115.494590 −115.514704 −115.519139
12 H2O2 −151.308915 −151.325929 −151.334177
13 BF3 −324.146891 −324.165476 −324.172517
14 C2H6 −79.603872 −79.628190 −79.631938
15 CH3NH2 −95.631675 −95.655525 −95.659988
16 N2H4 −111.629997 −111.655618 −111.661187
17 HOCl −535.330974 −535.356795 −535.363297
18 C3H4 −116.358023 −116.383694 −116.392120
19 CH3Cl −499.486888 −499.518970 −499.522907
20 CH3SH −438.083227 −438.117335 −438.123037
21 C2FH3 −177.487929 −177.523874 −177.532492
22 CH3OCH3 −154.679334 −154.720399 −154.727219
23 C3H6 −117.568157 −117.614170 −117.620957
24 C2H4O −153.450942 −153.496429 −153.504674
25 HCF3 −337.770010 −337.814755 −337.824683
26 C2H5N −133.585955 −133.635764 −133.643763
27 COF2 −312.560599 −312.607818 −312.620274
28 CO2 −188.249006 −188.301643 −188.311990
29 OCS −510.822787 −510.878940 −510.891218
30 BCl3 −1403.962819 −1404.036515 −1404.045130

any type of orbitals, including the typical localized orbitals of
electron-pair-based NOFs. The global character of the method
was demonstrated in terms of relative and total energies since
the dynamic and static correlation can be recovered in one shot
for any type of system, including weakly bound van der Waals
species.
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