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The Casimir force between two parallel thick plates, one perfectly dielectric, the other purely magnetic, was
calculated long ago by Boyer [T. H. Boyer, Phys. Rev. A 9, 2078 (1974)]. Its most characteristic property is that
it is repulsive. The problem of this repulsive behavior is actually delicate and counterintuitive. In the present
paper we analyze the problem by first considering the simple harmonic oscillator model introduced by us earlier
[J. S. Høye et al., Phys. Rev. E 67, 056116 (2003); Phys. Rev. A 94, 032113 (2016)]. Extension of this model
shows how the repulsive behavior can be understood on a microscopic basis, due to the duality between canonical
and mechanical momenta in the presence of the electromagnetic vector potential. This duality corresponds to
the transverse magnetic and transverse electric modes in electrodynamics. We analyze the generalized Boyer
case where the permittivities and permeabilities of the parallel plates are arbitrary. In this respect we first find
the induced interaction between a pair of particles with given electric and magnetic polarizabilities and then
find it for a pair of parallel plates. The method used for our evaluations is the statistical mechanical one that we
introduced and applied earlier. Whether the pair of particles or plates attract or repel each other depends on their
polarizabilities or permittivities and permeabilities respectively. For equal particles or equal plates there is always
attraction.
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I. INTRODUCTION

The Casimir force between two equal parallel isotropic non-
magnetic materials separated by a vacuum (air) gap a is under
usual circumstances known to be attractive (for reviews on the
Casimir effect, see, for instance, Refs. [1–3]). It turns out to
be possible, however, in some cases to make the Casimir force
switch sign so that it becomes repulsive. Typically, this occurs
if a special liquid like bromobenzene is immersed between gold
and silica surfaces as shown by Munday et al. [4]. Then Casimir
repulsion takes place at distances above approximately 5 nm
since the dielectric constant of bromobenzene lies between
those of gold and silica for imaginary frequencies below a
certain value [5–7].

The analog case of two equal purely magnetic plates
behaves in the same way; the Casimir force is attractive under
usual circumstances. The case of two unequal plates—one
purely dielectric and the other purely magnetic—is, however,
different in the sense that the Casimir force becomes repulsive.
This peculiar effect has been known for several years. A
well-known reference in this area is the paper of Boyer [8]
(the present problem is sometimes called the Boyer problem).
Based upon earlier investigations of Feinberg and Sucher [9]
on the van der Waals force between two electrically and
magnetically particles, he calculated the repulsive force be-
tween a conducting and a permeable plate in the limit ε → ∞,

μ → ∞. Boyer’s formalism was based upon so-called random
electrodynamics.

We ought to point out here that this change of force
direction is actually quite nontrivial. Consider for definiteness
the left plate with boundary z = 0 to be purely dielectric, with
finite permittivity ε > 1, while the right plate with boundary
z = a is purely magnetic with permeability μ > 1. In the

boundary region of the dielectric plate around z = 0 the only
electromagnetic volume force density is − 1

2ε0E
2∇ε. Here the

E is the magnitude of the varying electric field from the outside
to the inside of the dielectric boundary. This should be expected
to give a surface force density acting in the positive z direction,
i.e. toward the vacuum region, in accordance with the general
property of classical electrodynamics saying that the surface
force acts in the direction of the optically thinner medium.
In our case the force direction is, however, reversed. Taken
literally, this has to be interpreted to imply that the square E2

becomes negative, thus a counterintuitive result whose physical
significance is not obvious.

We mention that the problem has been considered in the
literature from a wider viewpoint also, not restricted to
the idealized case of Boyer where one plate was electric and
the other magnetic. Some papers dealing with these topics are
Refs. [10–14]. Most of them, such as Refs. [11–13], analyze
Casimir repulsive forces in magnetodielectric configurations,
while the very recent Ref. [14] analyzes the repulsive force on
a magnetic point particle near a surface. In general, whether
the force is found to be repulsive or attractive depends on
the relative strengths of εi and μi (i = 1, 2). The delicate
point mentioned above, that a Casimir calculation leads to
an effective square E2 < 0 while always E2 � 0 for E real,
will not be investigated further in this work. In the present
paper our purpose is instead to analyze the Boyer problem in
a generalized sense, i.e., take the polarizabilities of the two
particles or the permittivities and permeabilities to be general.

We start from a microscopic harmonic oscillator model
where two oscillators interact via a third one. We have em-
ployed this model before [15]. The model was later extended
to cover the case where the third oscillator describes a set of
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oscillators [16]. The two oscillators of the model correspond
to two polarizable particles that interact via the harmonic
oscillator modes of the electromagnetic field. For the latter
there are two types of waves that are clearly noticed when a
pair of parallel polarizable plates are considered. They are the
transverse magnetic (TM) and transverse electric (TE) waves or
modes. The former is the one most easily understood in view of
the induced attractive interaction. Also the induced interaction
increases in magnitude with temperature to reach the classical
limit. For the TE mode, however, the situation is less obvious
as the force decreases to zero in the classical limit since its
Matsubara frequency ζ = 0 does not contribute. To cope with
this situation, interaction terms similar to the interaction of a
particle with the electromagnetic vector potential were used.

To obtain the situation corresponding to a dielectric plate
interacting with a magnetic one, we find that our model can
be extended in a straightforward way to encompass such a
situation. During computations two quantities D1 and D2

appear [defined in Eq. (9) below], where their product D1D2 >

0 determines an induced attractive force. Now one notes that
for the analog of the TM case both quantities are positive while
for the TE case both are negative by which D1D2 > 0 remains.

We will show how the model can be extended such that D1

and D2 have opposite signs. This will be the analog of a pair
of dielectric and magnetic plates that repel each other.

In Sec. II we consider the harmonic oscillator model, show-
ing how the transition from attractive to repulsive force be-
tween dipoles can be traced back to the fundamental distinction
between mechanical momentum and canonical momentum in
classical electrodynamics. In Sec. III we derive the induced in-
teraction between a pair of particles where there are couplings
between both electric and magnetic dipole moments. In Sec. IV
we generalize the statistical mechanical derivations of Ref. [18]
to two dielectric half-planes with different dielectric constants.
From this the well-known Lifshitz result is recovered. Finally,
in Sec. V this is generalized further to obtain the Casimir force
with magnetic properties included. Section VI summarizes the
obtained results.

II. HARMONIC OSCILLATOR MODEL
FOR REPULSIVE CASIMIR FORCE

Now consider the harmonic oscillator model treated in
Refs. [15] and [16]. We will here only sketch the previous
derivations while more details can be found in the mentioned
references. Let the three oscillators have eigenfrequencies
ωi (i = 1, 2, 3). Their classical partition function is then
proportional to the inverse of

√
Q where

Q = a1a2a3, ai = ω2
i (i = 1, 2, 3). (1)

For simplicity all three oscillators of the model are one
dimensional.

By quantization using the path integral method [17,19] the
classical system turns out to be split into a set of classical
harmonic oscillator systems where the Matsubara frequencies
are added to the eigenfrequencies. This replaces expression
(1) by

Q = A1A2A3, Ai = ai + ζ 2 = ω2
i + ζ 2, (2)

where ζ = iω (the convention ζ = −iω may also be used).

When the oscillators interact (via bilinear terms) the Q

can be expressed through a determinant. With interaction
parameter c for the interactions via oscillator 3, one obtains
the result in Eq. (9) of Ref. [16] [or Eq. (4.3a) of [15]]:

Q =
∣∣∣∣∣∣
A1 0 c

0 A2 c

c c A3

∣∣∣∣∣∣ = A1A2A3 − c2(A1 + A2)

= A1A2A3(1 − D1 − D2)

= A1A2A3(1 − D1)(1 − D2)

(
1 − D1D2

(1 − D1)(1 − D2)

)
,

(3)

Dj = c2

AjA3
(j = 1, 2). (4)

Here the Aj (1 − Dj ) terms represent each of the two oscilla-
tors and their radiation reaction with the third oscillator while
the last factor corresponds to the Casimir free energy. With Dj

given by Eq. (4) this factor is larger than zero which means
that the induced force between the two oscillators is attractive.
This situation is the analog of the TM mode.

The second situation is the analog of the TE mode. To
analyze this we may start from the situation where oscillator
3 interacts with the momenta of oscillators 1 and 2. Then the
interaction with the third oscillator is like the interaction via the
electromagnetic vector field. With this field the Hamiltonian for
a particle j is [pj − (e/c)A]2/2mj , where here c is the velocity
of light, pj the canonical momentum, and A = A(rj ) the vector
potential (in Gaussian units). The mechanical momentum is
pMj = pj − (e/c)A. In our model the analogous interaction
can be written as aj [pj − (c/aj )x3]2 (j = 1, 2), where again
c is the coupling parameter and the coordinate x3 corresponds
formally to the vector potential A.

Now for harmonic oscillators the roles of the momenta and
coordinates can be exchanged to obtain the energy term

aj

(
xj − c

aj

x3

)2

. (5)

With this the A3 term in the determinant (3) is changed into

A3 → A3 + c2

a1
+ c2

a2
. (6)

The rows j = 1, 2 of the determinant can be multiplied with
c/a1 and c/a2 respectively to be subtracted from row 3. Then
rows 1 and 2 can be multiplied with ζ/

√
aj , and columns 1

and 2 can be divided with the same factors. These operations
do not change the determinant. We obtain

Q =
∣∣∣∣∣∣
A1 0 c

0 A2 c

cq1 cq2 A3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
A1 0 ζc/

√
a1

0 A2 ζc/
√

a2

−ζc/
√

a1 −ζc/
√

a2 A3

∣∣∣∣∣∣, (7)

qj = 1 − Aj

aj

= −ζ 2

aj

, (j = 1, 2). (8)
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With determinant (7) the Q when evaluated can still be written
as result (3) but now with

Dj = − ζ 2c2

ajAjA3
< 0. (9)

Again the induced force will be attractive since D1D2 > 0, but
this time both factors are negative. However, in the classical
limit where only ζ = 0 contributes this force will vanish as
also is the case for the TE mode.

From the above it is now easily seen that the induced force
can be repulsive too. This will be the case if only one of the
energies has form (5), say for j = 2 but not for j = 1. Then
instead of Eq. (6) the change of A3 will be

A3 → A3 + c2

a2
. (10)

The determinant (7) will be modified to

Q =
∣∣∣∣∣∣
A1 0 c

0 A2 ζc/
√

a2

c −ζc/
√

a2 A3

∣∣∣∣∣∣, (11)

by which relation (9) changes into

D1 = c2

A1A3
> 0 and D2 = − ζ 2c2

ajAjA3
< 0. (12)

With this D1D2 < 0 by which the induced force will be
repulsive. This force will be the analog of the repulsive force
between a dielectric medium and a magnetic one.

III. INDUCED INTERACTION BETWEEN A PAIR
OF PARTICLES WITH BOTH DIELECTRIC

AND MAGNETIC POLARIZATION

In the static case electric and magnetic properties separate.
However, for nonzero frequencies there is a coupling between
electric and magnetic dipole moments. The fields are deter-
mined by Maxwell’s equations which in standard notation can
be written (Gaussian units)

∇D = 0, ∇ × E = − ∂B
c ∂t

, D = E + 4πP = εE,

∇B = 0, ∇ × H = ∂D
c ∂t

, B = H + 4πM = μH. (13)

The equations can be Fourier transformed by which

∇ → −ik and
∂

c ∂t
→ i

ω

c
= ζ. (14)

(The signs of Fourier transforms depend upon the convention
chosen.) Note, here and below, definition (14) is used for ζ .

For a given polarization one finds the solution [20]

E = −4π

3

{
k2

k2 + ζ 2
[3(k̂ · P)k̂ − P] +

[
2ζ 2

k2 + ζ 2
+ 1

]
P
}

= −4π

3

{
k2

k2 + ζ 2
3(k̂ · P)k̂ + 3ζ 2

k2 + ζ 2
P
}
, (15)

where the hat is used for unit vectors. For simplicity the same
vector notation is used in both r space and k space as the

argument used will specify. In r space Eq. (15) becomes [20]

E = E1 = e−x

r3

{(
1 + x + 1

3
x2

)
[3(r̂ · s1)r̂ − s1] − 2

3
x2s1

}

− 4π

3
δ(r)s1, (16)

where x = ζ r . Here the polarization used is a point dipole

P = P(r) = s1δ(r), [P = P(k) = s1]. (17)

The interaction with a dipole moment s2 at position r is then
−E1s2 which also is proportional to the correlation function
for the two dipoles s1 and s2. Thus for (large) r the induced free
energy is proportional to 〈(E1s2)2〉 where the thermal average
is over the fluctuating dipole moments for each value of ζ .
With 〈(a · ŝ)(b · ŝ)〉 = a · b/3 one obtains

〈(E1 · s2)2〉 = 1

3

〈
s2

1

〉〈
s2

2

〉 1

r6
LEE (x), (18)

LEE (x) = e−2x

[
2

(
1 + x + 1

3
x2

)2

+
(

2

3
x2

)2
]
. (19)

Now the electric polarizability is given by (i = 1, 2)

αiE = αiE (ζ ) ∝ 〈
s2
i

〉
. (20)

With other details that follow from the derivations in Ref. [17],
the induced free energy becomes Eq. (5.15) of the reference

FEE = − 3

2βr6

∞∑
n=−∞

LEE (x)α1E α2E, (21)

with β = 1/(kBT ) where kB is Boltzmann’s constant. (The
factor 2 in the denominator is missing in the reference.) The
sum is over the Matsubara frequencies

x = ζ r = Kr

h̄c
, K = 2πn

β
with n integer. (22)

At T = 0 the sum can be replaced by an integral with

dx = r dζ = 2πr

h̄cβ
dn or

∞∑
n=−∞

→ 2
h̄cβ

2πr

∫ ∞

0
dx. (23)

With constant (i.e., independent of ζ ) polarizabilities this
further gives

FEE = −3h̄cα1E α2E

2πr7
IEE, (24)

IEE =
∫ ∞

0
LEE (x) dx = 23

6
, (25)

which is the well-established result in Eq. (5.16) of Ref. [17].
Another situation is the induced interaction between the

magnetic moments of the two particles. But due to the sym-
metry of Maxwell’s equations (13) this will be precisely like
results (21) and (24) with the subscript E replaced by H .

What remains is the induced interaction between electric
and magnetic moments. To do so we need to obtain the LEH

function to replace LEE and replace an electric polarizability
with a magnetic one. So consider the electric field created by a

022503-3



JOHAN S. HØYE AND IVER BREVIK PHYSICAL REVIEW A 98, 022503 (2018)

polarization. For nonzero frequencies it also creates a magnetic
field. From Eqs. (13) and (14) one has

−i(k × E) = −i
ω

c
B = −ζH, B = H (M = 0). (26)

With the last equality of Eq. (15) this simplifies to

H = i

ζ

[
k ×

( −4πζ 2

k2 + ζ 2
P
)]

(27)

(since k̂ × k̂ = 0). From this follows [∇ × (ψP) = (∇ψ ) ×
P + ψ∇ × P]

H = − 1

ζ
∇ ×

(−ζ 2e−ζ r

r
P
)

= −ζ (1 + ζ r )
e−ζ r

r2
(r̂ × P).

(28)

So the interaction of an electric dipole moment s1 with a
magnetic one s2 is

−H1s2 = −ζ (1 + ζ r )
e−ζ r

r2
(r̂ × s1) · s2. (29)

The average of interest is the square of Eq. (29), but now with a
minus sign when compared with expression (18). This change
of sign is due to a property of Fourier transforms. For two
functions f (x) and g(x) and their Fourier transforms f̃ (k)
and g̃(k) one has the relation∫

f (x)g(x) dx = 1

2π

∫
f̃ (k)g̃(−k) dk. (30)

This relation is similar for situations when x and/or k have
discrete values too. In the present case the x corresponds to
imaginary time with ζ the Fourier variable. In the free energy
expression (21) the sum over ζ corresponds to the k integration
in relation (30). The transform (29) changes sign when ζ → −ζ

(as its ζ r = |ζ |r).
In standard notation one can write (r × s1)s2 = εijkxis1j s2k

to obtain the average

〈[(r × s1)s2]2〉 = εijkεnpqxixn〈s1j s1p〉〈s2ks2q〉
= 2

9 r2
〈
s2

1

〉〈
s2

2

〉
. (31)

Thus

〈(H1 · s2)2〉 = 1

3

〈
s2

1

〉〈
s2

2

〉 1

r6
LEH (x), (32)

LEH (x) = 2

3
e−2x[x(1 + x)]2. (33)

Like Eq. (21), but now with opposite sign, the induced free
energy expression becomes

FEH = 3

2βr6

∞∑
n=−∞

LEH (x)α1Eα2H (34)

plus the contribution FHE which will be the same except that
the product of polarizabilities is modified into α1Hα2E . With
constant polarizabilities this, similar to Eq. (24), gives

FEH = 3h̄cα1Eα2H

2πr7
IEH , (35)

IEH =
∫ ∞

0
LEH (x) dx = 7

6
. (36)

This part of the free energy gives a repulsive force in agreement
with earlier derivations [8].

IV. INDUCED INTERACTION BETWEEN A PAIR
OF DIELECTRIC HALF-PLANES

For a pair of half-planes one can generalize the statistical
mechanical derivations of Høye and Brevik where two dielec-
tric half-planes with the same dielectric constant were consid-
ered [18]. First we will reconsider this situation and modify it
somewhat to include extension to half-planes with different di-
electric constants. With this modification the method becomes
more suitable for the extension to include different magnetic
permeabilities too. Since equations of Ref. [18] will be used
repeatedly, we will designate them with the numeral I when
referred to.

The half-planes with separation a are parallel to the xy

plane. With this the dipole-dipole interaction can be Fourier
transformed along the x and y directions to obtain Eq. (I6.4)
for the radiating interaction in vacuum between electric dipoles
s1 and s2 (z �= 0)

φ̂(12) = −2πs1s2
e−q|z|

q
[(h · ŝ1)(h · ŝ2) − ζ 2ŝ1 · ŝ2], (37)

h = {ikx, iky,±q}, q2 = k2
⊥ + ζ 2, k2

⊥ = k2
x + k2

y. (38)

Vectors with hats mean unit vectors. Without loss of gen-
erality the k can be directed along the x axis by which
h = {ik⊥, 0,±q}. With Eq. (I6.5) the interaction can be split
in two parts:

φ̂(12) = −2πs1s2
e−q|z|

q
(H1 + H2), (39)

H1 = (h · ŝ1)(h · ŝ2) − ζ 2ŝ||
1 · ŝ||

2 , H2 = −ζ 2ŝ⊥
1 · ŝ⊥

2 , (40)

where s|| is the component of s in the h plane while s⊥ is
transverse to it. These two cases are the separation into the TM
and TE modes, respectively.

For a medium with dielectric constant ε and magnetic
permeability μ the interaction (39) is modified into

φ̂ε(12) = −2πs1s2
e−qε |z|

qε

(
1

ε
Hε1 + μH2

)
, (41)

Hε1 = (hε · ŝ1)(hε · ŝ2) − εμζ 2ŝ||
1 · ŝ||

2 , (42)

hε = {ik⊥, 0,±qε}, q2
ε = k2

⊥ + εμζ 2, (43)

while H2 is unchanged.
The interaction is due to the electric field from s1 that acts

upon s2, or vice versa. Therefore it should be symmetric in
the two dipole moments also when the dielectric constants are
different. Thus Hε1 must be modified. With use of Eq. (43) one
finds Eq. (I6.10) which can be written as

Hε1 = Gε1 · ŝ2 = gε1gε2, Gε1 = gε1
qε

k⊥
uε±,

uε± =
{
ik⊥, 0,±k2

⊥
qε

}
, (44)

gεi = |hε × ŝi | = qε

k⊥

(
ik⊥ŝ⊥i ± k2

⊥
qε

ŝ||i

)
= (iqεŝ⊥i ± k⊥ŝ||i ), (i = 1, 2). (45)
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Here the ŝ⊥ and ŝ|| are the components of ŝ|| along the direction
of k⊥ (in the xy plane) and the z axis, respectively. The
advantage of this form is that it can be extended to half-planes
with different dielectric constants with energy symmetric in ŝ1

and ŝ2. Thus Eq. (44) can be modified to

Hε1 = Gε1 · ŝ2 = gε11gε22, Gε1 = gε11
qε2

k⊥
uε2±. (46)

For the interaction in vacuum (ε, μ → 1) one has similar
expressions where qε → q. [Note that with vector uε2± the
∇D = 0 of Eq. (13) is fulfilled.] The resulting Green’s function
(electric interaction) for the two half-planes can now still be
written in the form of Eq. (I6.20):

φ̂g (12) = Jε(D||
EHε1 + D⊥

EH2),

Jε = −2πs1s2
e−qε1 u1−qε2 (u2+a)

qε1

, (47)

where u1 = −z1 > 0 and u2 = z2 − a > 0. The sought co-
efficients D

||
E and D⊥

E will make the resulting expression
fully symmetric. [Within one medium this becomes interaction
(41).]

With several parallel layers the uε± and some other factors
will change along with the change of the dielectric constant
for various layers. But the dielectric constant for the half-plane
z < 0 stays fixed at ε1. Thus for two half-planes the factors not
containing ε2 or μ2 can be separated out to be put into a quantity
L when determining the electric field through the layers. With
this the electric field for the TM mode (∼ Gε1 ∼ e∓qε1 zqε1 uε1±)
will be a slight modification of Eq. (I6.14):

E/L =

⎧⎪⎨
⎪⎩

qε1

(
1
ε1

e−qε1 zqε1 uε1+ + Beqε1 zuε1−
)
, z0 < z < 0,

q(Ce−qzu+ + C1e
qzu−), 0 < z < a,

qε2De−qε2 zuε2+, a < z,

(48)

where B, C, C1, and D are coefficients to be determined
[relative to the 1/ε1 term of Eq. (41)].

One condition to determine the coefficients is that the
component of E along the xy plane is continuous. However, for
the other condition we here find it more convenient to turn to
the magnetic field (instead of the continuous D field normal to
the interfaces) due to later extension to magnetic media. Then
from Eq. (13) we will find Eq. (I6.17)

hε × E = ζB = ζμH. (49)

With the form E/L = e∓qεzqεuε± one finds

ζB/L = {ik⊥, 0,±qε} ×
{
ik⊥, 0,±k2

⊥
qε

}
qεe

∓qεz

= ±ik⊥
(
q2

ε − k2
⊥
)
e∓qεzêy = ±ik⊥εμζ 2e∓qεzêy, (50)

where êy is the unit vector in the y direction.

The components of E and H parallel to the the interfaces
are both continuous by which one gets the equations

qε

(
1

ε1
+ B

)
= q(C + C1),

ε1

(
1

ε1
− B

)
= C − C1,

q(Ce−qa + C1e
qa ) = qε2De−qε2 a,

Ce−qa + C1e
qa = ε2De−qε2 a. (51)

The two last equations can be solved for C and C1 to be inserted
in the equation that results from the elimination of B. This
extends solution (I6.15) for D to be

D = D
||
E = 4κ1e

(qε2 −q )a

(ε1 + κ1)(ε2 + κ2)[1 − Ane−2qa]
, (52)

An = (ε1 − κ1)(ε2 − κ2)

(ε1 + κ1)(ε2 + κ2)
, κi = qεi

q
(i = 1, 2). (53)

The subscript n = 1, 2, 3, . . . indicate the Matsubara frequen-
cies (22) ζ = ζn = K/(h̄c) and K = 2πn/β.

For the TE mode the electric field lies along the y axis
transverse to the h plane. Thus this component of the field can
be written like Eq. (I6.18):

E/L =

⎧⎪⎨
⎪⎩

μ1e
−qε1 z + Beqε1 z, z0 < z < 0,

Ce−qz + C1e
qz, 0 < z < a,

De−qε2 z, a < z,

(54)

where again L is a quantity independent of ε2 and μ2. The
corresponding magnetic field will have components along both
the x and z directions

ζμH/L = ζB/L = hε × E/L

= {ik⊥, 0,±qε} × {0, 1, 0}e∓qεz

= (∓qε êx + ik⊥êz)e∓qεz. (55)

From this the boundary conditions give the equations (keeping
μ although μ = 1 is considered so far)

μ1 + B = C + C1,

qε1

μ1
(μ1 − B ) = q(C − C1),

Ce−qa + C1e
qa = De−qε2 a,

q(Ce−qa + C1e
qa ) = qε2

μ2
De−qε2 a. (56)

[The coefficients are relative to the μ1 term from Eq. (41)].
The solution of these equations is

D = D⊥
E = 4μ1μ2κ1e

(qε2−q )a

(κ1 + μ1)(κ2 + μ2)[1 − Bne−2qa]
, (57)

Bn = (κ1 − μ1)(κ2 − μ2)

(κ1 + μ1)(κ2 + μ2)
. (58)

The Casimir force per unit area between the plates is given
by Eq. (I6.32). This follows from Eq. (I4.4) where the product
of the interaction (37) and Green’s function (47) multiplied
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by −q are integrated. With extension to plates with different
dielectric constants this becomes

fsur = − 1

πβ

∞∑
n=0

′
∫ ∞

ζn

q2 dq IQS. (59)

I =
∫ ∞

0

∫ ∞

0

e−(qε2 +q )(u2+a)e−(qε1 +q )u1

qε1q
du1 du2

= e−(qε2 +q )a

qε1q
(
qε1 + q

)(
qε2 + q

) . (60)

(with z = z2 − z1 = u1 + u2 + a). The prime means that
the n = 0 term is to be taken with half weight, and ζn =
2πn/(βh̄c) as follows from Eq. (22). The Q is the (9y/2)2A

term of (I6.32) which with (I5.5) is (ε − 1)2/4. For different
media this becomes

Q = (ε1 − 1)(ε2 − 1)/4. (61)

Further from Eq. (I5.5), 3y = (4π/3)ρβ〈s2〉 which is the
classical case. Now the polarizability α = β〈s2〉/3 by which
3y = 4πρα. This also holds for the quantum case where
nonzero frequencies contribute, α = α(ω). This follows from
Sec. 5 of Ref. [17]. Finally the last factor is

S = SEE = S|| + S⊥, S|| = D
||
E〈Hε1H

∗
1 〉,

S⊥ = D⊥
E

〈
H 2

2

〉
, (62)

where H1 = g1g2, gi = iqŝ⊥i ± k⊥ŝ||i , i.e., H1 = Hε1 for
ε = 1. And from the Fourier transform relation (30), H1(−k⊥)
is the quantity needed. For the complex conjugate we have
H ∗

1 (k⊥) = H1(−k⊥).
With extension of Eqs. (I6.27)–(I6.30) to different, but

nonmagnetic, media we now get by using Eqs. (44) and (45)
and then Eqs. (38) and (43) (〈ŝ2

⊥i〉 = 1/3, etc.)

〈Hε1H
∗
1 〉 = 1

9

(
k2
⊥ + qε1q

)(
k2
⊥ + qε2q

)
, (63)

k2
⊥ + qεi

q = 1

εi − 1

[
εiq

2 − qεi
+ (εi − 1)qεi

q
]

= q

εi − 1
(εi − κi )

(
q + qεi

)
, (i = 1, 2), (64)

〈
H 2

2

〉 = 1

9
ζ 4;

ζ 2 = 1

εi − 1

(
q2

εi
− q2)

= q

εi − 1
(κi − 1)(qεi

+ q ). (65)

Note these expressions for k2
⊥ + qεi

q and ζ 2 are valid only
for μ1 = μ2 = 1. Altogether for this case with I , Q, and S

inserted into Eq. (59) the known Lifshitz result (I2.9) for the
force is recovered [21]

fsur = − 1

πβ

∞∑
n=0

′
∫ ∞

ζn

q2 dq

[
Ane

−2qa

1− Ane−2qa
+ Bne

−2qa

1− Bne−2qa

]
,

(66)

with An and Bn given by Eqs. (53) and (58) respectively and
with qεi

(i = 1, 2) given by Eq. (43).

V. INDUCED INTERACTION WITH MAGNETIC
PROPERTIES INCLUDED

In this section we want to show that expression (66) for
the Casimir force is valid also when magnetic interactions are
present, i.e., μ1 and/or μ2 are different from unity. In Sec. IV
the electric field from dipoles and their interactions for a pair
of half-planes were found. This also included the induced
magnetic fields and influence from magnetic permeabilities.
Thus the coefficients D

||
E and D⊥

E will stay unchanged. Also
the main structure of the surface force (59) and integral
(60) will be the same. However, expression (62) will have
additional terms that involve magnetic moments too. For these
additional terms the Q given by Eq. (61) is modified by
replacing εi (i = 1, 2) with μi in the ways possible. Further
the symmetry of electric and magnetic fields in Maxwell’s
equations (13) is utilized. The fully new term to obtain is
the induced interaction between electric and magnetic dipole
moments.

With μ �= 1 expressions (62) and (63) for induced interac-
tion between electric dipole moments will remain unchanged,
but results (64) and (65) will not hold any longer. We find
Eq. (64) can be modified in two useful ways (q2

ε = k2
⊥ + εμζ 2,

κ = qε/q):

k2
⊥ + qεq = 1

ε − 1
[εk2

⊥ − k2
⊥ + (ε − 1)qεq]

= 1

ε − 1

[
(εq2 − εζ 2) − (

q2
ε − εμζ 2

)+ (ε − 1)qεq
]

= q

ε − 1
[(ε − κ )(q + qε ) + (μ − 1)εζ 2], (67)

and likewise from symmetry with respect to ε and μ

k2
⊥ + qεq = q

μ − 1
[(μ − κ )(q + qε ) + (ε − 1)μζ 2]. (68)

Due to symmetry the contributions from the induced inter-
actions between magnetic dipole moments will be like the ones
of Eq. (62) since with q2

ε = k2
⊥ + εμζ 2 or with Eqs. (67) and

(68) the k2
⊥ + qεq stays unchanged by interchange of μ and ε

SHH = D
||
H 〈Hε1H

∗
1 〉 + D⊥

H

〈
H 2

2

〉
. (69)

Further comparing with expressions (52) and (57) with inter-
change of μ and ε one finds

D⊥
E = μ1μ2D

||
H , D⊥

H = ε1ε2D
||
E. (70)

The remaining terms are those from induced interactions
between electric and magnetic dipoles. Thus we need the
magnetic fields due to the electric ones and vice versa that
follows from symmetry.

With Eqs. (41), (46), and (47) the TM electric field for z2 >

a can be written in the form E = (Jε/s2)D||
Egε11(qε2/k⊥)uε2±.

Thus with Eq. (50) the corresponding magnetic field will be

ζμ2H = ζB = (Jε/s2)D||
Egε11(±ik⊥ε2μ2ζ

2êy )/k⊥, (71)

with gε1 given by Eq. (45). This is to be multiplied with the
magnetic dipole moment s2 (instead of electric dipole moment)
whose unit vector has the transverse component ŝ⊥

2 (in the y

direction) to obtain the equivalent of Hε1 in Eq. (47) in view
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of the common prefactor JεD
||
E

H
||
εEH = 1

ζμ2JεD
||
E

H · s2 = ±ζgε11ε2ŝ
⊥
2 . (72)

This multiplied with the corresponding quantity in vacuum is
averaged over the orientations of the dipole moments to give

〈H ||
εEH H

||
EH 〉1 = − 1

9ζ 2
(
k2
⊥ + qε1q

)
ε2. (73)

Note in Eq. (72) the magnitude of the electric dipole moment
s2 is replaced by the magnetic one. This is taken into account
by replacing ε2 − 1 with μ2 − 1 in Eq. (61) for the factor Q to
be used in Eq. (75) below. The H

||
EH = H

||
εEH for εi = μi = 1

(i = 1, 2) with ζ → −ζ . The ζ → −ζ (and k⊥ → −k⊥) again
follows from the Fourier transform relation (30). Likewise one
has the interaction between an electric dipole in half-plane 2
with a magnetic one in half-plane 1. Due to symmetry the
corresponding expression must be

〈H ||
εEH H

||
EH 〉2 = − 1

9ζ 2
(
k2
⊥ + qε2q

)
ε1. (74)

Finally for the TM mode one has the interaction between the
magnetic moments in the two half-planes. But again due to
symmetry of Maxwell’s equations (13) this for the magnetic
field (in the y direction) is equivalent to the TE field. Thus
the corresponding magnetic interactions will be the same and
follow from the general form of Eq. (65) as 〈H 2

2 〉 = ζ 2/9.
The resulting surface force is obtained by adding the various

contributions multiplied with factors Q given by Eq. (61)
with one or both ε replaced by μ. Adding together for the
TM contribution the product QS|| from Eqs. (61) and (62) is
replaced by

S
||
Q = 1

4

[
(ε1 − 1)(ε2 − 1)D||

E〈Hε1H
∗
1 〉

+ (ε1 − 1)(μ2 − 1)D||
E〈H ||

εEH H
||
EH 〉1

+ (ε2 − 1)(μ1 − 1)D||
E〈H ||

εEH H
||
EH 〉2

+ (μ1 − 1)(μ2 − 1)D⊥
H

〈
H 2

2

〉]
. (75)

Inserting from Eqs. (63), (70), (73), and (74) one finds

S
||
Q = D

||
E

36

[
(ε1 − 1)(ε2 − 1)

(
k2
⊥ + qε1q

)(
k2
⊥ + qε2q

)
− (ε1 − 1)(μ2 − 1)ε2ζ

2
(
k2
⊥ + qε1q

)
− (ε2 − 1)(μ1 − 1)ε1ζ

2
(
k2
⊥ + qε2q

)
+ (μ1 − 1)(μ2 − 1)ε1ε2ζ

4
]

= D
||
E

36

[
(ε1 − 1)

(
k2
⊥ + qε1q

) − (μ1 − 1)ε1ζ
2
]

× [
(ε2 − 1)

(
k2
⊥ + qε2q

) − (μ2 − 1)ε2ζ
2]. (76)

Finally with use of Eq. (67) the result is

S
||
Q = D

||
E

36
q2(ε1 − κ1)

(
q + qε1

)
(ε2 − κ2)

(
q + qε2

)
. (77)

This result is precisely the result for S
||
Q = QS|| with Eqs. (63)

and (64) inserted. However, the former result was only valid
for μ = 1 while result (77) is valid for general μ.

To obtain the resulting force the contribution from the TE
mode with magnetic interaction included (i.e., μ �= 1) is also
needed. Again one may find the magnetic interactions via
the corresponding magnetic field in Eq. (55). However, we
simplify by utilizing the symmetry between the electric and
magnetic fields in Maxwell’s equations. Thus for the magnetic
field the TE mode will be similar to the TM mode with
exchange of ε and μ. The various contributions will be similar
to those of Eq. (75) including the S⊥ of Eq. (62). Adding
together, Eq. (76) will be replaced by

S⊥
Q = D⊥

E

36μ1μ2

[
(μ1 − 1)

(
k2
⊥ + qε1q

) − (ε1 − 1)μ1ζ
2
]

× [
(μ2 − 1)

(
k2
⊥ + qε2q

) − (ε2 − 1)μ2ζ
2
]
. (78)

With Eqs. (68) and(70) this becomes

S⊥
Q = D⊥

E

36μ1μ2
q2(μ1 − κ1)

(
q + qε1

)
(μ2 − κ2)

(
q + qε2

)
.

(79)

With μ1 = 1 and μ2 = 1 this result is the same as the result
S⊥

Q = QS⊥ with Eq. (65) inserted into Eq. (62). Result (79)
generalizes expression (66) for the Casimir force to arbitrary
μ1 and μ2.

VI. SUMMARY

We have studied the induced Casimir force between media
that can have both dielectric and magnetic properties. Usually
this force is attractive, but with both properties present, it turns
out that it can be repulsive. It is not obvious how this can
be understood on physical grounds. In Sec. II we established
a simple oscillator model that shows precisely this induced
repulsive behavior. The model is a simple extension of the
model studied earlier [15,16], where we showed the analog
of the attractive forces produced by the TM and TE modes
of dielectric media. Then by use of the statistical mechanical
method introduced in Ref. [17] we evaluated the induced
force between a pair of particles possessing both dielectric
and magnetic properties. Further in Sec. IV the statistical
mechanical theory used in Ref. [18] was extended to a pair
of half-planes with different dielectric constants. Finally, in
Sec. V we extended the theory to a pair of half-planes that have
the mentioned properties and are separated by a distance a. The
result of the latter, as might be expected, is a generalization of
the well-known Lifshitz formula as given by Eq. (66). Again
the Casimir force is repulsive if one of the media is mainly
dielectric while the other is mainly magnetic. With equal media
in the two half-planes, the Casimir force is always attractive.
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