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Protocols for testing or exploiting quantum correlations—such as entanglement, Bell nonlocality, and Einstein-
Podolsky-Rosen steering—generally assume a common reference frame between two parties. Establishing such
a frame is resource intensive and can be technically demanding for distant parties. While Bell nonlocality can be
demonstrated with high probability for a large class of two-qubit entangled states when the parties have one or no
shared reference direction, the degree of observed nonlocality is measurement-orientation dependent and can be
arbitrarily small. In contrast, we theoretically prove that steering can be demonstrated with 100% probability for
a larger class of states, in a rotationally invariant manner, and experimentally demonstrate rotationally invariant
steering in a variety of cases. We also show, by comparing with the steering inequality of Cavalcanti et al. [J. Opt.
Soc. Am. B 32, A74 (2015)], that the steering inequality we derive is the optimal rotationally invariant one for
the case of two settings per side and maximally mixed local qubit states.
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I. INTRODUCTION

Shared quantum correlations are a topic of significant
foundational interest and an important resource for quantum
information and communication protocols. Quantum steering
(also known as Einstein-Podolsky-Rosen (EPR) steering) cor-
responds to a class of correlations stronger than those required
to merely witness entanglement, but which need not violate any
Bell inequality [1]. Moving down this hierarchy of correlation
strength, from Bell nonlocality to steering to entanglement,
gives access to protocols which are more robust to noise [2,3].
The cost is that, while Bell inequality violations require neither
party (Alice or Bob) to be trusted, steering requires one (here,
Bob) to be trusted, and regular entanglement witnessing re-
quires full trust in both parties [4]. Steering therefore represents
an interesting and important case, providing for strong [3,10],
even loophole-free [11], tests of nonlocality, but without the
extreme noise suppression required to achieve Bell inequality
violations.

Typically, these correlation tests, and the quantum informa-
tion tasks that derive from them, assume a shared reference
frame between the parties, Alice and Bob. This assumption
has been given relatively little attention to date. However,
it will be of significant practical concern in future field
deployments, as in the recent entanglement distribution over
long distances [12]. Establishing such a common reference
frame is a nontrivial issue in experimental situations. For
instance, in quantum communication, a time-varying tempera-
ture can change the orientation of the polarization reference
frame in optical fiber. Likewise, the relative measurement
settings between a satellite and earth could be time varying.
In both cases, active compensation of these changes presents
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a considerable challenge [13]. Such compensation becomes
unnecessary if encoding in optical orbital angular momentum
[14] or complicated entangled states [15]. However, such states
are very susceptible to loss and noise, and generating and
manipulating such systems may be difficult. Therefore, it is
of interest to reduce reference-frame dependence in quantum
information tasks.

Can nonlocality be demonstrated simply without having
established a common reference frame? This question was
recently answered theoretically [13,16,17] and experimen-
tally [18,19] for Bell nonlocality. Here, we demonstrate that
a quantum steering protocol between two parties can be
performed without establishing a reference frame. We can
contrast our results with the case for Bell violations, which
are measurement-orientation dependent and can be arbitrarily
small; our technique surpasses these limitations.

To investigate quantum steering without a reference frame,
we derived and experimentally tested a rotationally invariant
steering (RIS) inequality, which is very robust and can certify
steering with 100% probability for a large class of two-qubit
entangled states. We compare the case where the parties share
one measurement direction (e.g., derived from line of sight
between them or the propagation axis of an optical fiber) to the
case where they share none.

This paper is structured as follows. In Sec. II we derive our
class of RIS inequalities. In Sec. III we compare it to previous
work: the binary-outcome qubit steering inequality of Cav-
alcanti et al. [20] (CFFW); and the semi-device-independent
steering inequalities and steering-related inequalities of Mo-
roder et al. [21]. In Sec. IV we explain our experimental
setup, and in Sec. V present the experimental results. We
studied the two-setting case both with and without a shared
reference direction, and compare our RIS inequality to the
CFFW inequality. This enables us to demonstrate that our
inequality is the optimal rotationally invariant one for the

2469-9926/2018/98(2)/022333(8) 022333-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.022333&domain=pdf&date_stamp=2018-08-31
https://doi.org/10.1364/JOSAB.32.000A74
https://doi.org/10.1364/JOSAB.32.000A74
https://doi.org/10.1364/JOSAB.32.000A74
https://doi.org/10.1364/JOSAB.32.000A74
https://doi.org/10.1103/PhysRevA.98.022333


WOLLMANN, HALL, PATEL, WISEMAN, AND PRYDE PHYSICAL REVIEW A 98, 022333 (2018)

experimental situation studied. We also studied the three-
setting case, demonstrating the advantage conferred by each
party having more settings.

II. ROTATIONALLY INVARIANT STEERING
(RIS) INEQUALITIES

A general quantum steering protocol between two parties,
Alice and Bob, proceeds as follows. In each round, Bob
receives a quantum system and announces two randomly cho-
sen measurement settings: j ∈ {1, . . . , m} for Alice; and k ∈
{1, . . . , n} for himself (in many previous realizations j = k).
Alice announces a corresponding measurement outcome Aj ,
which may be the result of a genuine measurement on her
half of an entangled pair that she shares with Bob, or the
result of a strategy that she (or some adversary controlling
her equipment) is using to try to cheat, i.e., to convince Bob of
shared quantum correlations which do not exist. Bob measures
a pre-agreed observable B̂k on Hilbert space HB , with outcome
Bk . Over many runs Bob is able to estimate the correlation
matrix Mjk := 〈AjBk〉, and test whether it is compatible with
a local hidden state (LHS) model for his system, i.e., a set of
states {�̂λ} on HB such that

Mjk = 〈AjBk〉 =
∫

dλ p(λ) 〈Aj 〉λ 〈B̂k〉�̂λ
. (1)

Here λ labels an underlying variable with probability density
p(λ), 〈B̂k〉�̂λ

:= Tr[�̂λB̂k], and 〈Aj 〉λ is an arbitrary function
of λ, bounded by the maximum and minimum of the set of the
allowed values of Aj . If no such LHS model exists then Alice
is said to be able to steer Bob’s system via her measurements.

We restrict our attention to the case where all outcomes
are labeled by ±1, and Bob’s measurements correspond to
a set of orthogonal spin directions on the Bloch sphere, i.e.,
B̂k = bk · σ̂ with bk · bk′ = δkk′ . Here σ̂ = (σ̂1, σ̂2, σ̂3) is the
vector of Pauli operators in some fixed basis. It is shown in
Appendix A that any LHS model for this case must satisfy the
steering inequality

‖M‖tr := tr
√

M�M �
√

m. (2)

That is, there is an experimentally measurable steering param-
eter (here, the trace-norm of the correlation matrix M) which,
for a LHS model, has an upper bound independent of the results
(here, the square root of the number of Alice’s settings). Thus,
violation of this inequality is sufficient for Alice to be able to
steer Bob.

Suppose now that Alice and Bob genuinely wish to achieve
violation of steering inequality (2) for some shared two-
qubit state ρ̂, by each choosing a set of mutually orthogonal
measurement directions. Thus, Alice measures a set of spin op-
erators Âj := aj · σ with aj · aj ′ = δjj ′ , and Mjk = a�

j T bk ,
where T is the 3 × 3 spin correlation matrix for state ρ̂, i.e.,
Tpq := Tr[ρ̂σ̂p ⊗ σ̂q]. The steering parameter in Eq. (2) is then
predicted to be (see Appendix B)

‖M‖tr = ‖PAT PB‖tr, (3)

where PA := ∑
j aj a�

j and PB := ∑
k bkb�

k are the respective
3 × 3 projection matrices onto the span of Alice’s and Bob’s
measurement directions.

As a first example, if Alice and Bob each choose a triad
of mutually orthogonal directions, i.e., m = n = 3, then PA =
PB = I3 and Eqs. (2) and (3) simplify to tr

√
T �T �

√
3, in-

dependently of the particular triads chosen. Thus, the degree of
steerability, as quantified by a violation of Eq. (2), is invariant
under local rotations of the triads, and so can be established
even when Alice and Bob do not share any reference directions.
In particular, for a Werner state—a probabilistic mixture of a
maximally entangled singlet state with a symmetric noise state
parametrized by the mixing probability, or Werner parameter,
W—one has T = −WI3, implying that a (constant) violation
is guaranteed for any W > 1/

√
3. In comparison, a corre-

sponding violation of the Bell inequalities in Refs. [17–19]
is only guaranteed for W = 1, and the degree of violation can
be arbitrarily small.

As a second example, consider the case where Alice and
Bob each choose a pair of mutually orthogonal directions,
i.e., m = n = 2, PA and PB are the projections onto the
planes spanned by their measurement directions. Hence, the
corresponding degree of steerability witnessed by the steering
inequality is invariant under any local rotations that leave
the measurement directions within these planes. In particular,
if Alice and Bob only share a single reference direction r ,
then they can determine a degree of steerability invariant
under arbitrary rotations about this direction, by choosing their
measurement directions to lie in the plane orthogonal to r .
For a Werner state, violation is guaranteed for any W > 1/

√
2

(the best possible bound for this case [20]). In comparison, a
violation of the Bell inequalities in Refs. [17–19] is again only
guaranteed for W = 1 and may be arbitrarily small.

III. COMPARISON WITH OTHER STEERING AND
STEERING-RELATED INEQUALITIES

It is interesting to compare our RIS with some related, but
not equivalent, work in the area of steering inequalities.

A. Steering inequality that always detects steering
for maximally mixed outcomes

For m = n = 2, it is of interest to compare the RIS
inequality (2) with a recent steering inequality derived by
Cavalcanti, Foster, Fuwa, and Wiseman (CFFW) [20]. It is
an inequality that is necessary and, for the case of maximally
mixed marginals [22], sufficient for the correlation matrix M

to admit a qubit LHS model for Bob:

|M�u+| + |M�u−| �
√

2, (4)

with u± := (1,±1)�/
√

2. The “necessary” part of the preced-
ing sentence is of course what is meant by a steering inequality;
it is the “sufficient” part that makes the CFFW inequality
special. Note that we have normalized Eq. (4) differently from
the inequality in Ref. [20] so that it has the same bound as
Eq. (2) for m = 2. If Alice and Bob share a two-qubit state
ρ̂, and Alice measures in two orthogonal directions a(1) and
a(2), the predicted steering parameter in Eq. (4) reduces to (see
Appendix B)

|M�u+| + |M�u−| = |PBT �a+| + |PBT �a−|, (5)

with a± = (a(1) ± a(2) )/
√

2.
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It is clear from Eq. (5) that, unlike the RIS inequality,
the CFFW inequality is not invariant under rotations in the
plane of Alice’s measurement directions, since such rotations
change a±. However, minimizing the left-hand side of Eq. (4)
over all such rotations yields, by construction, a steering
parameter that is rotationally invariant and which is bounded
by

√
2. Moreover, since the CFFW inequality is necessary and

sufficient for maximally mixed marginals, this minimization
must yield the best possible rotationally invariant inequality
for a two-qubit state with zero Bloch vectors for Alice and Bob.
Carrying out the minimization of the CFFW steering parameter
explicitly, one in fact recovers the rotationally invariant steer-
ing parameter in Eq. (3), as shown in Appendix C. In this sense,
our RIS inequality (2) is the best possible for m = n = 2. We
conjecture that it is similarly optimal for m = n = 3.

As an example of practical interest, let � denote the angle
between Alice’s and Bob’s measurement planes, and α denote
the angle that the line of intersection of these planes makes
with Alice’s measurement direction a1. For a Werner state,
with T = −WI3, the RIS parameter of Eq. (3) simplifies to

‖M‖tr = W (1 + | cos �|), (6)

independently of α, while the CFFW parameter of Eq. (4) is
given by

|M�u+| + |M�u−|
= W (

√
1 + cos2 � + sin 2α sin2 �

+
√

1 + cos2 � − sin 2α sin2 � )/
√

2. (7)

Minimizing the latter over all rotation angles α recovers
Eq. (6). More generally (i.e., for any two-qubit state, rather
than the particular case of a Werner state), for a fixed angle
� between the two measurement planes, the CFFW steering
parameter will vary with the rotation angle α in Alice’s
measurement plane, whereas the RIS steering parameter will
remain constant, corresponding to the minimum value of the
CFFW parameter. This prediction is experimentally tested
below.

B. Semi-device-independent steering-related inequalities

In Ref. [21], Moroder et al. introduced a steering-related
inequality [with two cases, given in Eqs. (13) and (14) of that
paper] that makes no assumptions about the measurements
Alice and Bob perform. This remarkable feat obviously makes
their inequality reference-frame independent. However, their
inequality does assume dimensions, dA and dB , for Alice’s and
Bob’s Hilbert spaces, respectively. It is the assumption that
Alice has a Hilbert space at all that means that their inequality
is not strictly a steering inequality, because the phenomenon of
EPR steering makes no assumptions about Alice’s system [1].
However, in the limit dA → ∞ Alice’s system is large enough
to support any description in terms of local hidden variables
and hence the inequality of Moroder et al. will become a true
steering inequality. For a finite number n of settings by Bob
(nB in the notation of Ref. [21]), the relevant inequality in the
limit dA → ∞ is their Eq. (14),

| det(D)| �
( √

dB

n + 1

)n+1

, (8)

where D is the “data matrix” defined in Ref. [21].

We can compare the above steering inequality to our RIS
inequality most easily by assuming zero marginals, which is
the case relevant to our experiment and to the CFFW inequality,
and for the case m = n = 3 for which they give the “data
matrix” explicitly below their Eq. (14). For this situation it
is easy to show that

| det(D)| = | det(M )|/(12
√

3). (9)

Thus their steering inequality (8) reduces in this case to

| det(M )| � (3
√

3)/16 ≈ 0.325. (10)

In contrast, our RIS, Eq. (2), for this case is

tr
√

M�M �
√

3. (11)

Now using the inequality (abc)1/3 � (a + b + c)/3 for the
three singular values of M , it follows that | det(M )| �
[tr

√
M�M]3/27. Thus our RIS implies, for the case being

considered, that

| det(M )| �
√

3/9 ≈ 0.192. (12)

Thus, our RIS is strictly stronger than the steering inequality
of Ref. [21].

For completeness, we compare Eq. (12) to the relevant
steering-related inequality of Moroder et al. that assumes that
Alice’s results come from measuring a qubit (dA = 2). For
the case considered above, with m = n = 3, their steering
inequality reduces to | det(D)| � 1/108 [their Eq. (15)]. As-
suming zero marginals as above, this turns into exactly the same
inequality, Eq. (12), which we derived from our RIS, Eq. (11).
That is, our rotationally invariant steering inequality is even as
strong as the steering-related inequality in [21] that assumes
Alice’s results are qubit born. But we remind the reader that
Eq. (11) assumes that Bob’s three measurement directions are
orthogonal (in the Bloch-sphere sense) while the inequalities
of Moroder et al. make no such assumptions.

IV. EXPERIMENTAL SETUP

As shown in Fig. 1, we implemented these steering pro-
tocols using polarization-entangled states generated from a
spontaneous parametric down-conversion (SPDC) source. A
10-mm-long periodically poled potassium titanyl phosphate
(ppKTP) crystal, mounted in a polarization Sagnac ring inter-
ferometer [23,24], was pumped bidirectionally by a 410-nm
fiber-coupled continuous-wave laser with an output power
(after fiber) of 2.5 mW.

To test the quality of the generated entangled state, quantum
state tomography [25] was performed at several stages through-
out the experiment—in each case, we achieved a fidelity
of about 98% with the singlet state (|HV 〉 − |V H 〉)/

√
2.

We measured the correlations in our experiment by rotating
the QWPs and HWPs in front of polarizing elements to
set measurement directions and implement projective mea-
surements for Alice’s m and Bob’s n settings, and counted
coincident detections. We calculated each steering parame-
ter from the observed correlations, and determined its er-
ror from those in the correlation matrix elements: �Mjk =√

(�M
(sys)
jk )2 + (�M

(stat)
jk )2. The error consists of a systematic

error due to small imperfections in Bob’s measurement set-
tings, which could lead to an overestimation of the correlations
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FIG. 1. Entangled photon pairs at 820 nm were produced via
SPDC in a Sagnac interferometer consisting of a polarizing beam
splitter (PBS), a dual-coated half-wave plate (HWP), two mirrors (M),
and a periodically poled KTP crystal (ppKTP). The polarization of
the pump is controlled by a Glan Taylor (GT) prism followed by
a HWP. Different measurement settings are performed by rotating
half- and quarter-wave plates (QWP) relative to the PBSs. Long pass
(LP) filters, a dichroic mirror (DI), and an additional bandpass (BP)
filter in Bob’s line remove 410-nm pump photons copropagating with
the 820-nm photons, before photons are coupled into single-mode
fibers and detected by single-photon counting modules and counting
electronics.

[3], and the statistical error arising from Poissonian statistics
in photon counting. Quantum steering usually requires that
Bob chooses his settings independently from one measure-
ment to the other. However, as we control Alice’s realization
and apparatus in this demonstration (i.e., we are not in an
adversarial scenario), there is no need for a time ordering
of the events and we collected data without shot-to-shot
randomization [3]. However, this would have to be altered in
a full deployment [11].

V. EXPERIMENTAL TESTS AND RESULTS

We investigated the rotational invariance of quantum steer-
ing in a series of experiments.

A. Shared reference plane

We first considered the case where Alice and Bob share a
single reference direction and hence share a common refer-
ence plane orthogonal to this direction, and use m = n = 2
measurement settings—the minimal set size. The measurement
directions lie in a plane orthogonal (on the Bloch sphere) to
the shared direction, and the two settings on each side are
locally orthogonal. This is a natural physical situation because
a shared reference direction may be determined reliably, for
example, by line of sight between the parties. Furthermore, it
is natural to assume that Alice and Bob can reliably set local
measurement directions. However, although Alice’s and Bob’s
measurement directions will lie in the same plane, their relative
orientation within this plane may be unknown. This situation

Φ

(a)

(d) (e) (f)

(c)(b)

FIG. 2. Poincaré (Bloch) spheres contain vectors showing one
of the eigenstates of the three relevant directions (blue, red, and
green) in the experiments we performed. In each of the experiments,
measurements are made along two or three of these directions.
(a) Bob uses the same three measurement directions in each of the
n = 3 experiments, while using only the red and blue directions for
experiments with n = 2. (b) Alice’s directions, in the case where Alice
and Bob share a reference direction [shown as green in (a)]. We test
the invariance of the m = n = 2 RIS inequality under rotations in
the plane (grey), as the blue and red settings are rotated through 90◦

in steps (blue and red dots). (c) Alice’s directions for m = 2 (blue
and red dots) when her plane of measurement directions is tilted by
� = 64◦ and the settings are rotated in that plane, while maintaining
local orthogonality. (d) Same as (c), but with � = 90◦. (e) Alice’s
directions for testing the m = n = 3 RIS inequality (blue and red
dots, and green axis), corresponding to measurement triads strongly
misaligned with respect to Bob’s directions in (a). (f) Nonorthogonal
measurement directions for Alice.

also provides for a direct comparison between the RIS and
CFFW inequalities.

In our experiment, the measurements lie in the σx-σz

plane [Figs. 2(a) and 2(b)], corresponding to an angle of
� = 0◦ between Alice’s and Bob’s measurement planes.
While Bob’s measurement directions were kept constant,
Alice’s were rotated through 90◦ in the plane, by angles
α ∈ {0◦, 10◦, 20◦, 30◦, 40◦, 45◦, 50◦, 60◦, 70◦, 80◦, 90◦}. We
observed a rotation-independent violation of both the RIS and
CFFW inequalities for � = 0◦ [Figs. 2(b) and 3(a)], except
for some deviation around α = 70◦. Across the remainder of
the range, the measured steering parameters are close to the
theoretically predicted value of 1.97 [Fig. 3(a), solid line], for
both the RIS and CFFW correlation functions of a Werner state
[26] having the same fidelity with the singlet as our entangled
state. This value is close to the maximum value of 2 for an
ideal singlet state. We attribute the experimental deviation near
α = 70◦ to time-dependent fluctuations of the end state due to
temperature shifts affecting the source. While this imperfection
is undesirable, it serves to illustrate the point that the RIS
inequality is tolerant to noise, due to the large gap at all relative
angles α between the bound of

√
2 in Eq. (2) and the theoretical

maximum value of 2.
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(a)

(b)

(c)

FIG. 3. Steering parameter vs rotation angle α (degrees) in Alice’s
measurement plane, for experiments with m = n = 2 measurement
directions (cases in Secs. V A and V B of the main text). The plane tilt
angle takes on the values (a) � = 0◦, (b) � = 64◦, and (c) � = 90◦

[see Figs. 2(b)–2(d) respectively]. For all angles, we calculated the
theoretically expected curves for the RIS inequality (2) (blue) and
the CFFW inequality (4) (red) for the Werner state. The Werner
parameter W of the closest Werner state was calculated from the
average tomographic data. The RIS data are represented by blue
squares, and the CFFW data by red circles. The error bars are too
small to be seen. Data points in the upper white region imply steering
of Bob by Alice.

B. Tilted reference planes

We repeated the first case, but allowed an offset in the
previously shared reference direction (i.e., � �= 0), simulating
the case when there is imperfection in sharing this direction.
Due to robustness of the inequalities, we had to tilt Alice’s mea-
surement plane significantly, by 64◦, to shift to a regime where
the inequalities were not necessarily violated [Fig. 2(c)]. The
RIS data stayed approximately rotation invariant [Fig. 3(b)],
and comparable to the theoretically predicted value of 1.40 in
Eq. (6) (less than the steering bound of

√
2) for the closest

ideal Werner state. By contrast, the CFFW data showed an
oscillatory behavior [Fig. 3(b), red line], as predicted by
Eq. (7), with violation for α < 20◦ and α > 70◦. Again, the
noise in the data is due to asymmetries in the state arising from
state preparation imperfections caused by thermal fluctuations
in the apparatus.

We also investigated the case where there was extreme
misalignment in the supposedly shared reference direction. For
this, Alice used measurement directions in the σz-σy plane,
i.e., for � = 90◦ [Fig. 2(d)]. Neither steering inequality was

violated at any angle α. While the RIS data were approximately
insensitive to rotations of Alice’s measurement directions, the
CFFW data showed an oscillatory behavior [Fig. 3(c)], as per
the theoretical predictions in Eqs. (6) and (7), respectively, for
the tomographically reconstructed state. For each of Figs. 3(a)–
3(c) the RIS values are never greater than the CFFW values,
as predicted.

C. More than two measurement directions

As the RIS inequality (2) is not restricted to m = n =
2, we extended the number of measurement directions to
m = n = 3 directions for each party. First we studied the
case where Alice’s and Bob’s orthogonal measurement triads
were perfectly aligned, along the σx , σy , and σz directions
[Fig. 2(a)]. For this case, we generated a state with a fidelity
of 98.4% with a singlet state. The measured RIS steering
parameter 2.93 ± 0.01 significantly exceeds the bound of

√
3

in inequality (2). The small deviation from the maximum
possible value of 2.95 for a Werner state with W = 0.984
can be explained by imperfections of polarization optics and
classical interference in the Sagnac interferometer.

We also calculated the average correlation between Alice’s
and Bob’s results for m �= n directions. We analyzed a subset
of the three-setting-per-side data to investigate if Alice is able
to steer Bob’s state for two cases: m = 2 (σx and σz) with
n = 3; and m = 3 (σx , σy , and σz) with n = 2. In both cases, the
corresponding RIS inequality bounds,

√
2 and

√
3 respectively,

were violated, with respective steering parameters 1.96 ± 0.01
and 1.97 ± 0.01.

Finally, we investigated the rotational invariance of the RIS
inequality for m = n = 3 directions on each side. In partic-
ular, we chose orthogonal triads for Alice [Fig. 2(e)] which
were strongly misaligned relative to Bob’s fixed measurement
triad [Fig. 2(a)]. Alice’s triads comprised two orthogonal
measurement directions lying in a plane oriented at an angle
of � = 64◦ to Bob’s σx–σz measurement plane [blue and
red dots in Fig. 2(e)], and a third direction orthogonal to
the first two directions (the green line in Fig. 2(e)). The
experimentally obtained steering parameters for these triads
had an average value of 2.89—well above the bound of√

3 for the corresponding RIS inequality in Eq. (2)—and a
standard deviation of 0.03. The small deviation confirms that
the steering parameter is indeed insensitive to local rotations of
Alice’s and Bob’s measurement triads. We further note that this
choice of measurement directions would not lead to a steering
demonstration using an ordinary linear steering inequality of
the type given in Ref. [2], whereas the RIS is robust to such
major misalignments.

D. Nonorthogonal measurement directions

Finally, we observed whether Alice could demonstrate
steering by measuring in nonorthogonal directions, while
Bob’s measured directions remained orthogonal [Fig. 2(f)]. We
note that the steering inequalities [Eqs. (2) and (4)] are valid
for any choice of Alice’s measurement directions, whereas the
predictions for the steering parameters in Eqs. (3)–(7) assume
they are orthogonal. In this experiment, the state we generated
had a fidelity of 97.2% with the singlet state.
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First, we considered the case of two measurement directions
for each party. Bob measured along σz and σx [Fig. 2(a),
blue and red], with Alice’s directions along σz and at a 60◦
angle therefrom in the same plane [Fig. 2(f), blue and red],
corresponding to

a1 = (0, 0, 1), a2 = (
√

3/2, 0, 1/2). (13)

With these measurement settings, both the RIS and CFFW
inequalities, Eqs. (2) and (4), were violated, with steering
parameters 1.85 ± 0.01 and 1.96 ± 0.01 compared to the
bound of

√
2.

We concluded the experiment by measuring in three direc-
tions for each party. While Bob measured along σx , σy , and σz

[Fig. 2(a)], Alice’s directions formed a regular tetrahedron with
the origin [Fig. 2(f)], corresponding to a1 and a2 as in Eq. (13)
and a3 = [1/(2

√
3),

√
2/3, 1/2]. We violated the bound of

√
3

in Eq. (2) with a steering parameter of 2.74 ± 0.01, which is
not far below the maximum possible value of 3 obtainable
via mutually orthogonal directions and a maximally entangled
state.

VI. CONCLUSIONS

We theoretically determined a rotationally invariant steer-
ing inequality. Sufficiently entangled states produce constant
violations of the inequality under local rotations. For two
measurement settings per side, we showed that the violation is
constant under local rotations about a shared axis and that our
RIS inequality is the optimal such inequality for this situation.
Experimentally, we showed that for two settings per side and
one shared reference direction only, the violation of both
inequalities is independent of frame alignment between Alice
and Bob, up to state preparation imperfections. Degradation of
the shared direction eventually means that steering inequalities
can no longer be violated. For three settings per side, the
rotationally invariant inequality is violated even for maximal
misalignment of the reference frames, unlike an ordinary
steering inequality [2] and even in the presence of state prepa-
ration imperfections. In principle, using the appropriate (two-
or three-setting) rotationally invariant inequality for one or
zero shared measurement directions always provides a large
buffer between the theoretically expected steering value and
the bound, unlike the case for frame rotations in Bell tests
[18,19]. As demonstrated by our data, this provides robustness
to imperfections such as asymmetries in a real-world shared
entangled state. Therefore our work shows how the steering
task can be more tolerant to reference-frame misalignment
and asymmetry than Bell tests, adding to the previous list
(decoherence-tolerance [2] and loss-tolerance [3]) of noise
sources where steering enjoys an advantage. Our demonstra-
tion of rotationally invariant steering holds potential appli-
cation in ground-to-space satellite quantum communication
[12,27] and in quantum key distribution [28,29].
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APPENDIX A: PROOF OF RIS INEQUALITY

To prove the rotationally invariant steering inequality in
Eq. (2), suppose that the measurement outcomes for Alice and
Bob are restricted to ±1, and that the correlation matrix M has
a qubit LHS model for Bob’s system as per Eq. (1) of the main
text. Thus,

Mjk = 〈AjBk〉 =
∫

dλ p(λ) 〈Aj 〉λ 〈B̂k〉�̂λ
, (A1)

with 〈B̂k〉�̂λ
= Tr[�̂λB̂k] where

�̂λ = 1
2 [1 + s(λ) · σ̂ ], B̂k = bk · σ̂ , bk · bk′ = δkk′ .

Hence, letting A(λ) denote the m vector with components
Aj (λ) = 〈Aj 〉λ, andB(λ) denote the n vector with components
Bk (λ) = s(λ) · bk , one can rewrite the correlation matrix in
Eq. (A1) as

M =
∫

dλ p(λ)A(λ)B(λ)�. (A2)

Taking the trace norm then yields the steering inequality

‖M‖tr =
∥∥∥∥
∫

dλ p(λ)A(λ)B(λ)�
∥∥∥∥

tr

�
∫

dλ p(λ) ‖A(λ)B(λ)�‖tr

=
∫

dλ p(λ) |A(λ)| |B(λ)|

�
∫

dλ p(λ)
√

m = √
m, (A3)

as per Eq. (2). Here, the first inequality follows from the triangle
inequality, the next line from the easily verified property
‖vw�‖tr = |v| |w|, and the final inequality via |A(λ)|2 =∑

j 〈Aj 〉2
λ � m and |B(λ)|2 = ∑

k s(λ)�bkb�
k s(λ) = s(λ)�

PB s(λ) = |PB s(λ)|2 � |s(λ)| � 1.

APPENDIX B: RIS AND CFFW STEERING PARAMETERS
FOR TWO-QUBIT STATES

Now, if Alice and Bob each make a set of mutually orthog-
onal measurements on a two-qubit state with spin correlation
matrix T , with Tjk = Tr[ρ̂ σj ⊗ σk], then

M = A�T B, (B1)

where A and B denote the 3 × m and 3 × n matrices with
columns corresponding to their respective spin directions,
i.e., A := (a1a2 . . . am) and B := (b1 . . . bn). The steering
parameter for the RIS inequality in Eq. (2), i.e., the trace norm
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of M , can then be evaluated as

‖M‖tr = ‖M�‖tr = Tr
√

A�T BB�T �A

= Tr
√

A�T PBPBT �A

= ‖PBT �A‖tr = ‖(PBT �A)�‖tr

= Tr
√

PBT �AA�T PB

= Tr
√

PBT �PAPAT PB = ‖PAT PB‖tr, (B2)

as per Eq. (3), where we have used BB� = ∑
j bj b�

j = PB =
P 2

B , and the corresponding relations for AA�.
To evaluate the steering parameter for the CFFW inequality

|M�u+| + |M�u−| �
√

2 (B3)

in Eq. (4), note for any two-vector u that |M�u|2 =
u�MM�u = u�A�T BB�T �Au = u�A�T PBPBT �Au =
|PBT �Au|2. Substitution into the above inequality, and
recalling that u± = (1,±1)�/

√
2 and a± = (a1 ± a2)/

√
2,

immediately yields

|M�u+| + |M�u−| = |PBT �a+| + |PBT �a−| (B4)

for the CFFW steering parameter, as per Eq. (5).

APPENDIX C: OPTIMALITY OF THE RIS INEQUALITY

Finally, we show that for m = n = 2, the RIS inequality is
the best possible rotationally invariant steering inequality for
states with maximally mixed marginals, as claimed in Sec. III.
In particular, we show that the RIS steering parameter in Eq. (3)
is given by minimizing the CFFW steering parameter in Eq. (5),
over all orthogonal measurement pairs in Alice’s and Bob’s
respective measurement planes. Noting that Eq. (5) [equivalent
to Eq. (B4) above] only depends on Bob’s measurement
directions via PB , it is sufficient to show that

min
RA

|PBT �RAa+| + |PBT �RAa−| = ‖PAT PB‖tr, (C1)

where RA ranges over all rotations that leave Alice’s measure-
ment plane invariant and a+ and a− are fixed. Now, for any
vector a in this measurement plane, one has PAa = a, and

hence, using P 2
B = PB ,

|PBT �a| = |PBT �PAa| =
√

a�PAT PBT �PAa. (C2)

Defining K := PAT PBT �PA, one therefore has

|PBT �RAa+| + |PBT �RAa−|
=

√
(RAa+)�K (Ra+) +

√
(RAa−)�K (Ra−).

Since RAa± and K only have support on Alice’s measure-
ment plane, minimizing this expression over RA reduces
to a 2 × 2 matrix problem. Further, since K is by def-
inition a non-negative symmetric matrix, and RAa+ and
RAa− range over all pairs of orthogonal unit vectors in
the measurement plane, we can choose coordinates such
that

K ≡
(

k 0
0 k′

)
, RAa+ ≡

(
cos θ

sin θ

)
, RAa− ≡

(
sin θ

− cos θ

)

on this plane, for some k � k′ � 0 and θ ∈ [0, 2π ]. Thus,

|PBT �RAa+| + |PBT �RAa−|
=

√
k cos2 θ + k′ sin2 θ +

√
k sin2 θ + k′ cos2 θ

= √
X + Y cos 2θ + √

X − Y cos 2θ, (C3)

with X := (k + k′)/2 and Y := (k − k′)/2. It is straightfor-
ward to check that the function f (x) := √

1 + x + √
1 − x

is symmetric with a single maximum at x = 0. Hence, the
minimum of the above expression is obtained at cos 2θ = ±1,
yielding

min
RA

|PBT �RAa+| + |PBT �RAa−|

= √
X + Y + √

X − Y =
√

k +
√

k′

= Tr[
√

K] = ‖PBT �PA‖tr, (C4)

using the definition of K . Finally, since the trace norm of a
matrix is invariant under transposition, Eq. (C1) follows as
desired.

Substantial generalizations of these results, with Alice
and Bob not limited to orthogonal sets of measurements,
and allowing for detector inefficiencies, will be discussed
elsewhere.
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