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Decoherence-assisted detection of entanglement of two qubit states
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We show that the decoherence, which in the long run destroys quantum features of a system, can be used to
reveal the entanglement in a two-qubit system. To this end, we consider a criterion that formally resembles the
Clauser-Horne-Shimony-Holt (CHSH) inequality. In our case the local observables are set by the coupling of
each qubit to the environmental noise, controlled with the dynamical decoupling method. We demonstrate that
the constructed inequality is an entanglement criterion—it can only be violated by nonseparable initial two-qubit
states, provided that the local noises are correlated. We also show that, for a given initial state, this entanglement
criterion can be repurposed as a method of discriminating between Gaussian and non-Gaussian noise generated
by the environment of the qubits. The latter application is important for ongoing research on using qubits to
characterize the dynamics of environment that perturbs them and causes their decoherence.
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I. INTRODUCTION

The coupling of a system to the environment leads to
decoherence, which is commonly viewed as an unfortunate
but unavoidable obstacle to observing quantum effects [1,2].
This is because the loss of coherence of a quantum system due
to interaction with its surroundings is an important ingredient
of the quantum-to-classical transition [3,4]. Therefore, to
maintain the quantum features, the system must be highly
isolated and thus protected against the decoherence. There are
numerous ways for achieving this goal: using quantum error
correction [5–10], restricting the dynamics to the decoherence-
free subspace when noises experienced by multiple qubits
are correlated [11,12], or performing dynamical decoupling,
i.e., subjecting the qubits to a sequence of unitary operations
that make them less sensitive to the environmental noise
[13–19]. Methods of harnessing the decoherence, dedicated for
quantum metrology, have been proposed in various scenarios
[20–23], and in atomic systems coherence times are extended
by fine-tuning of the interparticle interactions [24,25]. With the
advent of precise and customizable methods of qubit control
it has become possible to embrace the environment and thus
the process of decoherence. Rather than treating it as an
obstacle against the development of quantum technologies, the
approach is to make it a part of a task, e.g., to characterize the
environmental fluctuations by careful analysis of decoherence
of a single qubit [26,27] and multiple qubits [27–30], or even
as a integral element of protocol for creation of entanglement
[31].

Here we demonstrate that the paradigm of destructive
decoherence can be reversed to some extent; we show that the
coupling to the environment can become a part of a protocol
of detecting the entanglement between two qubits. In more
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detail, we take two qubits, couple them to correlated sources
of decoherence, and construct a criterion for detecting their
mutual entanglement, which formally resembles the CHSH
inequality [32]. However, contrary to the standard textbook
case, the operations performed on each qubit are dynamically
generated by the noise, with the strength of coupling to the
environment independently tailored for each qubit by an ap-
plication of appropriately chosen sequences of the control field
pulses [26,27]. With the ability to choose distinct settings for
pulse sequences controlling each qubit, the local measurements
performed after a period of noise-driven evolution result in four
values of correlators, that are used to construct the CHSH-like
inequality. As in the standard case, the inequality constructed
in this way is a genuine criterion for entanglement as it is
violated only by nonseparable initial states of two qubits.
We also demonstrate that from the degree of the violation of
such CHSH-like inequality one can deduce if the noise was
Gaussian or not, answering thus a nontrivial question [27,33]
about the statistics of environmental fluctuations. Finally, a
remark is in order on the hierarchy of quantum correlations
and the related nonclassical effects [34]. The entanglement is
a broad class of correlations, useful for quantum tasks such as
the sub-shot-noise metrology [35,36]. Among the entangled
states are those where the Einstein-Podolsky-Rosen steering is
observed [34,37]. An even more narrow subset is formed by
states possessing the Bell correlations, which are responsible
for the nonlocality of quantum mechanics [38–40]. Having this
hierarchy in mind, we stress that the method we consider here,
although bearing a formal resemblance to the Bell test, cannot
be used as a probe of nonlocality of quantum mechanics, as the
operations acting on each qubit are generated from a common
source of noise.

This article is organized as follows. In Sec. II we recall
the main aspects of the standard CHSH inequality. Then, in
Sec. III we introduce the decoherence-activated separability
criterion. And so, in Sec. III A we show that the noise acting
on the two-qubit systems can be used as a generator of
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local operations. To independently control the strength of
the local couplings, in Sec. III B, we introduce the pulse
sequence control method. In Sec. III C we show the inequality
is a criterion for the entanglement of the initial state of two
qubits, while in Sec. III D we discuss the family of states
which violate this inequality and thus are detected by the
criterion. We conclude this part in Sec. III E with an example
of possible experimental implementation of this criterion. In
Sec. IV we show that the decoherence-activated separability
criterion can be used to distinguish between the Gaussian and
non-Gaussian noise. The conclusions are contained in Sec. V,
while the Appendixes present details of some of the analytical
calculations.

II. CHSH TEST AS A SEPARABILITY CRITERION

First, we briefly review the standard scheme of the CHSH
test.

A. Formulation of standard CHSH test

Consider a pair of qubits, A and B, initialized in a state
described by the density matrix �̂, operating in the total Hilbert
space of both qubits. The quantum-mechanical correlator

E(θA, θB ) = Tr[σ̂ (A)(θA) ⊗ σ̂ (B )(θB )�̂ ] (1)

represents the average result of the measurement performed on
the two-qubit state �̂, with angles θA and θB parametrizing the
choice of local observables

σ̂ (Q)(θ ) = σ̂ (Q)
x cos θ + σ̂ (Q)

y sin θ, (2)

where Q = A,B and σ̂
(Q)
i (i = x, y, z) are the Pauli operators

acting in the Hilbert subspace of qubit Q. This correlator can
be used to construct the CHSH expectation value, parametrized
by the choice of observable settings S = {α, α′, β, β ′},
BS (�̂) ≡ E(α, β ) + E(α, β ′) + E(α′, β ) − E(α′, β ′), (3)

and the CHSH inequality

−2 � BS (�̂) � 2 . (4)

When certain nontrivial conditions, such as spacelike separa-
tion of measurement events and independence of measurement
settings chosen randomly for the two qubits, are fulfilled,
the violation of this inequality signifies the nonlocality of
state �̂, i.e., that the measured correlations described by the
combination of correlators composing (3) cannot be explained
by any local hidden variable models [40]. However, we focus
here on a much less demanding application of CHSH inequality
to a simpler task: certifying if the state �̂ is entangled.

B. CHSH test as a criterion for separability of two-qubit state

The inequality (4) can never be violated when the measure-
ments are performed on a separable two-qubit state of the form

�̂sep =
∑

k

pk

∣∣φ(A)
k

〉〈
φ

(A)
k

∣∣ ⊗ ∣∣φ(B )
k

〉〈
φ

(B )
k

∣∣, (5)

where |φ(Q)
k 〉 are—in general nonorthogonal—states of qubit

Q, while non-negative pk’s add to unity [41–43].

On the other hand, some entangled two-qubit states do
violate the CHSH inequality for a proper choice of settings
S . For instance, in the case of maximally entangled Bell state
�̂ = |�+〉〈�+|, where

|�±〉 = |+z(A)〉|+z(B )〉 ± |−z(A)〉|−z(B )〉√
2

(6)

(here |±z(Q)〉 are the eigenstates of σ̂ (Q)
z ), the CHSH expec-

tation value reaches the absolute maximum of 2
√

2≈2.83>2
when α′ = α − π/2, β = α + π/4, β ′ = α + 3π/4, and arbi-
trary α.

Thus, aside from all other contexts, like the Bell nonlocality
test, the CHSH inequality is a criterion for detecting the entan-
glement between two qubits. Indeed, as it was observed in, e.g.,
Refs. [44–47], it is possible to repurpose the CHSH scheme
as an entanglement witness. This is done by disassociating
the correlator (1) from the initial state �̂ by defining the
corresponding Hermitian operators

Ê(θA, θB ) ≡ σ̂ (A)(θA) ⊗ σ̂ (B )(θB ), (7)

which are then combined into the CHSH operator

B̂S ≡ Ê(α, β ) + Ê(α, β ′) + Ê(α′, β ) − Ê(α′, β ′) . (8)

Then, one says that B̂S has detected the entanglement in two-
qubit state �̂ if its expectation value on that state exceeds the
threshold for separable states max�̂sep |Tr B̂S �̂sep| = 2. In other
words,

(If |Tr B̂S �̂| = |BS (�̂)| > 2 , then �̂ is entangled). (9)

Formally, the CHSH operator B̂S is not precisely an entan-
glement witness. Traditionally, the witness Ŵ is defined as
a Hermitian operator such that its expectation value on any
separable state is non-negative, i.e., Tr Ŵ�̂sep � 0. Hence the
entanglement of state �̂ is witnessed by Ŵ when Tr Ŵ�̂ < 0.
Of course, it is a trivial matter to construct a proper witness
out of the CHSH operator, by simply combining B̂S with
operator proportional to the identity 1̂. In order to cover all
cases when the criterion (9) tests positive, one should define
two classes of witnesses: ŴS ≡ 21̂ − B̂S , so that Tr ŴS �̂ < 0
is equivalent to BS (�̂) > 2, and Ŵ

′
S ≡ 21̂ + B̂S , for which

Tr Ŵ
′
S �̂ < 0 corresponds to BS (�̂) < −2. However, the latter

class of witnesses is actually superfluous, because it can be
transformed into the former class by a proper choice of the
settings, namely Ŵ{α+π/2,α′+π/2,β+π/2,β ′+π/2} = Ŵ

′
{α,α′,β,β ′}.

III. DECOHERENCE-ACTIVATED
SEPARABILITY CRITERION

Below, the decoherence-activated separability criterion is
derived from a dynamically driven CHSH-like scheme. The
key difference between a standard CHSH test and this scheme
boils down to one essential modification: the choice of observ-
able settings is taken over by the noise coupled to qubits, that
were initialized in a state to be discriminated by the criterion.
The source of noise is common for both qubits; thus what
we propose here is the entanglement test which cannot be
interpreted as a probe of nonlocality.
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A. CHSH test with the noise induced choice of local observables

We now consider a scheme where the dynamics induced
by the environmental noise are incorporated into the setup that
formally resembles the traditional CHSH separability criterion.
The two qubits, positioned at rA and rB , initially prepared in
the state �̂, are subjected to the external noise represented by
a stochastic vector field ξ (r, t ). For convenience the noise is
assumed to be stationary and have zero average. More impor-
tantly, it is also assumed that the noise is weak as compared
to the unperturbed energy splitting of each qubit, described
by their free Hamiltonians Ĥ0 = ∑

Q=A,B �Qσ̂ (Q)
z /2, possibly

with a distinct physical orientation of the z axes for each qubit.
Under this assumption, and additionally when noise has little
spectral content at high frequencies ≈�Q, the noise-induced
transitions between eigenstates of σ̂ (Q)

z occur on much longer
time scales than dephasing of superpositions of these eigen-
states. Consequently, we ignore from now on the influence of
components of ξ (rA/B, t ) transverse to the quantization axis of
qubits A/B, and focus only on the fluctuations of longitudinal
components ξz(rA/B ) affecting the coherence of the qubits.
The influence of transverse components can be approximately
taken into account as a second-order contribution to longi-
tudinal fluctuations ∼ξ 2

⊥/2�Q that can be incorporated into
effective ξz (note that even for ξ being a Gaussian process, ξ 2 is
not Gaussian [48,49], which can have interesting consequences
for results discussed below; see especially Sec. IV). After
suppressing the z subscript of ξz(rA/B, t ) for simplicity, the
qubit-noise coupling is then given by

V̂ = 1
2 ξ (rA, t ) σ̂ (A)

z + 1
2 ξ (rB, t ) σ̂ (B )

z , (10)

which commutes with the free Hamiltonian [Ĥ0, V̂ ] = 0. The
qubits are allowed to evolve for duration T , and then the
measurement is performed with both local observables fixed
to σ̂ (Q)(0) = σ̂ (Q)

x .
For each realization of ξ drawn from the probability distri-

bution functional P (ξ ), the qubits undergo unitary evolution

Ûξ = exp

(
− i

αξ

2
σ̂ (A)

z

)
⊗ exp

(
−i

βξ

2
σ̂ (B )

z

)
, (11)

where the phases accumulated on each qubit are given by

αξ =
∫ T

0
[�A + ξ (rA, t )]dt,

βξ =
∫ T

0
[�B + ξ (rB, t )]dt. (12)

Accordingly, the quantum-mechanical expectation value of the
measurement result is given by

Tr[σ̂ (A)
x ⊗ σ̂ (B )

x Ûξ �̂Û
†
ξ ]

= Tr
[(

Û
†
ξ σ̂

(A)
x ⊗ σ̂ (B )

x Ûξ

)
�̂
]

= Tr
[
σ̂ (A)(αξ ) ⊗ σ̂ (B )(βξ )�̂

] = Tr Ê(αξ , βξ )�̂, (13)

and by comparing the above formula with Eq. (7) we see that,
when examined per trajectory of the noise, the Heisenberg
picture of the transformation (11) effectively takes over the
choice of the angles of local observables and sets them random
to αξ and βξ [50].

In order to obtain the actual average measurement result fit
to be represented by a correlator, Eq. (13) must be averaged
over realizations of ξ , giving

E = Tr
∫

Dξ P (ξ )Ê(αξ , βξ )�̂ ≡ Tr Ê�̂. (14)

Note that neither E nor its operator counterpart Ê are useful
correlators for the purpose of construction of Bell test or sepa-
rability criterion, as they do not allow for manipulation of local
settings. We enable this crucial element by introducing into
our scheme the qubit control based on dynamical-decoupling
techniques [27].

B. Adjusting the local settings with the qubit control

During the evolution, each qubit is now individually sub-
jected to a sequence of pulses of external field that cause effec-
tively instantaneous π rotations (i.e., spin flips). Consequently,
the angles accumulated over a course of single realization of ξ

are modified according to

αξ (a) =
∫ T

0
f (A)

a (t ) ξ (rA, t ) dt,

βξ (b) =
∫ T

0
f

(B )
b (t ) ξ (rB, t ) dt, (15)

where f
(A/B )
a/b (t ) are the time-domain filter functions, encap-

sulating the effects of pulse sequences applied to each qubit
[16,27,51]. The filter functions have a form of square waves,
switching between ±1 at moments when a pulse causes the
spin flip; see Fig. 1.

Here we choose to control our qubits with Carr-Purcell
sequences [27] that are defined by the interpulse delay τp and
the series of pulse timings: t1 = τp/2, t2 = t1 + τp, . . . , tk =
tk−1 + τp, . . . , tn = tn−1 + τp/2, and T = tn + τp/2 = nτp.
The filter function induced by such a sequence is peri-
odic, and it is shaped as a square wave that oscillates with

FIG. 1. Time-domain filter function f (t ). The example depicted
in the figure was created by an n = 4 pulse Carr-Purcell sequence,
defined by the interpulse delay τp and the pulse timings: t1 = τp/2,
t2 = t1 + τp , . . ., tk = tk−1 + τp , . . ., tn = tn−1 + τp/2. The total
duration of the sequence (and, consequently, of the filter function)
is T = nτp .
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well-defined frequency ωp = π/τp. Therefore, the filter lets
through the harmonic components of the noise that oscillate
with frequencies around ωp (and its odd multiples, because
filter function is a square wave, not a pure harmonic wave), and
suppresses all the other frequencies. The width of the passband
of the filter is of the order of T −1; hence the filter is more precise
for long evolution durations (equivalently, larger number of
pulses). For example, in transition form Eqs. (12) to (15), the
contribution from the time-independent free qubit Hamiltonian
(the splittings �A and �B) has been eliminated, because the
passband of Carr-Purcell sequences with finite interpulse delay
cannot be centered around ωp = 0.

For our purposes it is enough to consider two distinct pulse
sequences per party, and an additional one only for party B;
each of those sequences is playing a role of measurement
setting in the standard CHSH scheme. The first setting, labeled
as “On”, is realized by choosing such ωp that the passband of
the filter aims at harmonic of the noise that is characterized by
significant average intensity. To be more concrete, a convenient
measure of the spectral contents of the zero average, stationary
noise is its spectral density (or simply spectrum) [27,52], de-
fined as SQ(ω) = ∫ ∞

−∞ dt e−iωt
∫
Dξ P (ξ )ξ (rQ, t )ξ (rQ, 0); it

describes the distribution of power into frequency components
composing the noise at the location of the respective qubit.
The reconstruction of this function is the main objective of
the dynamical-decoupling-based noise spectroscopy [26,27].
In its most straightforward implementation, it is facilitated by
the feature of the pure dephasing under the action of pulse
sequences, where the decoherence rate is proportional to the
spectral density evaluated at filter frequency ωp. By measuring
this rate for a spread of settings of ωp one can recover these
values and ultimately recreate the course of SQ(ω). Here we
assume that the spectral density has already been characterized
and we intend to utilize the pulse sequences to control the rate
of dephasing by aiming the filter frequencies at different parts
of the noise spectrum. Hence the setting On would correspond
to the choice of ωp for the respective pulse sequence, so that
SA/B (ωp ) has an appreciable value. In contrast, the second
setting labeled as “Off” corresponds to such a choice of ωp

that SA/B (ωp ) ≈ 0. In other words, with setting Off the pulse
sequence decouples the qubit form the noise, while the setting
On is designed to produce the opposite effect: to couple the
qubit to an intense portion of the noise.

Let us note here that in principle the On setting could also
be realized without exerting additional control over qubit, i.e.,
by allowing the qubit to evolve freely due to the action of
unfiltered noise. The drawback of such a simplistic approach
is the lack of fine control over the rate of the noise-induced
dephasing.

With the first two control sequences included, the ability to
manipulate local settings has been restored, and the correlator
now reads

E(a, b) = Tr
∫

Dξ P (ξ )Ê(αξ (a), βξ (b))�̂ ≡ Tr Ê(a, b)�̂,

(16)

Ê(a, b) = exp[ −χA(a) − χB (b) − 2χ[AB](a, b) ]

× Ê(0, 0) + Ê
(

π
2 , π

2

)
2

+ exp[ −χA(a) − χB (b) − 2χ{AB}(a, b)]

× Ê(0, 0) − Ê
(

π
2 , π

2

)
2

, (17)

with a and b equal to On or Off and Ê(θA, θB ) given by Eq. (7).
The arguments of the exponential functions resulting from the
averaging over noise realizations has been split into distinct
parts. First, we have local attenuation functions χA(a) and
χB (b) that depend only on the setting of sequence applied
locally to qubits A and B, respectively, and it has a form
of infinite series of autocorrelation functions of αξ (a) and
βξ (b) of all orders (i.e., the cumulant series of the respective
stochastic phase) [27]. For example, the second-order auto-
correlation function is given by the inverse Fourier transform
of the spectral density we discussed previously. Then, the
nonlocal attenuation functions, χ{AB}(a, b) and χ[AB](a, b),
are formed by an analogous series, but composed of cross-
correlation functions between αξ (a) and βξ (b), in the case
of the former, and between αξ (a) and −βξ (b), in the case
of the latter. Consequently, the nonlocal attenuation functions
depend on both settings. Appendix A contains the derivation
of this result, and it must be stressed that it was obtained
under an additional assumption that the noise, on average, does
not cause the phase to shift; in technical terms, this condition
is equivalent to the assumption that all attenuation functions
are purely real. This holds for noise with Gaussian statistics
and for all non-Gaussian noises that have vanishing odd-order
cumulants [27]. The latter class includes random telegraph
noise [53–55] that often affects solid-state based qubits, and
which is discussed in Sec. IV.

Finally, the third option for the setting b mentioned above,
labeled as “−On”, is a variation on On: it is realized by a
control sequence with the same ωp as for On, but additionally
appended with a single π pulse at the very beginning of the
evolution. Consequently, the time-domain filter function pro-
duced by this pulse sequence is given by f

(B )
−On(t ) = −f

(B )
On (t ),

which leads to βξ (−On) = −βξ (On). Therefore, when the
setting b for qubit B is chosen to be −On instead of On, the
nonlocal attenuation functions get transformed according to
the following rules:

χ{AB}(a,−On) = χ[AB](a, On), (18a)

χ[AB](a,−On) = χ{AB}(a, On), (18b)

while the local attenuation function remains unchanged,
χB (−On) = χB (On). This ability to transmute nonlocal at-
tenuation functions one into another is the only purpose for
introducing this setting. The usefulness of such a tool will
become apparent when we proceed with the construction
of entanglement witnesses and separability criteria out of
correlators (17).

C. Separability criteria

The exact value of attenuation functions depends on the
probability distribution P (ξ ), and in general is it impossible to
express it in a closed form, with a notable exception of Gaussian
noise [16,27]. However, this difficulty posses no real hindrance
for our proceedings. Assuming that the setting Off realizes an
efficient dynamical decoupling, the correlation functions of the

022329-4



DECOHERENCE-ASSISTED DETECTION OF … PHYSICAL REVIEW A 98, 022329 (2018)

noise local to the decoupled qubit can be set to zero. Then, the
attenuation function local to this qubit vanishes, which in turn
implies that the nonlocal attenuation functions disappear as
well. Thus the possible options for local settings generate the
following values of the correlators (from this point we shall
omit the arguments of the nonzero attenuation functions for
clarity):

Ê(Off, Off) ≈ Ê(0, 0), (19a)

Ê(On, Off) ≈ e−χAÊ(0, 0), (19b)

Ê(Off, On) = Ê(Off,−On) ≈ e−χB Ê(0, 0), (19c)

Ê(On, On) = e−χA−χB−2χ[AB]
Ê(0, 0) + Ê

(
π
2 , π

2

)
2

+ e−χA−χB−2χ{AB}
Ê(0, 0) − Ê

(
π
2 , π

2

)
2

, (19d)

Ê(On,−On) = e−χA−χB−2χ{AB}
Ê(0, 0) + Ê

(
π
2 , π

2

)
2

+ e−χA−χB−2χ[AB]
Ê(0, 0) − Ê

(
π
2 , π

2

)
2

, (19e)

where the only difference between (19d) and (19e) is the sign
change in the terms proportional to Ê( π

2 , π
2 ).

The correlators (19) are now combined into two Hermitian
noise-averaged CHSH operators that are analogous to the class
of CHSH operators B̂S :

B̂� ≡ Ê(Off, Off) + Ê(On, Off)

+ Ê(Off, On) − Ê(On, On), (20a)

B̂� ≡ Ê(Off, Off) + Ê(On, Off)

+ Ê(Off,−On) − Ê(On,−On). (20b)

Two fundamental properties, relevant to potential application
as a separability criterion, can be inferred from the form of
these operators (see Appendix B): (i) the expectation value

of B̂S (with S = �,�) on any separable state is bounded
by the threshold of the standard CHSH expectation value,

|Tr B̂S �̂sep| � 2, which is smaller then the overall maximum
of 2

√
2, and (ii) for χ{AB} = χ[AB] = 0, i.e., in the case when

noise field values at the location of each qubit are completely

uncorrelated, the expectation value of B̂S on any state �̂ never
exceeds the threshold for separable states.

Therefore, as long as the noises affecting each qubit are
correlated, the expectation value of operators (20) can serve as
a proper separability criteria

(If |Tr B̂�/� �̂| > 2 , then �̂ is entangled). (21)

Of course, although the criterion never yields false positives,
it would be useless unless it is also capable of producing actual
true positives. The detection of entanglement with criterion
(21) can be demonstrated in the most transparent manner for
the case of the system initialized in |�±〉 state and perfectly cor-
related Gaussian noises driving the evolution. When the noises
are Gaussian the series constituting the attenuation functions

are truncated at the second-order correlation functions:

χA(a) = 1

2

∫
Dξ PGaussian(ξ )α2

ξ (a), (22a)

χB (b) = 1

2

∫
Dξ PGaussian(ξ )β2

ξ (b), (22b)

χAB (a, b) = 1

2

∫
Dξ PGaussian(ξ )αξ (a)βξ (b)

= χ{AB}(a, b) = −χ[AB](a, b). (22c)

The perfect correlation means that the noises affecting each
qubit are exactly the same for each realization of stochastic
process, i.e., ξ (rA, t ) = ξ (rB, t ) (the opposite of uncorrelated
noises). In addition, if pulse sequences applied to each qubit
are also the same, then the cross correlation equals the
autocorrelations, and consequently the nonlocal and local
attenuation functions become identical, χA(On) = χB (On) =
χAB (On, On) ≡ χ . In these circumstances, the expectation
value of � operator (20a) reads

|〈�±|B̂�(PGaussian(ξ ))|�±〉| = 1 + 2e−χ − e−4χ . (23)

This reaches the maximal value of

B0 = 1 + 22/3 − 2−4/3 = 1 + 3 × 2−4/3 ≈ 2.19 > 2, (24)

for χ = ln(2)/3, and simultaneously is a positive result for
detection of entanglement in states |�±〉 (see Fig. 2). On the
other hand, the expectation value of � operator (20b) on the
same state gives only

|〈�±|B̂� (PGaussian(ξ ))|�±〉| = 2e−χ � 2, (25)

as it fails to reveal the presence of entanglement. However, for
the other two Bell states,

|�±〉 = |+z(A)〉|−z(B )〉 ± |−z(A)〉|+z(B )〉√
2

, (26)

FIG. 2. Performance of the entanglement criterion (21) testing
the Bell state |�+〉, depending on the attenuation function χ induced
by the perfectly correlated Gaussian noise, as given by Eq. (23). The
criterion is entanglement positive if the curve passes over the threshold

max�̂sep |Tr B̂��̂sep| = 2 (red horizontal dashed line). The range of χ

for which the entanglement is detected is indicated by the undercurve
shading. The maximum value of the criterionB0 ≈ 2.19 [see Eq. (24)]
is achieved for χ = ln(2)/3; it is significantly smaller than the overall
maximum of 2

√
2.
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the capabilities of noise-averaged CHSH operators are

reversed: |〈�±|B̂� (PGaussian(ξ ))|�±〉| = 1 + 2e−χ − e−4χ ,

while |〈�±|B̂�(PGaussian(ξ ))|�±〉| = 2e−χ . This example
justifies the need for introduction of −On setting and the
two classes of noise-averaged CHSH operators. It is not
dissimilar to the issue with the standard CHSH separability
criterion, where the capability to detect a given type of
entanglement depended on the settings of local observables
S = {α, α′, β, β ′}.

Similar to standard CHSH operators, the classes of noise-
averaged operators can serve as constituents of entanglement
witnesses. In order to encompass all cases of positives identi-
fiable by criterion (21), one requires four classes of witnesses:

Ŵ�± = 21̂ ∓ B̂�, that are capable of discriminating |�±〉, and

Ŵ�± = 21̂ ∓ B̂� , tailored for witnessing the entanglement in
|�±〉. Note that, unlike the case of standard CHSH scheme,
none of these classes of witnesses are superfluous.

As a side note, it is possible to understand the role of noise
correlations in the performance of this separability criteria
in terms of quantum Fisher information and its physical
interpretation as a measure of state susceptibility to certain
transformations, that sets the “speed” limits for its evolution
[56–58]. For example, in the case of perfectly correlated noise,
evolution of the investigated two-qubit state is generated by a
global angular momentum operator Ĵz = (σ̂ (A)

z + σ̂ (B )
z )/2. For

unitary evolution generated by this operator it is known that
when quantum Fisher information is greater than 2, the two-
qubit state has to be entangled. Hence, in the case of unitary
evolution, the classical susceptibility limit for the phase trans-
formation is well established. In the case of evolution due to
noise, it is not clear what is this limit, especially when the noises
are only partially correlated. For pure dephasing discussed
here, the relevant quantum Fisher information is proportional
to the correlators E(a, b) [23], and so our separability criteria
can be understood as a convenient way to compare the suscep-
tibilities to decoherence in four characteristic situations with a
single number. The key element is the comparison between the
“individual decoherences” E(On, Off ) and E(Off, On) versus
the susceptibility to “collective decoherence” E(On, On) [the
term E(Off, Off ) plays the role of the reference level, which
becomes nontrivial when the dynamical decoupling is not
perfect and χ (Off, Off ) > 0]. Such a comparison might reveal
entanglement, because the susceptibility of classical states is
simply a sum of susceptibilities of its constituents, while the
“collective” susceptibility in the presence of quantum correla-
tions can be higher than that. Here is the point where the noise
correlations come into play: in order to be able to induce the
collective mode of decoherence, one needs some correlations
between noises driving each qubit, otherwise even E(On, On)
would measure only “individual” susceptibilities [e.g., for
perfect dynamical decoupling one would get E(On, On) ∝
E(On, Off )E(Off, On), which is redundant with the informa-
tion on susceptibility of individual decoherences].

It is interesting to note that a result identical to the one from
Eq. (24) was obtained in [59], in which a maximal violation
of CHSH inequality for two-mode squeezed vacuum state
produced in a process of nondegenerate optical parametric am-
plification was considered. The four “measurement settings”
in that paper corresponded to four different manipulations, in a

form of phase-space displacements, of the tested state followed
by a measurement of a product of displaced parity operators.
The mathematical equivalence of results follows from a formal
analogy between calculation of expectation values of parity
operator on Gaussian states of photon field and averaging of
Eq. (16) over the realizations of noise with Gaussian statistics.

D. Sensitivity of noise-averaged CHSH separability criterion

In the previous section it was demonstrated that the noise-
averaged CHSH criterion (21) is at least capable of distin-
guishing maximally entangled Bell states. The question is how
sensitive the criterion is, i.e., how large is the set of entangled
states that would trigger a positive result. Instead of trying
to identify the exact boundaries of such a set, we will gauge
this sensitivity by testing the performance of the criterion on a
family of Werner states

�̂p = 1
4 (1 − p)1̂ + p |�−〉〈�−| (27)

that are parametrized by p ∈ [0, 1].
According to Peres-Horodecki separability criterion [60],

which is known to have 100% sensitivity for two-qubit states
(i.e., it is capable of detecting all entangled two-qubit states),
Werner state �̂p is entangled for p > p0 = 1/3. In compar-
ison, the standard CHSH criterion (9) for optimally chosen
settings detects entanglement if p > pCHSH = 1/

√
2 ≈ 0.71

[60]. Therefore, CHSH criterion is not perfectly sensitive, as it
is capable of positively identifying only a fraction of entangled
�̂p states,

σCHSH = 1 − pCHSH

1 − p0
100% ≈ 44%. (28)

The noise-averaged CHSH criterion (with the optimal
setting S = �) yields a positive result when

|Tr B̂� �̂p| = p|〈�−|B̂� |�−〉| > 2, (29)

which leads to the threshold value of p for detecting entangle-
ment in Werner states,

p > pB̄ = 2∣∣〈�−|B̂�

(
P (ξ ), f (A)

On , f
(B )

On

)|�−〉∣∣ . (30)

The arguments of operator B̂� have been included here to
underline that the threshold, and consequently the sensitivity of
noise-averaged CHSH criterion, depends on the statistics of the
noise P (ξ ), as well as the choice of qubit control parameters in
the On settings. For example, in the case of perfectly correlated
Gaussian noise, the threshold can be only as low as pB̄ =
pGaussian = 2/B0 ≈ 0.91, which gives sensitivity of σGaussian =
1−pGaussian

1−p0
100% ≈ 13.5%.

In addition, one can observe two universal (i.e., independent
of the statistics of the noise) properties of the criterion: (i)
in the regime of weak dephasing, when |χQ| � 1—which in
turn implies that |χ{AB}| � 1 and |χ[AB]| � 1—if the nonlocal
attenuation function is positive, 0 < χ{AB} � 1, the threshold
is always smaller than one

pB̄ ≈ pweak = (1 + χ{AB})−1 . (31)

Therefore, independent of the noise statistics, the criterion is
capable of detecting some entangled states, but only with a low
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sensitivity, σweak = (1 − pweak )/(1 − p0) ≈ 3χ{AB}/2. (ii) In
the opposite regime of strong dephasing, when χQ ∼ 1, the
sensitivity of the criterion drops to zero, because

p|〈�−|B̂� |�−〉|
≈ p(1 + 2e−1 − e−2e−2χ{AB} )

� p(1 + 2e−1) � p × 1.74 < 2, (32)

as at this point the erosion of quantum correlations due to
decoherence has become more of an inhibitor than a catalyst.

E. Example of experimental implementation

Below we present an example of a physically realizable
system that would allow for implementation of the separability
test (21) utilizing only standard experimental techniques. Spin
qubits based on nitrogen-vacancy (NV) centers in diamond are
currently a subject of intense experimental research aimed at
using them as sensors of magnetic fields generated by single
molecules [26,61–65]. For a molecule consisting of a large
number of atoms, the noisy magnetic field generated by nuclei
of these atoms can be approximately treated as Gaussian noise
[27] with spectral density consisting of narrow peaks centered
at frequencies of Larmor precession of distinct nuclear species.
NV centers subjected to dynamical decoupling sequences with
ωp tuned to these Larmor frequencies of a given nuclear
population have been used to sense single molecules [65].
A system consisting of two NV center qubits localized in
the vicinity of a single molecule is thus a good candidate
for demonstration of the above-discussed protocol. As it was
discussed in Ref. [30], where interaction of two NV centers
with such a noise source was considered, for a particular
arrangement of qubits and molecule positions, the directions
of qubit’s quantization axes, and the axis of nuclear spin
precession induced by the external magnetic field, it is possible
to achieve perfect correlation of noises experienced by the
two qubits. With such a setup, the attenuation functions are
given by χ = 2T 2g2/π , where g is a dipole-dipole coupling
for the arrangement that gives perfect correlation [30]. Taking
T ≈ g−1√π ln(2)/6 we obtain the value of χ required to
achieve the maximum of (24).

IV. CRITERION FOR DETECTION OF NON-GAUSSIAN
STATISTICS OF THE NOISE

The maximal value B0 =1+2
2
3 −2−4

3 ≈2.19 [see Eq. (24)]
obtained for Bell states in the case of perfectly correlated
Gaussian noise is in fact also the maximal value attainable
for noises with Gaussian statistics in general (see Appendix
C). However, it is not the overall maximal value possible for

|〈S±|B̂S |S±〉| (with S = �,�). Therefore, assuming that the
noise field ξ (r, t ) coupled to the qubits has zero average and is
stationary, the separability criterion (21) can be repurposed
as a criterion for discriminating noises with non-Gaussian
statistics:

(
If |〈S±|B̂S (P (ξ ))|S±〉| > 1 + 2

2
3 − 2− 4

3 ≈ 2.19,

then P (ξ ) is non-Gaussian

)
, (33)

FIG. 3. Examples of application of non-Gaussianity criterion (33)
to the case of perfectly correlated random telegraph noises (RTNs),
for various configurations of noise and control parameters. The figure

presents 〈�+|B̂�(P RTN(ξ ))|�+〉 as a function of ωp—the central
frequency of the pulse-sequence-induced filter passband (it is related
to the interpulse delay τp = π/ωp). The Gaussian noise threshold
B0 ≈ 2.19 is indicated by the horizontal dashed line. The criterion
is non-Gaussian positive if the curve passes over the threshold; the
range of ωp for which this is the case is indicated by the undercurve
shading. Presented curves were obtained for different ratios of noise
amplitude to the switching rate, v/γ . The upper and lower figures
present the case of n = 2 and n = 4 pulses, respectively, which results
in the total duration of the evolution T = nπ/ωp . For longer durations
(greater number of pulses) the dephasing is generally stronger, and
the resulting decoherence causes more severe damage to the state,
which in turn lowers the effectiveness of the criterion.

where we have included an argument for a noise-averaged
CHSH operator to reiterate that it depends on the probability
distribution of the noise P (ξ ).

An example of a positive test by the criterion can be demon-
strated with perfectly correlated random telegraph noise, a non-
Gaussian stochastic process that jumps between two values,
v and −v, at the average rate γ = (2τc )−1, where τc is the
correlation time of the noise [53–55]. Its spectral density is
a Lorentzian of width 2πγ centered at the zero frequency;
hence the Off is realized by choosing ωp � 2πγ = π/τc.
Figure 3 depicts the capabilities of criterion (33) to detect
non-Gaussianity of the noise, depending on the ratio v/γ , and
the choice of ωp and the width of the passband (measured in
the inverse of the number of pulses or, equivalently, in T −1) of
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the On control setting. The analytical results presented in the
figure were obtained using the expressions for phase evolution
of dynamically decoupled qubit coupled to random telegraph
noise [55] adapted to the case of two qubits coupled to perfectly
correlated noises. For more details, see Appendix D.

V. CONCLUSIONS

We have shown that the coupling to a environment can be
used as a tool for the detection of the entanglement between two
qubits. In our approach, the correlated sources of decoherence
are a part of the mechanism triggering the local operations
necessary to construct the separability criterion. The other part
is the pulse-control method, which allows one to locally fine-
tune the strengths of the qubit-noise coupling. The correlators
required for constriction of CHSH inequality are obtained by
performing a measurement of fixed spin projections, after the
duration of noise-driven evolution, during which the qubits are
controlled with distinct choices of pulse sequence settings. We
have shown that the inequality obtained in this procedure is
a true criterion for entanglement—i.e., it is violated only by
nonseparable initial states. Finally, we have also demonstrated
that the level of the violation of the noise-averaged CHSH
inequality might provide the information whether the noise
had Gaussian statistics or not.

Let us finish with one more remark regarding relation
between the above-discussed scheme, that can be thought of as
CHSH inequality averaged over an ensemble of measurement

settings, and considerations on relation between violation
of Bell inequalities and nonlocality. As we have discussed
at length, the correlation between the noises affecting the
two qubits, that is equivalent to correlation between random
measurement settings for the two qubits, is a crucial part of
the proposed protocol. Such an explicit creation of correla-
tions between measurement settings amounts to a violation
of “free choice” assumption that is necessary for relatively
straightforward establishment of relation between violation of
Bell inequality and ruling out various kinds of local hidden
variable models. While partial breaking of this assumption
still allows for detection of quantum nonlocality [66], subtle
considerations of this issue are beyond the scope of this work, in
which we simply focused on decoherence-activated detection
of entanglement.
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APPENDIX A: NOISE-AVERAGED CORRELATOR

Here we demonstrate how (17) has been obtained, as an
average over realizations of noise ξ of the respective correlator
operator. Namely, we have

Ê(a, b) =
∫

Dξ P (ξ ) Û
†
ξ σ̂

(A)
x ⊗ σ̂ (B )

x Ûξ

=
∫

Dξ P (ξ )
(
cos αξ (a)σ̂ (A)

x + sin αξ (a)σ̂ (A)
y

) ⊗ (
cos βξ (b)σ̂ (B )

x + sin βξ (b)σ̂ (B )
y

)

= σ̂ (A)
x ⊗ σ̂ (B )

x

2
Re

∫
Dξ P (ξ )(ei[αξ (a)+βξ (b)] + ei[αξ (a)−βξ (b)] )

+ σ̂ (A)
y ⊗ σ̂ (B )

y

2
Re

∫
Dξ P (ξ )(ei[αξ (a)+βξ (b)] − ei[αξ (a)−βξ (b)] )

+ σ̂ (A)
x ⊗ σ̂ (B )

y

2
Im

∫
Dξ P (ξ )(ei[αξ (a)+βξ (b)] + ei[αξ (a)−βξ (b)] )

+ σ̂ (A)
y ⊗ σ̂ (B )

x

2
Im

∫
Dξ P (ξ )(ei[αξ (a)+βξ (b)] − ei[αξ (a)−βξ (b)] )

= Re{φ[ αξ (a) + βξ (b) ]} Ê(0, 0) + Ê
(

π
2 , π

2

)
2

+ Re{φ[ αξ (a) − βξ (b) ]} Ê(0, 0) − Ê
(

π
2 , π

2

)
2

. (A1)

Here, Ê(θA, θB ) are given by (7), and the exponential functions averaged over noise realizations were identified with the
characteristic functions of stochastic phases αξ (a) ± βξ (b),

φ[θξ ] =
∫

Dξ P (ξ ) eiθξ , (A2)

and we assume that characteristic functions are purely real. The
logarithm of characteristic function is the cumulant generating
function χ of the stochastic phase,

χ [θξ ] = ln φ[θξ ], (A3)

that defines its cumulants (i.e., the correlation functions),
according to

κk[θξ ] = 1

k!

∂k

∂vk
χ [vθξ ]|v=0. (A4)
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The local and nonlocal attenuation functions are thus obtained
as

χA(a) ≡
∞∑

k=1

κ2k[αξ (a)], (A5a)

χB (b) ≡
∞∑

k=1

κ2k[βξ (a)], (A5b)

χ{AB}(a, b) ≡ χ [αξ (a) + βξ (b)] − χA(a) − χB (b), (A5c)

χ[AB](a, b) ≡ χ [αξ (a) − βξ (b)] − χA(a) − χB (b). (A5d)

APPENDIX B: FUNDAMENTAL PROPERTIES OF B̂S

(i) Formally, operators B̂S are given by the standard CHSH
operator average over noise realizations. Therefore, one can
write

|Tr B̂�/� �̂sep|

=
∣∣∣∣
∫

Dξ P (ξ )Tr B̂{αξ (Off),αξ (On),βξ (Off),±βξ (On)}�̂sep

∣∣∣∣
�

∫
Dξ P (ξ )|Tr B̂{αξ (Off),αξ (On),βξ (Off),±βξ (On)}�̂sep|

�
∫

Dξ P (ξ )2 = 2. (B1)

Note that using similar reasoning one can show that the
maximal value of the expectation value on arbitrary state is
2
√

2—the same value as for standard CHSH operator.
(ii) Assume that χ{AB} = χ[AB] = 0, and suppose that

|Tr B̂S �̂| > 2 (note that for uncorrelated noises both noise-
averaged CHSH operators are identical); then

|Tr Ê(0, 0)�̂|(1 + e−χA + e−χB − e−χA−χB ) > 2,

e− χA+χB
2

(
e

χB −χA
2 + e− χB −χA

2 − e− χA+χB
2

)
> 1,

2 cosh

(
χB − χA

2

)
> 2 cosh

(
χA + χB

2

)
.

Since χQ � 0 and cosh is a monotonic function, we have

arrived at a contradiction. Therefore, |Tr B̂S �̂| � 2 for uncor-
related noises.

APPENDIX C: MAXIMAL VALUE OF |〈S±|B̂S |S±〉|
FOR THE CASE OF GAUSSIAN NOISE

From the structure of (20) it is evident that

|〈S±|B̂S |S±〉| (with S = �,�) can be made larger when

|〈S±|Ê(On, On)|S±〉| is made smaller. For fixed χQ(On),
if one assumes Gaussian statistics of the noise [i.e.,
that the attenuation functions are given by (22)],
then this correlator can be made smaller by making
χAB (On, On) as large as possible. For Gaussian noise,
the nonlocal attenuation function satisfies Cauchy-Schwartz
inequality |χAB (On, On)| � √

χA(On)
√

χB (On), and one

instance when this inequality is saturated is for perfectly
correlated noises, when χA(On) = χB (On). Hence perfect
correlation is sufficient to obtain the maximal value of
|〈S±|B̂S |S±〉|, because it gives the maximal damping of

|〈S±|Ê(On, On)|S±〉|, and in addition it results in (23).

APPENDIX D: NOISE-AVERAGE CHSH OPERATOR
FOR PERFECTLY CORRELATED RANDOM

TELEGRAPH NOISES

In Ref. [55] it was shown that the characteristic function
(A2) of stochastic phase θξ = ∫ T

0 dt f (t )ξ (t ), where ξ (t ) is a
random telegraph noise with amplitude v and the switching rate
γ , and f (t ) is the time-domain filter function of Carr-Purcell
sequence with n pulses and τp = π/ωp interpulse interval, is
given by

φ[θξ ] = W (v, n, γ, τp )

= e−γ nτp

2μn

⎛
⎝ cosh(γμτp ) − v2/γ 2

μ

√
sinh2(γμτp ) + μ2

× (λn
+ − λn

−) + (λn
+ + λn

−)

⎞
⎠, (D1)

where

μ =
√

1 − v2

γ 2
, (D2)

λ± = sinh(γμτp ) ±
√

sinh2(γμτp ) + μ2. (D3)

The characteristic function is related to the cumulant generat-
ing functional (and to attenuation functions) via Eq. (A3). For
perfectly correlated noises we have

χA+χB +2χ{AB} =χ [αξ +βξ ]=χ [2αξ ]=χ [α2ξ ], (D4)

that is, the cumulant generating functional of a sum of stochas-
tic phases is identical to χ of stochastic phase acquired by
coupling to a single noise with twice the amplitude. Therefore,
we can write

e−χQ = W (v, n, γ, τp ), (D5)

e−χA−χB−2χ{AB} = W (2v, n, γ, τp ), (D6)

and thus we obtain the analytical expression for the expectation
value of the noise-averaged CHSH operator:

〈�+|B̂�|�+〉 = 1 + 2W (v, n, γ, τp ) − W (2v, n, γ, τp ).

(D7)
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